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SOME NOTES ON QUANTUM HELLINGER DIVERGENCES WITH HEINZ MEANS∗
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Abstract. The information geometry, convexity, in-betweenness property and the barycenter problem of quantum Hellinger

divergences with Heinz means is studied. The limiting cases are also considered.
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1. Introduction. A recurring problem in many fields of science is to find a structured “point” that

satisfies certain properties and conditions and that best approximates a given “point” on a manifold. Hence,

the notions of distance measure play key roles in many areas. Typically, one wants to measure the dissimi-

larity between “points” with a metric distance, a measure that is non-negative; symmetric; zero if and only if

the distributions are identical; and obeys the triangle inequality. However, metrics are not always justifiable

in applications, and in many settings, it may be better to adjust the distance measure to the context, even

when it is not even a metric.

An information-theoretic divergence was introduced in the literature as a distance-like function to repre-

sent a degree of separation of two points in a manifold, but it or its square root is not a distance in general.

It does not necessarily satisfy the symmetry condition nor triangle inequality. We recall (see [18]) that a

dissimilarity Φα (X,Y ) between two “points” is called a (asymmetric) divergence if

(D0) Φα (X,Y ) ≥ 0 and Φα (X,Y ) = 0 if and only if X = Y .

If Φα (X,Y ) also satisfies the symmetry property Φα (X,Y ) = Φα (Y,X) and the triangle inequality

Φα (X,Y ) ≤ Φα (X,Z) + Φα (Z, Y ), then Φα (X,Y ) is called a metric. In this paper, we will focus on

dissimilarities that are not symmetric in general. Of course, one can easily symmetrize a divergence. However,

the asymmetry of divergence plays a meaningful part in information geometry.

The main subject of this note is the divergences on manifold of positive definite matrices. It is worth

mentioning that quantum divergences for positive definite matrices have been studied intensively in the

literature. We also refer the interested reader to [4, 8, 12, 13, 17, 19, 20, 25, 28, 29, 32, 34, 35, 37, 44, 45, 46],

to mention just a few, for various types of quantum divergences, their properties and their applications.

In this paper, we will study some quantum α-divergences that have close connection with the Hellinger

distance. We recall that the classical Hellinger distance between two discrete probability distributions
−→p = (p1, . . . , pn) and −→q = (q1, . . . , qn) is

dH (−→p ,−→q ) =

[∑ (pi + qi)

2
−
∑√

piqi

] 1
2

.
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We can observe that

dH (−→p ,−→q ) = [TrA (−→p ,−→q )− TrG (−→p ,−→q )]
1
2 ,

where A (−→p ,−→q ) is the arithmetic mean and G (−→p ,−→q ) is the geometric mean of −→p and −→q . In the setting of

quantum mechanics, we could replace the discrete probability distributions by positive semidefinite density

matrices. Also, for positive semidefinite matrices, the matrix arithmetic mean is obvious: A (X,Y ) = X+Y
2 .

However, the geometric mean G (X,Y ) could have different forms and meanings. Therefore, the classical

Hellinger divergence has various counterparts in quantum information theory. For instance, if we consider

the geometric mean G (X,Y ) =
(
X

1
2Y X

1
2

) 1
2

, then once again d (X,Y ) =

[
Tr
(
X+Y

2

)
− Tr

(
X

1
2Y X

1
2

) 1
2

]
is a metric. This is known in the literature as the Bures distance in the quantum information and the

Wasserstein metric in optimal transport. It has played an important role in the literature and has been

studied intensively and extensively. Note that when X and Y commute,
(
X

1
2Y X

1
2

) 1
2

= X
1
2Y

1
2 . Hence, it

is also natural to consider G (X,Y ) = X
1
2Y

1
2 . In this situation, it turns out that

(1.1) dH (X,Y ) =

[
Tr

(
X + Y

2

)
− Tr

(
X

1
2Y

1
2

)] 1
2

=
∥∥∥X 1

2 − Y 1
2

∥∥∥
2

is also a metric.

Probably, the most well-known geometric mean in matrix analysis is

X#Y = X
1
2

(
X−

1
2Y X−

1
2

) 1
2

X
1
2 .

