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ON TENSOR GMRES AND GOLUB-KAHAN METHODS VIA THE T-PRODUCT FOR

COLOR IMAGE PROCESSING∗

MOHAMED EL GUIDE† , ALAA EL ICHI‡ , KHALIDE JBILOU§ , AND RACHID SADAKA¶

Abstract. The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-

linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global

Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to

solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov

regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation

and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization.

Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.
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1. Introduction. The aim of this paper is to solve the following tensor problem:

(1.1) M(X) = C,

where M is a linear operator that could be described as

(1.2) M(X) = A ? X,

or as

(1.3) M(X) = A ? X ?B,

where A, X, B, and C are three-way tensors, leaving the specific dimensions to be defined later, and ? is the

T-product to be also defined later. To mention but a few applications, problems of these types arise in engi-

neering [34], signal processing [30], data mining [31], tensor complementarity problems[32], computer vision

[37, 38], and graph analysis [23]. For those applications, and so many more, one have to take advantage of

this multidimensional structure to build rapid and robust iterative methods for solving large-scale problems.

We will then, be interested in developing robust and fast iterative tensor Krylov subspace methods under

tensor–tensor product framework between third-order tensors, to solve regularized problems originating from

color image and video processing applications. Standard and global Krylov subspace methods are suitable

when dealing with grayscale images, e.g. [1, 2, 9, 11]. However, these methods might be time consuming
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to numerically solve problems related to multichannel images (e.g. color images, hyperspectral images and

videos).

For the Einstein product, both the Einstein tensor global Arnoldi and Einstein tensor global Golub-

Kahan bidiagonalization algorithms have been established [12], which makes so natural to generalize these

methods using the T-product. In this paper, we will show that the tensor–tensor product between third-order

tensors allows the application of the global iterative methods, such as the global Arnoldi and global Golub-

Kahan algorithms. The tensor form of the proposed Krylov methods, together with using the fast Fourier

transform (FFT) to compute the T-product between third-order tensors can be efficiently implemented on

many modern computers and allows to significantly reduce the overall computational complexity. It is also

worth mentioning that our approaches can be naturally generalized to higher-order tensors in a recursive

manner.

The paper is organized as follows. We shall first present in Section 2 some symbols and notations used

throughout paper. We also recall the concept of the T-product between two tensors. In Section 3, we define

tensor global Arnoldi and tensor global Golub-Kahan algorithms that allow the use of the T-product. Section

4 reviews on the adaptation of Tikhonov regularization for the tensor equation (1.1) and then proposing a

restarting strategy of the tensor global GMRES and tensor global Golub-Kahan approaches in connection

with Gauss-type quadrature rules to inexpensively compute solutions of the regularization of (1.1). In Section

5, we give a tensor formulation in the form of (1.1) that describes the cross-blurring of color image and then

we present a few numerical examples on restoring blurred and noisy color images and videos. Concluding

remarks can be found in Section 6.

2. Definitions and notations. A tensor is a multidimensional array of data. The number of indices

of a tensor is called modes or ways. Notice that a scalar can be regarded as a zero mode tensor, first mode

tensors are vectors, and matrices are second mode tensor. The order of a tensor is the dimensionality of

the array needed to represent it, also known as ways or modes. For a given N-mode (or order-N) tensor

X ∈ Rn1×n2×n3...×nN , the notation xi1,...,iN (with 1 ≤ ij ≤ nj and j = 1, . . . N) stands for the element

(i1, . . . , iN ) of the tensor X. The norm of a tensor A ∈ Rn1×n2×···×nN is specified by

‖A‖2F =

n1∑
i1=1

n2∑
i2=1

· · ·
nN∑
iN=1

a2i1i2···iN .

Corresponding to a given tensor A ∈ Rn1×n2×n3...×nN , the notation

A:: · · · :︸ ︷︷ ︸ k
(N−1)−times

, k = 1, 2, . . . , nN ,

denotes a tensor in Rn1×n2×n3...×nN−1 which is obtained by fixing the last index and is called frontal slice.

Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing all the indexes

except one. A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. Third-order tensors have

column, row, and tube fibers. An element c ∈ R1×1×n is called a tubal scalar of length n. More details are

found in [24, 22].

In the present paper, we will consider only third-order tensors and show how to use them in color image

and video processing.

2.1. Discrete Fourier Transformation. In this subsection, we recall some definitions and properties

of the discrete Fourier transformation and the T-product. The Discrete Fourier Transformation (DFT) plays
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Figure 1: (a) Frontal, (b) horizontal, and (c) lateral slices of a third-order tensor. (d) A mode-3 tube

fibers.

a very important role in the definition of the T-product of tensors. The DFT on a vector v ∈ Rn is defined

by

(2.1) ṽ = Fnv ∈ Cn,

where Fn is the Fourier matrix defined by

(2.2) Fn =


1 1 1 . . . 1

1 ω ω2 . . . ωn−1

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

 ∈ Cn×n,

where ω = e
−2πi
n with i2 = −1. It is not difficult to show that (see [13])

(2.3) F ∗n = Fn, and F ∗nFn = FnF
∗
n = nIn.