It was introduced by Pusz and Woronowicz in [39] and has been investigated intensively and extensively

in the literature. See, for instance, the monographs [9, 10, 30, 43]. In this case, the authors in [11]

showed that the corresponding quantum Hellinger distance d (X,Y ) =
[
Tr
(
X+Y

2

)
− Tr (X#Y )

] 1
2 is not

a metric because it does not satisfy the triangle inequality. Nevertheless, it was proved that d2 (X,Y ) =[
Tr
(
X+Y

2

)
− Tr (X#Y )

]
is actually a divergence, satisfies several nice properties, and therefore, it can be

used as a good distance measure. Moreover, this divergence has been used by the authors in [11] to study

the Karcher mean problem, that is, the minimization problem

min
X>0

m∑
j=1

wjd
2 (X,Aj) .

It has to be emphasized that # is the most well-known geometric mean in matrix analysis and is a

very important example of the class of Kubo-Ando operator means. It is also worth noting that the class

of Kubo-Ando operator means is one of the most studied objects in the area of operator means in the

last thirty years. Hence, in [38], Pitrik and Virosztek introduced and investigated a family of generalized

quantum Hellinger divergences of the form

φ (X,Y ) = Tr ((1− α)X + αY −XσY ) ,

where σ is an arbitrary Kubo-Ando mean, and α ∈ (0, 1) is the weight of σ. It was showed that these

divergences belong to the family of maximal quantum f -divergences, and hence are jointly convex, and

satisfy the data processing inequality. Moreover, there is an intimate relation between generalized quantum

Hellinger divergences and operator valued Bregman divergences.
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We should mention here that not all operator means in current use are Kubo–Ando means. One example

is the class of Heinz means: Hα (X,Y ) = X
1−α
2 Y

1+α
2 . Obviously, the Heinz mean is not symmetric in

general. Hence, sometimes we also want to use the following version of the Heinz mean which is slightly

more symmetrical: H ′α (X,Y ) = 1
2

(
X

1−α
2 Y

1+α
2 +X

1+α
2 Y

1−α
2

)
. We can consider Hα and H ′α as weighted

geometric means.

Motivated by the results in [11] and the generalized quantum Hellinger divergences in [38], the main

goal in this note is to investigate the versions of quantum Hellinger divergence using the Heinz means. More

precisely, let Pn be the set of n × n complex positive definite matrices. For α 6= ±1 and X,Y ∈ Pn, we

consider

Φα (X,Y ) =
4

1− α2

[
1− α

2
TrX +

1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)]
and

Ψα (X,Y ) =
2

1− α2

[
TrX + TrY − Tr

(
X

1−α
2 Y

1+α
2

)
− Tr

(
X

1+α
2 Y

1−α
2

)]
.

By the matrix Young inequality (see, for example, [5, 31]), it is easy to verify that Φα and Ψα, α 6= ±1,

are divergences on Pn. Moreover, when α = 0, d0 = Φ
1
2
0 = Ψ

1
2
0 is actually a metric on Pn. However, when

α 6= 0, it is obvious that Φ
1
2
α is not a metric anymore since it does not satisfy the symmetry property. We

mention here that some properties of Φα was studied in [27] on the set of density matrices, and in [2] on the

manifold of real symmetric positive-definite matrices.

It should be noted that there are many difficulties when generalizing classical divergences to the quantum

framework. For instance, because of the non-commutative nature, we often could not adapt the proofs of

the classical entropy inequalities to the quantum setting. Also, because of the non-commutativity of the

matrix setting, even one classical divergence may admit a multiplicity of distinct quantum analogs. Hence,

for an operational meaning, besides (D0), a divergence is also required to have other features. For instance,

for possible applications in information geometry, we would usually like to verify whether the divergences

satisfy the following property (see [1, 2], for instance):

(D1) When X and Y are sufficiently close, by denoting their coordinates by ξX and ξY = ξX + dξ, the

Taylor expansion of Φα is written as

Φα (ξX , ξX + dξ) =
1

2

∑
gij (ξX) dξidξj +O

(
|dξ|3

)
,

and matrix (gij) is positive-definite.

Actually, (D0) and (D1) are used to define a divergence in [2] where Amari investigated the dually

flatness, decomposability and invariance under linear transformation on manifold of real positive definite

matrices. We also note that on Pn, to prove (D1), it is enough to verify:

(D1.1) The first derivative with respect to the second variable vanished on the diagonal:

∂Φα
∂Y

(X,Y ) |Y=X = 0.

(D1.2) The second derivative is positive on the diagonal:

∂2Φα
∂Y 2

(X,Y ) |Y=X (C,C) ≥ 0 for all Hermitian C.
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The first main result of our note can be read as follows:

Theorem 1.1. For α ∈ R \ {±1}, Φα and Ψα are divergences on Pn satisfying (D1.1) and (D1.2).

Another characteristic that is often required in the theory of quantum information is the data-processing

inequality. This property can be considered as one of the most desirable properties of any divergence-type

quantity.

(D2) Data-processing inequality: For completely positive trace preserving maps E, one has

Φα (EX, EY ) ≤ Φα (X,Y ) .

Completely positive trace preserving maps are also known as quantum channels in quantum information

theory. Applying any such quantum operation can only make the quantum states harder to distinguish.

Therefore, for a divergence to have an operational meaning, it must verify the Data Processing Inequality.

Actually, this property can be considered as one of the most desirable properties of any divergence-type

quantity and has been investigated intensively and extensively in the literature. The interested reader is

referred to [6, 7, 15, 16, 33, 36, 40, 41, 42, 47, 48], to name just a few.

It is known that (D2) has a close connection to the convexity of Φα. More precisely, the convexity of

Φα implies (D2) (see, for instance, [26]):

(D2.1) Joint convexity (concavity): For λ ∈ [0, 1],

Φα (λX1 + (1− λ)X2, λY1 + (1− λ)Y2) ≤ (≥)λΦα (X1, Y1) + (1− λ) Φα (X2, Y2) .

Also, for possible applications in the Karcher mean problems, we often concern the strict convex-

ity/concavity of Φα in the second variable Y :

(D2.2) Y → Φα (X,Y ) is strictly convex/concave.

Our second aim of this article is to show that

Theorem 1.2. For α ∈ (−1, 1), Φα and Ψα are jointly convex. Moreover, Φα (X,Y ) is strictly convex

in Y when α ∈ (−1, 0] and Ψα (X,Y ) is strictly convex in Y when α ∈ (−1, 1).

In [3], Audenaert introduced the notions of in-betweenness and monotonicity with respect to a metric

for operator means as a relaxation of the notion of geodesity. They are the operator generalization of their

natural counterpart for scalar means. More precisely, an operator mean σ satisfies in-betweenness w.r.t.

distance d if and only if for all positive X and Y the distance between X and σ (X,Y ) does not exceed

the distance between X and Y : d (X,σ (X,Y )) ≤ d (X,Y ). Also, a weighted operator mean σ (X,Y, t) is

distance-monotonic if and only if d (X,σ (X,Y, t)) decreases monotonically with t ∈ [0, 1].

In [3], Audenaert considered the Euclidean distance

d (X,Y ) =
√

Tr
[
(X − Y )

∗
(X − Y )

]
and showed that the weighted p-power mean µp (X,Y, t) = (tXp + (1− t)Y p)

1
p , 0 ≤ t ≤ 1, is Euclidean

distance-monotonic and satisfies in-betweenness w.r.t. Euclidean distance for 1 ≤ p ≤ 2. The case p = 1
2

and p = 1
4 were also established in [21]. In [22], among other results, the authors proved that the weighted
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p-power mean µp (X,Y, t) also satisfies the in-betweenness property w.r.t. Hellinger metric dH (X,Y ) =[
Tr
(
X+Y

2

)
− TrX

1
2Y

1
2

] 1
2

for 1
2 ≤ p ≤ 1. Several geometric properties of the matrix power mean µp (X,Y, t)

with respect to different distance functions have been also investigated in [23, 24].

Motivated by the results in [21, 22], our next goal is to prove that:

Theorem 1.3. Let α ∈ (−1, 1). Then the weighted p-power mean µp (X,Y, t), 0 ≤ t ≤ 1, satisfies

in-betweenness w.r.t. Φα for max
{

1
2 ,

1+α
2

}
≤ p ≤ 1 and w.r.t. Ψα for max

{
1+α
2 , 1−α2

}
≤ p ≤ 1.

We also investigate in Section 5 the above properties in the limiting cases α = ±1. Finally, as an

application of our results, we will study in Section 6 the barycenter problem using the quantum divergence

Φα.

2. Information geometry of Φα and Ψα – Proof of Theorem 1.1.

Proof of Theorem 1.1. We recall that

Φα (X,Y ) =
4

1− α2

[
1− α

2
TrX +

1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)]
.