Then F−1n =
1

n
Fn and

1√
n
Fn is a unitary matrix. The cost of computing the vector ṽ directly from (2.1) is

O(n2). Using the fast Fourier Transform (fft), it will costs O(nlog(n)). It is known that

(2.4) Fn circ(v)F−1n = Diag(ṽ),

which is equivalent to

(2.5) Fn circ(v)F ∗n = nDiag(ṽ),

where

circ(v) =


v1 v2 . . . vn
v2 v1 . . . v3
...

... . . .
...

vn vn−1 . . . v1

 ,

and Diag(ṽ) is the diagonal matrix whose i-th diagonal element is (ṽ)i. The decomposition (2.4) shows that

the columns of Fn are the eigenvectors of (circ(v))T .
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2.2. Definitions and properties of the T-product. In this subsection, we briefly review some

concepts and notations, which play a central role for the elaboration of the tensor global iterative methods

based on the T-product; see [3, 17, 26, 24] for more details on the T-product. Let A ∈ Rn1×n2×n3 be a

third-order tensor, then the operations bcirc, unfold, and fold are defined by

bcirc(A) =


A1 An3

An3−1
. . . A2

A2 A1 An3
. . . A3

...
. . .

. . .
. . .

...

An3
An3−1

. . . A2 A1

 ∈ Rn1n3×n2n3 ,

unfold(A) =


A1

A2

...

An3

 ∈ Rn1n3×n2 , fold(unfold(A)) = A.

Let Ã be the tensor obtained by applying the DFT on all the tubes of the tensor A. With the MATLAB

command fft as

Ã = fft(A, [ ], 3), and ifft(Ã, [ ], 3) = A,

where ifft denotes the Inverse Fast Fourier Transform.

Let A be the matrix

(2.6) A =


A(1)

A(2)

. . .

A(n3)

 ,

where the matrices A(i)’s are the frontal slices of the tensor Ã. The block circulant matrix bcirc(A) can

also be block diagonalized by using the DFT and this gives

(2.7) (Fn3
⊗ In1

) bcirc(A) (F ∗n3
⊗ In2

) = A,

As noticed in [24, 29], the diagonal blocks of the matrix A satisfy the following property:

(2.8)

{
A(1) ∈ Rn1×n2

conj(A(i)) = A(n3−i+2),

where conj(A(i)) is the complex conjugate of the matrix A(i). Next we recall the definition of the T-product.

Definition 1. The T-product between two tensors A ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3 is an n1×m×
n3 tensor given by:

A ?B = fold(bcirc(A)unfold(B)).

Notice that from the relation (2.6), we can show that the the product C = A ?B is equivalent to C = A B.

So, the efficient way to compute the T-product is to use Fast Fourier Transform (FFT).

Using the relation (2.8), the following algorithm allows us to compute, in an efficient way, the T-product

of the tensors A and B, see [29].
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Algorithm 1 Computing the T-product via FFT

Inputs: A ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3

Output: C = A ?B ∈ Rn1×m×n3

1. Compute Ã = fft(A, [ ], 3) and B̃ = fft(B, [ ], 3).

2. Compute each frontal slices of C̃ by

C(i) =


A(i)B(i), i = 1, . . . , bn3 + 1

2
c

conj(C(n3+i−2)), i = bn3 + 1

2
c+ 1, . . . , n3.

3. Compute C = ifft(C̃, [ ], 3).

For the T-product, we have the following definitions and remarks:

Definition 2. The identity tensor In1n1n3
is the tensor whose first frontal slice is the identity matrix

In1n1
and the other frontal slices are all zeros.

Definition 3.

1. An n1 × n1 × n3 tensor A is invertible, if there exists a tensor B of order n1 × n1 × n3 such that

A ?B = In1n1n3
and B ?A = In1n1n3

.

In that case, we set B = A−1. It is clear that A is invertible if and only if bcirc(A) is invertible.

2. The transpose of A is obtained by transposing each of the frontal slices and then reversing the order

of transposed frontal slices 2 through n3.

Remark 2.1.

• If A, B, and C are tensors of appropriate sizes, then

(A ?B) ? C = A ? (B ? C).

• Suppose A and B are two tensors such A ?B and BT ?AT are defined. Then

(A ?B)T = BT ?AT .

Definition 4. Let A and B be two tensors in Rn1×n2×n3 . Then

1. The scalar inner product is defined by

〈A,B〉 =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

ai1i2i3bi1i2i3 .

2. The norm of A is defined by

‖A‖F =
√
〈A,A〉.

Remark 2.2. Another interesting way for computing the scalar product and the associated norm is as

follows:

〈A,B〉 =
1

n3
〈A,B〉; ‖A‖F =

1
√
n3
‖A‖F ,

where the block diagonal matrix A is defined by (2.6).
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Definition 5. An n1 × n1 × n3 tensor Q is orthogonal if

QT ? Q = Q ? QT = In1n1n3 .

Lemma 6. If Q is an orthogonal tensor, then

‖Q ?A‖F = ‖A‖F .

Definition 7 ([24]). A tensor is called f-diagonal if its frontal slices are diagonal matrices. It is called

upper triangular if all its frontal slices are upper triangular.

Definition 8 ([33]). (Block tensor based on T-product) Suppose A ∈ Rn1×m1×n3 , B ∈ Rn1×m2×n3 ,

C ∈ Rn2×m1×n3 and D ∈ Rn2×m2×n3 are four tensors. The block tensor[
A B

C D

]
∈ R(n1+n2)×(m1+m2)×n3

is defined by compositing the frontal slices of the four tensors.