Hence, we get
∂Φα
∂Y

(X,Y ) (B) =
4

1− α2

[
1 + α

2
Tr (B)− Tr

(
X

1−α
2 D

(
Y

1+α
2

)
(B)

)]
and

∂2Φα
∂Y 2

(X,Y ) (B,B) = − 4

1− α2
Tr
(
X

1−α
2 D2

(
Y

1+α
2

)
(B,B)

)
.

As a consequence,

∂Φα
∂Y

(X,Y = X) (B) =
4

1− α2

[
1 + α

2
Tr (B)− Tr

(
X

1−α
2 D

(
X

1+α
2

)
(B)

)]
and

∂2Φα
∂Y 2

(X,Y = X) (B,B) = − 4

1− α2
Tr
(
X

1−α
2 D2

(
X

1+α
2

)
(B,B)

)
.

Using the fact that

Tr

((
X

1+α
2

) 2
1+α

)
= Tr (X) ,

we have

Tr

(
2

1 + α

(
X

1+α
2

) 2
1+α−1

D
(
X

1+α
2

)
(B)

)
= Tr (B) .

Equivalently,

Tr
(
X

1−α
2 D

(
X

1+α
2

)
(B)

)
=

1 + α

2
Tr (B) .

Take the derivative both sides again, we obtain

Tr
(
X

1−α
2 D2

(
X

1+α
2

)
(B,B)

)
= −Tr

(
D
(
X

1−α
2

)
(B)D

(
X

1+α
2

)
(B)

)
.

In other words,

∂2Φα
∂Y 2

(X,Y = X) (B,B) =
4

1− α2
Tr
(
D
(
X

1−α
2

)
(B)D

(
X

1+α
2

)
(B)

)
.
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We now show that
∂Φα
∂Y

(X,Y = X) (B) = 0

and
∂2Φα
∂Y 2

(X,Y = X) (B,B) ≥ 0

for all Hermitian matrix B when α ∈ R \ {±1}. The argument here is that we can assume that X is a

diagonal matrix. Indeed, let X = U∗XDU be its spectral decomposition, where XD = diag (λ1, . . . , λn).

Then, we note that

D
(
X

1+α
2

)
(B) = lim

t→0

(X + tB)
1+α
2 −X 1+α

2

t

= lim
t→0

(U∗XDU + tU∗UBU∗U)
1+α
2 − (U∗XDU)

1+α
2

t

= lim
t→0

U∗
(XD + tUBU∗)

1+α
2 −X

1+α
2

D

t
U

= U∗D
(
X

1+α
2

)
|X=XD (UBU∗)U .

Hence,

∂Φα
∂Y

(X,Y = X) (B) = 0 =
1 + α

2
Tr (B)− Tr

(
X

1−α
2 D

(
X

1+α
2

)
(B)

)
=

1 + α

2
Tr (U∗BU)− Tr

(
U∗X

1−α
2

D UU∗D
(
X

1+α
2

)
|X=XD (UBU∗)U

)
=

1 + α

2
Tr (U∗BU)− Tr

(
X

1−α
2

D D
(
X

1+α
2

)
|X=XD (UBU∗)

)
.

Also,

D2
(
X

1+α
2

)
(B,B) =

d2

dtds
|s=t=0 (X + tB + sB)

1+α
2

=
d2

dtds
|s=t=0 (U∗XDU + tB + sB)

1+α
2

=
d2

dtds
|s=t=0U

∗ (XD + tUBU∗ + sUBU∗)
1+α
2 U

= U∗D2
(
X

1+α
2

)
|X=XD (UBU∗, UBU∗)U.

Hence,

Tr
(
X

1−α
2 D2

(
X

1+α
2

)
(B,B)

)
= Tr

(
U∗X

1−α
2

D UU∗D2
(
X

1+α
2

)
|X=XD (UBU∗, UBU∗)U

)
= Tr

(
X

1−α
2

D D2
(
X

1+α
2

)
|X=XD (UBU∗, UBU∗)

)
.

Therefore, WLOG, we can assume that X =diag(λ1, . . . , λn). In this case, we get

[
D
(
X

1+α
2

)
(B)

]
ij

=

 λ
α+1
2

i −λ
α+1
2

i

λi−λj Bij λi 6= λj
α+1
2 λ

α−1
2

i Bii λi = λj

.
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Hence,

Tr
(
X

1−α
2 D

(
X

1+α
2

)
(B)

)
=

n∑
i=1

λ
1−α
2

i

α+ 1

2
λ
α−1
2

i Bii

=
α+ 1

2
Tr (B)

and
∂Φα
∂Y

(X,Y = X) (B) =
4

1− α2

(
α+ 1

2
Tr (B)− α+ 1

2
Tr (B)

)
= 0.

Next, we recall that

∂2Φα
∂Y 2

(X,Y ) (B,B) =
4

1− α2
Tr
(
D
(
X

1−α
2

)
(B)D

(
X

1+α
2

)
(B)

)
.

In this case, we get from the Mean Value Theorem that

[
D
(
X

1−α
2

)
(B)

]
ij

=

 λ
1−α
2

i −λ
1−α
2

i

λi−λj Bij λi 6= λj
1−α
2 λ

−1−α
2

i Bii λi = λj

=
1− α

2
s

−1−α
2

ij Bij ,

where sij is between λi and λj .

Simiarly, [
D
(
X

1+α
2

)
(B)

]
ij

=

 λ
α+1
2

i −λ
α+1
2

i

λi−λj Bij λi 6= λj
α+1
2 λ

α−1
2

i Bii λi = λj

=
α+ 1

2
t
α−1
2

ij Bij ,

where tij is between λi and λj . Hence,

∂2Φα
∂Y 2

(X,Y = X) (B,B) =
4

1− α2
Tr
(
D
(
X

1−α
2

)
(B)D

(
X

1+α
2

)
(B)

)
=

4

1− α2

∑
j,k

1− α
2

s
−1−α

2

jk Bjk
α+ 1

2
t
α−1
2

kj Bkj


=
∑
j,k

s
−1−α

2

jk t
α−1
2

kj |Bjk|
2 ≥ 0.

Hence, we have that Φα satisfies (D1.1) and (D1.2) for all α ∈ R \ {±1}.

Now, note that Ψα (X,Y ) = 1
2 [Φα (X,Y ) + Φ−α (X,Y )], we can also conclude that Ψα satisfies (D1.1)

and (D1.2) for all α ∈ R \ {±1}.

3. Convexity – Proof of Theorem 1.2.

Proof of Theorem 1.2. The fact that Φα and Ψα are jointly convex for α ∈ (−1, 1) is based on the

well-known Lieb concavity theorem: (X,Y )→ Tr
(
X1−tY t

)
is jointly concave for any t ∈ [0, 1]. See [26, 49].

Now, we will show that Φα (X,Y ) is strictly convex in Y when α ∈ (−1, 0]. Indeed, it is enough to show

that Y → Tr
(
X

1−α
2 Y

1+α
2

)
is strictly concave when α ∈ (−1, 0] .
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First, since Y → Y
1+α
2 is a matrix concave function for all α ∈ (−1, 1), we have

(3.2) (tY1 + (1− t)Y2)
1+α
2 ≥ tY

1+α
2

1 + (1− t)Y
1+α
2

2 .

Hence,

X
1−α
4 (tY1 + (1− t)Y2)

1+α
2 X

1−α
4 ≥ tX

1−α
4 Y

1+α
2

1 X
1−α
4 + (1− t)X

1−α
4 Y

1+α
2

2 X
1−α
4

and we get for all α ∈ (−1, 1)

Tr
(
X

1−α
2 (tY1 + (1− t)Y2)

1+α
2

)
≥ tTr

(
X

1−α
2 Y

1+α
2

1

)
+ (1− t) Tr

(
X

1−α
2 Y

1+α
2

2

)
.

That is Φα (X,Y ) is convex in Y when α ∈ (−1, 1).

Now, if

Tr
(
X

1−α
2 (tY1 + (1− t)Y2)

1+α
2

)
= tTr

(
X

1−α
2 Y

1+α
2

1

)
+ (1− t) Tr

(
X

1−α
2 Y

1+α
2

2

)
,

then since

X
1−α
4 (tY1 + (1− t)Y2)

1+α
2 X

1−α
4 − tX

1−α
4 Y

1+α
2

1 X
1−α
4 − (1− t)X

1−α
4 Y

1+α
2

2 X
1−α
4 ≥ 0,

we deduce

X
1−α
4 (tY1 + (1− t)Y2)

1+α
2 X

1−α
4 = tX

1−α
4 Y

1+α
2

1 X
1−α
4 + (1− t)X

1−α
4 Y

1+α
2

2 X
1−α
4

and

(tY1 + (1− t)Y2)
1+α
2 = tY

1+α
2

1 + (1− t)Y
1+α
2

2 .