Now we introduce the T-diamond tensor product.

Definition 9. Let A = [A1, . . . ,Ap] ∈ Rn1×ps×n3 , where Ai ∈ Rn1×s×n3 , i = 1, ..., p and let B =

[B1, . . . ,Bl] ∈ Rn1×`s×n3 with Bj ∈ Rn1×s×n3 , j = 1, ...`. Then, the product AT♦B is the p× ` matrix given

by :

(AT♦B)i,j = 〈Ai,Bj〉 .

3. Tensor T-global GMRES and tensor T-global Golub-Kahan algorithms.

3.1. The tensor T-global GMRES . Consider the following tensor linear system of equations:

(3.1) A ? X = C,

where A ∈ Rn×n×p, C and X ∈ Rn×s×p. We introduce the tensor Krylov subspace TKm(A,V) associated

with the T-product, defined for the pair (A,V) as follows:

(3.2) TKm(A,V) = Tspan{V,A ? V, . . . ,Am−1 ? V} =

{
Z ∈ Rn×s×p,Z =

m∑
i=1

αi
(
Ai−1 ? V

)}
,

where αi ∈ R, Ai−1 ? V = Ai−2 ? A ? V, for i = 2, . . . ,m and A0 is the identity tensor. In the following

algorithm, we define the Tensor T-global Arnoldi algorithm.

Algorithm 2 Tensor T-global Arnoldi

1. Input. A ∈ Rn×n×p, V ∈ Rn×s×p and the positive integer m.

2. Set β = ‖V‖F , V1 =
V

β
3. For j = 1, . . . ,m

(a) W = A ? Vj
(b) for i = 1, . . . , j

i. hi,j = 〈Vi,W〉
ii. W = W− hi,j Vi

(c) End for

(d) hj+1,j = ‖W‖F . If hj+1,j = 0, stop; else

(e) Vj+1 = W/hj+1,j .

4. End
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It is not difficult to show that after m steps of Algorithm 2, the tensors V1, . . . ,Vm, form an orthonormal

basis of the tensor global Krylov subspace TKm(A,V). Let Vm be the (n×(sm)×p) tensor with frontal slices

V1, . . . ,Vm and let H̃m be the (m+ 1)×m upper Hessenberg matrix whose elements are the hi,j ’s defined

by Algorithm 2. Let Hm be the matrix obtained from H̃m by deleting its last row; H.,j will denote the j-th

column of the matrix Hm and A ? Vm is the (n× (sm)× p) tensor with frontal slices A ? V1, . . . ,A ? Vm:

(3.3) Vm := [V1, . . . ,Vm] and A ? Vm := [A ? V1, . . . ,A ? Vm].

We introduce the product ~ defined by

Vm ~ y =

m∑
j=1

yjVj , y = (y1, . . . , ym)T ∈ Rm,

and we set

Vm ~Hm = [Vm ~H.,1, . . . ,Vm ~H.,m] .

Then, it is easy to see that for all vectors u and v in Rm, we have

(3.4) Vm ~ (u+ v) = Vm ~ u+ Vm ~ v and (Vm ~Hm) ~ u = Vm ~ (Hm u).

With these notations, we can show the following result that will be useful later on.

Proposition 10. Let Vm be the tensor defined by [V1, . . . ,Vm] where Vi ∈ Rn×s×p are defined by the

Tensor T-global Arnoldi algorithm. Then, we have

(3.5) ‖Vm ~ y‖F = ‖y‖2, ∀y = (y1, . . . , ym)T ∈ Rm.

Proof. From the definition of the product ~, we have
∑m
j=1 yjVj = Vm ~ y. Therefore,

‖Vm ~ y‖2F =

〈
m∑
j=1

yjVj ,

m∑
j=1

yjVj

〉
F

.

But, since the tensors Vi’s are orthonormal, it follows that

‖Vm ~ y‖2F =

m∑
j=1

y2j = ‖y‖22,

which shows the result.

With the above notations, we can easily prove the results of the following proposition.

Proposition 11. Suppose that m steps of Algorithm 2 have been run. Then, the following statements

hold:

A ? Vm = Vm ~Hm + hm+1,m [On×s×p, . . . ,On×s×p,Vm+1] ,(3.6)

A ? Vm = Vm+1 ~ H̃m,(3.7)

VTm♦A ? Vm = Hm,(3.8)

VTm+1♦A ? Vm = H̃m,(3.9)

VTm♦Vm = Im,(3.10)

where Im the identity matrix and On×s×p is the tensor having all its entries equal to zero.
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Proof. From Algorithm 2, we have A?Vj =

j+1∑
i=1

hi,jVi. Using the fact that A?Vm = [A ? V1, . . . ,A ? Vm],

the j-th frontal slice of A ? Vm is given by

(A ? Vm)j = A ? Vj =

j+1∑
i=1

hi,jVi.

Furthermore, from the definition of the ~ product, we have

(Vm+1 ~ H̃m)j = Vm+1 ~H.,j ,

=

j+1∑
i=1

hi,jVi,

which proves the first two relations. The other relations follow from the definition of T-diamond

product.