If α = 0, then

(tY1 + (1− t)Y2)
1
2 = tY

1
2
1 + (1− t)Y

1
2
2 .

Square both sides to get

tY1 + (1− t)Y2 = t2Y1 + (1− t)2 Y2 + t (1− t)
[
Y

1
2
1 Y

1
2
2 + Y

1
2
2 Y

1
2
1

]
.

Equivalently,

t (1− t)
[
Y

1
2
1 − Y

1
2
2

]2
= 0.

That is Y
1
2
1 = Y

1
2
2 , and hence, Y1 = Y2.

If −1 < α < 0, then 0 < 1 +α < 1. Squaring both sides of (tY1 + (1− t)Y2)
1+α
2 = tY

1+α
2

1 + (1− t)Y
1+α
2

2

yields

(tY1 + (1− t)Y2)
1+α

= t2Y 1+α
1 + (1− t)2 Y 1+α

2 + t (1− t)
[
Y

1+α
2

1 Y
1+α
2

2 + Y
1+α
2

2 Y
1+α
2

1

]
≤
[
t2 + t (1− t)

]
Y 1+α
1 +

[
(1− t)2 + t (1− t)

]
Y 1+α
2

= tY 1+α
1 + (1− t)Y 1+α

2 .
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Here, we applied the inequality

Y
1+α
2

1 Y
1+α
2

2 + Y
1+α
2

2 Y
1+α
2

1 ≤ Y 1+α
1 + Y 1+α

2 .

Since 1 + α < 1, we get by (3.2) that

(tY1 + (1− t)Y2)
1+α ≥ tY 1+α

1 + (1− t)Y 1+α
2 .

Hence,

(tY1 + (1− t)Y2)
1+α

= tY 1+α
1 + (1− t)Y 1+α

2 .

That means,

Y
1+α
2

1 Y
1+α
2

2 + Y
1+α
2

2 Y
1+α
2

1 ≤ Y 1+α
1 + Y 1+α

2

and (
Y

1+α
2

1 − Y
1+α
2

2

)2
= 0.

We deduce Y
1+α
2

1 = Y
1+α
2

2 and Y1 = Y2.

Next, we will prove that Ψα (X,Y ) is strictly convex in Y when α ∈ (−1, 1). Again, it is enough to show

that Y → Tr
(
X

1−α
2 Y

1+α
2

)
+ Tr

(
X

1+α
2 Y

1−α
2

)
is strictly concave when α ∈ (−1, 1). The concavity of Y →

Tr
(
X

1−α
2 Y

1+α
2

)
+ Tr

(
X

1+α
2 Y

1−α
2

)
is obvious since Y → Tr

(
X

1−α
2 Y

1+α
2

)
and Y → Tr

(
X

1+α
2 Y

1−α
2

)
are

concave. Now, noting that Y → Tr
(
X

1−α
2 Y

1+α
2

)
is strictly concave if α ∈ (−1, 0], and Y → Tr

(
X

1+α
2 Y

1−α
2

)
is strictly concave if α ∈ [0, 1), we deduce that Y → Tr

(
X

1−α
2 Y

1+α
2

)
+ Tr

(
X

1+α
2 Y

1−α
2

)
is strictly concave

when α ∈ (−1, 1).

4. In-betweenness of weighted power mean – Proof of Theorem 1.3.

Proof of Theorem 1.3. We need to show that Φα (X,µp (X,Y, t)) ≤ Φα (X,Y ). Equivalently,

1− α
2

TrX +
1 + α

2
Trµp (X,Y, t)− Tr

(
X

1−α
2 µp (X,Y, t)

1+α
2

)
≤ 1− α

2
TrX +

1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)
and

1 + α

2
Trµp (X,Y, t)− Tr

(
X

1−α
2 µp (X,Y, t)

1+α
2

)
≤ 1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)
.

Note that since 1 ≤ 1
p ≤ 2, the function x

1
p is operator convex. Hence,

µp (X,Y, t) = (tXp + (1− t)Y p)
1
p ≤ tX + (1− t)Y

and

Trµp (X,Y, t) ≤ Tr [tX + (1− t)Y ] .
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Hence, it now is enough to prove

Tr

[
1 + α

2
tX +

1 + α

2
(1− t)Y −X

1−α
2 µp (X,Y, t)

1+α
2

]
≤ Tr

[
1 + α

2
Y −X

1−α
2 Y

1+α
2

]
or

Tr

[
1 + α

2
t (X − Y ) +X

1−α
2 Y

1+α
2

]
≤ Tr

[
X

1−α
2 µp (X,Y, t)

1+α
2

]
.

Now, since 0 < 1+α
2p ≤ 1, the function x

1+α
2p is operator concave. Therefore,

µp (X,Y, t)
1+α
2 = (tXp + (1− t)Y p)

1+α
2p ≥ tX

1+α
2 + (1− t)Y

1+α
2

and

Tr
[
X

1−α
2 µp (X,Y, t)

1+α
2

]
≥ Tr

[
tX + (1− t)X

1−α
2 Y

1+α
2

]
.

Hence, the proof is completed if we can verify

Tr
[
tX + (1− t)X

1−α
2 Y

1+α
2

]
≥ Tr

[
1 + α

2
t (X − Y ) +X

1−α
2 Y

1+α
2

]
,

or equivalently,

Tr
(
X

1−α
2 Y

1+α
2

)
≤ Tr

[
1− α

2
X +

1 + α

2
Y

1+α
2

]
.

However, this is nothing but a consequence of the matrix Young inequality [5].

Now, we will show that Ψα (X,µp (X,Y, t)) ≤ Ψα (X,Y ), or equivalently,

TrX + Trµp (X,Y, t)− Tr
(
X

1−α
2 µp (X,Y, t)

1+α
2

)
− Tr

(
X

1+α
2 µp (X,Y, t)

1−α
2

)
≤ TrX + TrY − Tr

(
X

1−α
2 Y

1+α
2

)
− Tr

(
X

1+α
2 Y

1−α
2

)
and

Trµp (X,Y, t)− Tr
(
X

1−α
2 µp (X,Y, t)

1+α
2

)
− Tr

(
X

1+α
2 µp (X,Y, t)

1−α
2

)
≤ TrY − Tr

(
X

1−α
2 Y

1+α
2

)
− Tr

(
X

1+α
2 Y

1−α
2

)
.

Note that since 1 ≤ 1
p ≤ 2, the function x

1
p is operator convex. Hence,

µp (X,Y, t) = (tXp + (1− t)Y p)
1
p ≤ tX + (1− t)Y

and

Trµp (X,Y, t) ≤ Tr [tX + (1− t)Y ] .

Hence, it now is enough to prove

Tr [tX + (1− t)Y ]− Tr
(
X

1−α
2 µp (X,Y, t)

1+α
2

)
− Tr

(
X

1+α
2 µp (X,Y, t)

1−α
2

)
≤ TrY − Tr

(
X

1−α
2 Y

1+α
2

)
− Tr

(
X

1+α
2 Y

1−α
2

)
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or

Tr
(
X

1−α
2 µp (X,Y, t)

1+α
2

)
+ Tr

(
X

1+α
2 µp (X,Y, t)

1−α
2

)
≥ Tr

[
t (X − Y ) +X

1−α
2 Y

1+α
2 +X

1+α
2 Y

1−α
2

]
.

Note that since 0 < 1+α
2p ≤ 1 and 0 < 1−α

2p ≤ 1, the function x
1+α
2p and x

1−α
2p are operator concave. Hence,

µp (X,Y, t)
1+α
2 = (tXp + (1− t)Y p)

1+α
2p ≥ tX

1+α
2 + (1− t)Y

1+α
2 ,

µp (X,Y, t)
1−α
2 = (tXp + (1− t)Y p)

1−α
2p ≥ tX

1−α
2 + (1− t)Y

1−α
2

and

Tr
[
X

1−α
2 µp (X,Y, t)

1+α
2

]
≥ Tr

[
tX + (1− t)X

1−α
2 Y

1+α
2

]
,

Tr
(
X

1+α
2 µp (X,Y, t)

1−α
2

)
≥ Tr

[
tX + (1− t)X

1+α
2 Y

1−α
2

]
.

Hence, it is enough to show

Tr
[
tX + (1− t)X

1−α
2 Y

1+α
2

]
+ Tr

[
tX + (1− t)X

1+α
2 Y

1−α
2

]
≥ Tr

[
t (X − Y ) +X

1−α
2 Y

1+α
2 +X

1+α
2 Y

1−α
2

]
.

Equivalently,

Tr
[
X

1−α
2 Y

1+α
2 +X

1+α
2 Y

1−α
2

]
≤ Tr [X + Y ] ,

or

Ψα (X,Y ) ≥ 0.