In the sequel, we develop the tensor T-global GMRES algorithm for solving the problem (3.1). It could be

considered as generalization of the global GMERS algorithm [19]. Let X0 ∈ Rn×s×p be an arbitrary initial

guess with the corresponding residual R0 = C − A ? X0. The aim of tensor T-global GMRES method is to

find and approximate solution Xm approximating the exact solution X∗ of (3.1) such that

(3.11) Xm − X0 ∈ TKm(A,R0),

with the classical minimization property

(3.12) ‖Rm‖F = min
X∈X0+TKm(A,R0)

‖C−A ? X‖F .

Let Xm = X0 + Vm ~ y with y ∈ Rm be the approximate solution satisfying (3.11). Then,

‖Rm‖F = min
y∈Rm

‖R0 − (A ? Vm) ~ y‖F ,

where A ? Vm := [A ? V1, . . . ,A ? Vm] is the (n × sm × p) tensor defined earlier. Using Proposition 10 and

the fact that R0 = ‖R0‖FV1 with V1 = Vm+1 ~ e1, where e1 the first canonical basis vector in Rm+1, we get

(3.13) y = arg min
y∈Rm

|| ||R0||F e1 − H̃my||2.

3.2. The Tensor T-global Golub-Kahan algorithm. Instead of using the tensor T-global Arnoldi

to generate a basis for the projection subspace, we can define T-version of the tensor global Lanczos process.

Here, we will use the tensor Golub-Kahan algorithm related to the T-product.

Let A ∈ Rn×`×p be a tensor and let U ∈ R`×s×p and V ∈ Rn×s×p two other given tensors. The Tensor

T-global Golub-Kahan bidiagonalization algorithm (associated with the T-product) is defined as follows:

Let C̃m be the upper bidiagonal ((m+ 1)×m) matrix

C̃m =



α1

β2 α2
. . .

. . .
. . .

βm αm
βm+1


,
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Algorithm 3 The Tensor T-global Golub-Kahan algorithm

1. Input. The tensors A, V, and U and an integer m.

2. Set β1 = ‖V‖F , α1 = ‖U‖F , V1 = V/β1 and U1 = U/α1.

3. for j = 2, . . . ,m

(a) Ṽ = A ? Uj−1 − αj−1Vj−1
(b) βj = ‖Ṽ‖F if βj = 0 stop, else

(c) Vj = Ṽ/βj
(d) Ũ = AT ? Vj − βjUj−1
(e) αj = ‖Ũ‖F
(f) if αj = 0 stop, else

(g) Uj = Ũ/αj .

and let Cm be the (m ×m) matrix obtained by deleting the last row of C̃m. We denote by C.,j the j-th

column of the matrix Cm. Let Um and A ?Um be the (`× (sm)× p) and (n× (sm)× p) tensors with frontal

slices U1, . . . ,Um and A ? U1, . . . ,A ? Um, respectively, and let Vm and AT ? Vm be the (n× (sm)× p) and

(`× (sm)× p) tensors with frontal slices V1, . . . ,Vm and AT ? V1, . . . ,A
T ? Vm, respectively. We set

Um : = [U1, . . . ,Um] , and A ? Um := [A ? U1, . . . ,A ? Um],(3.14)

Vm : = [V1, . . . ,Vm] , and AT ? Vm := [AT ? V1, . . . ,A
T ? Vm].(3.15)

Then, the following proposition can be established.

Proposition 12. The tensors produced by the tensor T-global Golub-Kahan algorithm satisfy the fol-

lowing relations:

A ? Um = Vm+1 ~ C̃m,(3.16)

= Vm ~ Cm + βm+1 [On×s×p, . . . ,On×s×p,Vm+1] ,(3.17)

AT ? Vm = Um ~ C̃Tm.(3.18)

Proof. Using A ? Um = [A ? U1, . . . ,A ? Um] ∈ Rn×(sm)×n3 , the (j − 1)-th frontal slice of (A ? Um) is

given by

(A ? Um)j−1 = A ? Uj−1 = αj−1Vj−1 + βjVj .

Furthermore, from the definition of the ~ product, we have

(Vm+1 ~ C̃m)j−1 = Vm+1 ~ C.,j−1,

= αj−1Vj−1 + βjVj

and for j = m, Um ~ C.,m = A ? Um + βm+1Vm+1 and the result follows. The other relations are proven is

a similar way.

4. Application to discrete-ill-posed tensor problems. In what follows, we will apply the tensor

global GMRES and tensor Golub-Kahan algorithms to some discrete-ill-posed problems. We consider the

following discrete-ill-posed tensor equation:
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(4.1) A ? X = C, C = Ĉ + N,

where A ∈ Rn×n×p, X, N (additive noise), and C are tensors in Rn×s×p.

In color image processing, p = 3, A represents the blurring tensor, C the blurry and noisy observed image,

X is the image that we would like to restore, and N is an unknown additive noise. Therefore, to stabilize

the recovered image, regularization techniques are needed. There are several techniques to regularize the

linear inverse problem given by equation (4.1); for the matrix case, see, for example, [1, 9, 14, 15]. All of

these techniques stabilize the restoration process by adding a regularization term, depending on some priori

knowledge of the unknown image. One of the most regularization method is due to Tikhonov and is given

as follows:

(4.2) min
X
{‖A ? X− C‖2F + µ‖X‖2F }.

As problem (4.1) is large, Tikhonov regularization (4.2) may be very expensive to solve. One possibility

is instead of regularizing the original problem, we apply the Tikhonov technique to the projected problem

(3.13) which leads to the following problem:

ym,µ = arg min
y∈Rm

(
‖‖R0‖e1 − H̃my‖22 + µ‖y‖22

)
,(4.3)

= arg min
y∈Rm

∥∥∥∥∥
(
H̃m

µIm

)
y −

(
βe1
0

)∥∥∥∥∥
2

.(4.4)

The minimizer ym,µ can also be computed as the solution of the following normal equations associated with

(4.4)

(4.5) H̃m,µy = H̃T
m, H̃m,µ = (H̃T

mH̃m + µ2Im).

Note that since the Tikhonov problem (4.5) is now a matrix one with small dimension as m is generally

small, the vector ym,µ, can thereby be inexpensively computed by some techniques such as the GCV method

[14] or the L-curve criterion [9, 11, 15, 16].

In terms of practical implementations, it’s more convenient to introduce a restarted version of the tensor

Global GMRES. This strategy is essentially based on restarting the tensor T-global Arnoldi algorithm.

Therefore, at each restart, the initial guess X0 and the regularization parameter µ are updated employing

the last values computed when the the number of inner iterations required is fulfilled. We note that as the

number outer iterations increases it is possible to compute the mth residual without having to compute extra

T-products. At step m, the residual Rm = C−A ∗ Xm produced by the tensor Global GMRES method for

tensor equation (1.1) has the following expression:

(4.6) Rm = Vm+1 ~ (γm+1Qmem+1) ,

where Qm is the unitary matrix obtained from the QR decomposition of the upper Hessenberg matrix H̃m

and γm+1 is the last component of the vector ‖R0‖F QT
me1 and em+1 = (0, 0, . . . , 1)T ∈ Rm+1.

Furthermore, it is easy to show that

(4.7) ‖Rm‖F = |γm+1| .

The tensor T-global GMRES method is summarized in the following algorithm.
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Algorithm 4 Implementation of Tensor T-global GMRES(m)

1. Input. A ∈ Rn×n×p, V,B,X0 ∈ Rn×s×p, the maximum number of iteration Itermax and a tolerance

tol > 0 .

2. Output. Xm ∈ Rn×s×n3 approximate solution of the system (3.1).

3. k = 1, . . . , Itermax

(a) Compute R0 = C−A ? X0.

(b) Apply Algorithm 2 to compute Vm and H̃m .

(c) Determine µk as the parameter minimizing the GCV function [14].

(d) Compute the regularized solution ymk,µ of the problem (4.4).

(e) Compute the approximate solution Xm = X0 + Vm ~ ym,µk
4. If ‖Rm‖F < tol, stop, else

5. Set X0 = Xm and go to 3-a.

6. End

We turn now to the tensor T-global Golub-Kahan approach for the solving the Tikhonov regularization of the

problem (1.1). Here, we apply the following Tikhonov regularization approach and solve the new problem:

(4.8) min
X
{‖A ? X− C‖2F + µ−1‖X‖2F }.

The use of µ−1 in (4.8) instead of µ will be justified below. In the what follows, we briefly review the

discrepancy principle approach to determine a suitable regularization parameter, given an approximation of

the norm of the additive error. We then assume that a bound ε for ‖N‖F is available. This priori information

suggests that µ has to be determined as soon as

(4.9) φ(µ) ≤ ηε,

where φ(µ) = ‖A ? X − C‖2F and η ' 1 is refereed to as the safety factor for the discrepancy principle. A

zero-finding method can be used to solve (4.9) in order to find a suitable regularization parameter which also

implies that φ(µ) has to be evaluated for several µ-values. When the tensor A is of moderate size, the quantity

φ(µ) can be easily evaluated. This evaluation becomes expensive when the matrix A is large, which means

that its evaluation by a zero-finding method can be very difficult and computationally expensive. We will

approximate φ to be able to determine an estimate of ‖A?X−C‖2F . Our approximation is obtained by using

T-global Golub-Kahan bidiagonalization (T-GGKB) and Gauss-type quadrature rules. This connection

provides approximations of moderate sizes to the quantity φ, and therefore gives a solution method to

inexpensively solve (4.9) by evaluating these small quantities that can successfully and inexpensively be

employed to compute µ as well as defining a stopping criterion for the T-GGKB iterations; see [1, 2] for

discussion on this method.

Introduce the functions (of µ)

fµ(t) := (µt+ 1)−2,(4.10)

Gm,µ := ‖C‖2F eT1 fµ(CmC
T
m)e1,(4.11)

Rm+1,µ := ‖C‖2F eT1 fµ(C̃mC̃
T
m)e1,(4.12)

The quantities Gm,µ and Rm+1,µ are refereed to as Gauss and Gauss–Radau quadrature rules, respectively,

and can be obtained after m steps of T-GGKB (Algorithm 3) applied to tensor A with initial tensor C.

These quantities approximate φ(µ) as follows:

(4.13) Gm,µ ≤ φ(µ) ≤ Rm+1,µ.
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Similarly to the approaches proposed in [1, 2], we therefore instead solve for µ the low-dimensional nonlinear

equation

(4.14) Gm,µ = ε2.

We apply the Newton’s method to solve (4.14) that requires repeated evaluation of the function Gmfµ and

its derivative, which are inexpensive computations for small m.

We now comment on the use of µ in (4.8) instead of 1/µ, implies that the left-hand side of (4.9) is a decreasing

convex function of µ. Therefore, there is a unique solution, denoted by µε, of

φ(µ) = ε2,

for almost all values of ε > 0 of practical interest and therefore also of (4.14) for m sufficiently large; see

[1, 2] for analyses. We accept µm that solve (4.9) as an approximation of µ, whenever we have

(4.15) Rm+1,µ ≤ η2ε2.

If (4.15) does not hold for µm, we carry out one more GGKB steps, replacing m by m + 1 and solve the

nonlinear equation

(4.16) Gm+1,µ = ε2;

see [1, 2] for more details. Assume now that (4.15) holds for some µm. The corresponding regularized

solution is then computed by

(4.17) Xm,µm = Um ~ ym,µm ,

where ym,µm solves

(4.18) (C̃TmC̃m + µ−1m Im)y = α1C̃
T
me1, α1 = ‖C‖F .

It is also computed by solving the least-squares problem

(4.19) min
y∈Rm

∥∥∥∥∥
[
µ
1/2
m C̃m
Im

]
y − α1µ

1/2
m e1

∥∥∥∥∥
2

.

The following result shows an important property of the approximate solution (4.17). We include a proof

for completeness.

Proposition 13. Let µm solve (4.14) and let ym,µm solve (4.19). Then the associated approximate

solution (4.17) of (4.8) satisfies

‖A ? Xm,µm − C‖2F = Rm+1,µm .

Proof. From the items of Proposition 12, we get the following matrix low-dimensional least squares

problem:

‖A ? Xm,µm − C‖2F =
∥∥∥C̃`ym,µm − α1e1

∥∥∥2
2
.

where α1 = ‖C‖F . We now express ym,µm with the aid of (4.18) and by using the following matrix identity:

I −A
(
ATA+ µ−1I

)−1
AT =

(
µAAT + I

)−1
,
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with A replaced by C̃m, to obtain

‖A ? Xm,µm − C‖2F = α2
1

∥∥∥∥e1 − C̃m (C̃TmC̃m + µ−1m Im

)−1
C̃Tme1

∥∥∥∥2
F

,

= α2
1e
T
1

(
µmC̃mC̃

T
m + Im+1

)−2
e1,

= Rm+1,µm .

The following algorithm summarizes the main steps to compute a regularization parameter and a corre-

sponding regularized solution of (1.1), using Tensor T-GGKB and quadrature rules method for Tikhonov

regularization.

Algorithm 5 Tensor T-GGKB and quadrature rules method for Tikhonov regularization

1. Input. A ∈ Rn×n×n3 , C, η ' 1 and ε.

2. Output. T-GGKB steps m, µm and Xm,µm .

3. Determine the orthonormal bases Um+1 and Vm of tensors, and the bidiagonal Cm and C̃m matrices

with Algorithm 3.

4. Determine µm that satisfies (4.14) with Newton’s method.

5. Determine ym,µm by solving (4.19) and then compute Xm,µm by (4.17).

We comment on the complexity of Algorithms 4 and 5. First, note that the overall computational cost for

Algorithm 4 is dominated by the work required to determine Vm in Algorithm 2. The computational effort

required to determine Vm is dominated by the evaluation of m T-products, which demands approximately,

O (n1n2n3 log n3m) flops by using Algorithm 1. Concerning Algorithm 5, the computational complexity is

dominated by the work needed to determine Um and Vm in Algorithm 3, which demands approximately

O (n1n2n3 log n3m) flops. We show in the following section that Algorithms 4 and 5 solve problem (1.1)

in a time and cost less that the ones required when using the method proposed in [10] that uses the con-

nection between (standard) Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large

ill-conditioned linear systems of equations of form (1.1).

5. Numerical results. This section performs some numerical tests on the methods of Tensor T-Global

GMRES(m) and Tensor T-Global Golub-Kahan algorithm given by Algorithms 4 and 5, rspectively, when

applied to the restoration of blurred and noisy color images and videos. For clarity, we only focus on the

formulation of a tensor model (4.1), describing the blurring that is taking place in the process of going

from the exact to the blurred RGB image. We recall that an RGB image is just multidimensional array of

dimension m× n× 3 whose entries are the light intensity. Throughout this section, we assume that the the

three channels of the RGB image has the same dimensions, and we refer to it as n× n× 3 tensor. Let X̂(1),

X̂(2), and X̂(3) be the n×n matrices that constitute the three channels of the original error-free color image

X̂, and Ĉ(1), Ĉ(2), and Ĉ(3) the n× n matrices associated with error-free blurred color image Ĉ. Because of

some unique features in images, we seek an image restoration model that utilizes blur information, exploiting

the spatially invariant properties. Let us also consider that both cross-channel and within-channel blurring

take place in the blurring process of the original image. Let vec be the operator that transforms a matrix to

a vector by stacking the columns of the matrix from left to right. Then, the full blurring model is described

by the following form:

(5.1)
(
Acolor ⊗A(1) ⊗A(2)

)
x̂ = ĉ,
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where,

ĉ =


vec

(
Ĉ(1)

)
vec

(
Ĉ(2)

)
vec

(
Ĉ(3)

)
 , x̂ =


vec

(
X̂(1)

)
vec

(
X̂(2)

)
vec

(
X̂(3)

)
 ,

and

Acolor =

 arr arg arb
agr agg agb
abr abg abb

 .
Acolor is the 3× 3 matrix that models the cross-channel blurring, where each row sums to one. This matrix

is obtained from [18]. We consider the special case where arr = agg = abb, agr = arg, abr = arb, and

abg = agb, which gives rise to a cross-channel circular mixing. A(1) ∈ Rn×n and A(2) ∈ Rn×n define within-

channel blurring and they model the horizontal within blurring and the vertical within blurring matrices,

respectively; for more details, see [18]. The notation ⊗ denotes the Kronecker product of matrices; i.e. the

Kronecker product of a n× p matrix A = (aij) and a (s× q) matrix B = (bij) is defined as the (ns)× (pq)

matrix A ⊗ B = (aijB). By exploiting the circulant structure of the cross-channel blurring matrix Acolor

and the operators unfold and fold, it can be easily shown that (5.1) can be written in the following tensor

form:

(5.2) A ? X̂ ?B = Ĉ,

where A is a 3-way tensor such that A(:, :, 1) = αA(2), A(:, :, 2) = βA(2), and A(:, :, 3) = γA(2) and B

is a 3-way tensor with B(:, :, 1) = (A(1))T , B(:, :, 2) = 0, and B(:, :, 3) = 0. To test the performance of

algorithms, the within blurring matrices A(i) have the following entries:

ak` =

{
1

σ
√
2π

exp
(
− (k−`)2

2σ2

)
, |k − `| ≤ r

0, otherwise
.

Note that σ controls the amount of smoothing, i.e. the larger the σ, the more ill-posed the problem.

We generated a blurred and noisy tensor image C = Ĉ + N, where N is a noise tensor with normally

distributed random entries with zero mean and with variance chosen to correspond to a specific noise level

ν := ‖N‖F /‖Ĉ‖F . To determine the effectiveness of our solution methods, we evaluate

Relative error =

∥∥∥X̂− Xrestored

∥∥∥
F

‖X̂‖F
,

and the Signal-to-Noise Ratio (SNR) is defined by

SNR(Xrestored) = 10log10
‖X̂− E(X̂)‖2F
‖Xrestored − X̂‖2F

,

where E(X̂) denotes the mean gray level of the uncontaminated image X̂. All computations were carried out

using the MATLAB environment on an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz (8 CPUs) computer

with 12 GB of RAM. The computations were done with approximately 15 decimal digits of relative accuracy.
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5.1. Example 1. In this example, we present the experimental results recovered by Algorithms 4 and

5 for the reconstruction of a cross-channel blurred color images that have been contaminated by both within

and cross blur, and additive noise. The cross-channel blurring is determined by the matrix

Acolor =

 0.8 0.10 0.10

0.10 0.80 0.10

0.10 0.10 0.80

 .
We consider two RGB images from MATLAB, papav256 (X̂ ∈ R256×256×3) and peppers (X̂ ∈ R512×512×3).

They are shown in Figure 2. For the within-channel blurring, we let σ = 4 and r = 6. The considered noise

levels are ν = 10−3 and ν = 10−2. The associated blurred and noisy RGB images C = A ∗ X̂ ∗ B + N

for noise level ν = 10−3 are shown in Figure 3. Given the contaminated RGB image C, we would like to

recover an approximation of the original RGB image X̂. The restorations for noise level ν = 10−3 are shown

in Figure 4 and they are obtained by applying Algorithm 4 implementing the Tensor T-Global GMRES

method, with X0 = O, tol = 10−6, m = 10, and Itermax = 10. Using GCV, the computed optimal value

for the projected problem was µ10 = 3.82 × 10−5. Table 1 compares the computing time (in seconds), the

relative errors, and the SNR of the computed restorations. Note that in this table, the allowed maximum

number of outer iterations for Algorithm 4 with noise level ν = 10−2 was Itermax = 4 and the maximum

number of inner iterations was m = 4. The restorations obtained with Algorithm 5 are shown in Figure 5.

For the papav256 color image, the discrepancy principle with η = 1.1 is satisfied when m = 64 steps of the

Figure 2: Example 1: Original RGB images: peppers (left), papav256 (right).

Figure 3: Example 1: Blurred and noisy images, peppers (left), papav256 (right).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 524-543, July 2021.

539 On Tensor GMRES and Golub Kahan methods

Figure 4: Example 1: Restored images by Algorithm 4, peppers (left), papav256 (right).

Table 1: Results for Example 1.

RGB images Noise level Method SNR Relative error CPU time (sec)

papav256

10−3

Algorithm 4 21.01 6.64 × 10−2 6.62

Algorithm 5 20.41 7.12 × 10−2 5.87

GKB 20.99 7.12 × 10−2 18.61

10−2

Algorithm 4 18.00 9.40 × 10−2 1.18

Algorithm 5 17.78 9.64 × 10−2 1.11

GKB 17.78 9.64 × 10−2 5.79

peppers

10−3

Algorithm 4 19.39 5.50 × 10−2 24.32

Algorithm 5 19.11 5.68 × 10−2 25.63

GKB 19.11 5.68 × 10−2 78.13

10−2

Algorithm 4 16.23 7.92 × 10−2 4.59

Algorithm 5 15.61 8.50 × 10−2 3.39

GKB 15.61 8.50 × 10−2 15.16

Tensor T-GGKB method (Algorithm 3) have been carried out, producing a regularization parameter given

by µm = 5.57 × 10−5. For comparison with existing approaches in the literature, we report in Table 1 the

results obtained by the method proposed in [10]. This method utilizes the connection between (standard)

Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large ill-conditioned linear systems

of equations (5.1), which is equivalent to the tensor problem (5.2). We refer to this method as GKB. It is

a solution method based on first reducing Acolor ⊗A(1) ⊗A(2) to a small bidiagonal matrix with the aid

of Golub-Kahan bidiagonalization (GKB) and then applying the connection between GKB and Gauss-type

quadrature rules (the same as the ones in (4.10)) to determine an approximation of xµ that satisfies the

discrepancy principle associated with the linear problem (5.1). It determines the regularization parameter

analogously to Algorithm 5, and uses a similar stopping criterion. The FFT-based computation of the T-

product is the only difference in Algorithms 4 and 5. We can see that the methods yield restorations of the

same quality, but the new proposed methods perform significantly better in terms of CPU time. This is

due to the fact that the T-product operations need fewer flops (approximately 36mn flops) than structure-

ignoring evaluation of matrix–vector products with the large matrix Acolor ⊗A(1) ⊗A(2) in (5.1) and its

transpose, which requires approximately 2(3m)2(3n)2 flops.
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Figure 5: Example 1: Restored images by Algorithm 5, peppers (left), papav256 (right).

Figure 6: Example 2: Original frame no. 5 (left), blurred and noisy frame no. 5 (right).

5.2. Example 2. In this example, we evaluate the effectiveness of Algorithms 4 and 5 when applied to

the restoration of a color video defined by a sequence of RGB images. Video restoration is the problem of

restoring a sequence of k color images (frames). Each frame is represented by a tensor of n×n×3 pixels. In

the present example, we are interested in restoring 10 consecutive frames of a contaminated video. Note that

the processing of such given frames, one at a time, is extremely time consuming. We consider the xylophone

video from MATLAB. The video clip is in MP4 format with each frame having 240 × 240 pixels. The

(unknown) blur- and noise-free frames are stored in the tensor X̂ ∈ R240×240×30, obtained by stacking the

grayscale images that constitute the three channels of each blurred color frame. These frames are blurred

by A ? X̂ ? B = Ĉ, where A and B are a 3-way tensors such that A(:, :, 1) = A(2), B(:, :, 1) = (A(1))T ,

and A(:, :, i) = B(:, :, i) = 0, for i = 2, ..., 30, using σ = 2 and r = 4 to build the blurring matrices with

periodic boundary conditions. This gives rises to block circulant with circulant blocks matrices. We consider

white Gaussian noise of levels ν = 10−3 or ν = 10−2. Figure 6 shows the fifth exact (original) frame

and the contaminated version with noise level ν = 10−3, which is to be restored. Table 2 displays the

performance of Algorithms 4 and 5. In Algorithm 4, we have used as an input for noise level ν = 10−3,

C, X0 = O, tol = 10−6, m = 10 and Itermax = 10.The chosen inner and outer iterations for noise level

ν = 10−2 were m = 4, and Itermax = 4, respectively. For the 10 outer iterations, minimizing the GCV

function produces µ10 = 1.15× 10−5. Using Algorithm 5, the discrepancy principle with η = 1.1 have been

satisfied after m = 59 steps of T-GGKB method (Algorithm 3), producing a regularization parameter given

by µm = 1.06 × 10−4. For comparison with existing approaches in the literature, we report in Table 2 the

results obtained by the method proposed in [2]. This method utilizes the connection between the Global
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Table 2: Results for Example 2.

Noise level Method SNR Relative error CPU time (second)

10−3 Algorithm 4 11.22 1.09× 10−1 50.22

Algorithm 5 16.17 6.31× 10−2 45.22

GGKB 16.01 7.56× 10−2 60.10

Figure 7: Example 2: restored frame no. 5 by Algorithm 4 (left), and restored frame no. 5 by Algorithm 5

(right).

Golub-Kahan bidiagonalization and Gauss quadrature rules for solving large ill-conditioned linear systems of

equations (5.1). We refer to this method as GGKB. It determines the regularization parameter analogously

to Algorithm 5, and uses a similar stopping criterion. We can see that Algorithm 5 yields restorations of the

same quality as the GGKB method, but the new proposed methods perform significantly better in terms of

CPU time. For completeness, the restorations obtained with Algorithms 4 and 5 are shown on the left-hand

and the right-hand side of Figure 7, respectively.

6. Conclusion. In this paper, we proposed tensor versions of GMRES and Golub-Kahan bidiagonaliza-

tion algorithms using the T-product, with applications to solving large-scale linear tensor equations arising

in the reconstruction of blurred and noisy multichannel images and videos. We also introduced new tensor

products as generalizations of other well-known matrix products. The numerical experiments that we have

performed show the effectiveness of the proposed schemes to inexpensively compute regularized solutions of

high quality.
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