This is obvous by the matrix Young inequality.

5. The limiting cases α = ±1. Recall that for α 6= ±1,

Φα (X,Y ) =
4

1− α2

[
1− α

2
TrX +

1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)]
and

Ψα (X,Y ) =
2

1− α2

[
TrX + TrY − Tr

(
X

1−α
2 Y

1+α
2

)
− Tr

(
X

1+α
2 Y

1−α
2

)]
.

Using L’Hôpital’s rule, when α = ±1, we consider

Φ1 (X,Y ) = Tr (X − Y − Y lnX + Y lnY ) ,

Φ−1 (X,Y ) = Tr (Y −X −X lnY +X lnX) = Φ1 (Y,X) ,

Ψ1 (X,Y ) = Ψ−1 (X,Y ) =
1

2
Tr (X lnX + Y lnY −X lnY − Y lnX) .

Obviously, they are quantum divergences by the Klein inequality for the strictly convex function f (t) = t ln t.

See [14]. We now will show that they also satisfy the properties (D1.1) and (D1.2).

Theorem 5.1. Φ±1 and Ψ±1 satisfy the properties (D1.1) and (D1.2).
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Proof. We recall that

lnX =

∞∫
0

(t+ 1)
−1 In − (tIn +X)

−1
dt

and

D (lnX) (B) =

∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
dt,

D2 (lnX) (B,B) = −2

∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
B (tIn +X)

−1
dt.

Also,

D (Tr (f (X))) (B) = Tr (Bf ′ (X)) .

Hence, for f (t) = t ln t, we get

Tr (B (lnX + In)) = D (Tr (X lnX)) (B)

= Tr

B lnX +X

∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
dt

 .

Hence, we can deduce

(5.3) TrB = Tr

X ∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
dt

 .

Then, a direct computation shows

∂Φ1

∂Y
(X,Y ) (B) = Tr (−B −B lnX +B (lnY + In))

= Tr (B (lnY − lnX)) ,

∂Φ−1
∂Y

(X,Y ) (B) = Tr

B −X ∞∫
0

(tIn + Y )
−1
B (tIn + Y )

−1
dt

 ,

and

∂Ψ±1
∂Y

(X,Y ) (B) =
1

2
Tr

B (lnY + In)−X
∞∫
0

(tIn + Y )
−1
B (tIn + Y )

−1
dt−B lnX

 .

Hence, using (5.3), we get

∂Φ1

∂Y
(X,Y = X) (B) =

∂Φ−1
∂Y

(X,Y = X) (B) =
∂Ψ±1
∂Y

(X,Y = X) (B) = 0.

Now, since
∂Φ1

∂Y
(X,Y ) (B) = Tr (B (lnY − lnX)) ,
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we get

∂2Φ1

∂Y 2
(X,Y = X) (B,B) = Tr

B ∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
dt


=

∞∫
0

Tr
(
B (tIn +X)

−1
B (tIn +X)

−1
)
dt

≥ 0

since B (tIn +X)
−1
B ≥ 0 and (tIn +X)

−1 ≥ 0.

Also, since

∂Φ−1
∂Y

(X,Y ) (B) = Tr

B −X ∞∫
0

(tIn + Y )
−1
B (tIn + Y )

−1
dt

 ,

we deduce

∂2Φ−1
∂Y 2

(X,Y = X) (B,B) = 2Tr

X ∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
B (tIn +X)

−1
dt

 ≥ 0

since

(tIn +X)
−1
B (tIn +X)

−1
B (tIn +X)

−1
=
(
B (tIn +X)

−1
)∗

(tIn +X)
−1
B (tIn +X)

−1 ≥ 0

and X ≥ 0.

Finally, from

∂Ψ±1
∂Y

(X,Y ) (B) =
1

2
Tr

B (lnY + In)−X
∞∫
0

(tIn + Y )
−1
B (tIn + Y )

−1
dt−B lnX

 ,

we have

∂2Ψ±1
∂Y 2

(X,Y = X) (B,B)

=
1

2
Tr


B

∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
dt

+2X

∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
B (tIn +X)

−1
dt


=

1

2
Tr

 ∞∫
0

B (tIn +X)
−1
B (tIn +X)

−1
dt


+ Tr

X ∞∫
0

(tIn +X)
−1
B (tIn +X)

−1
B (tIn +X)

−1
dt


≥ 0.
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Next, we will show that the weighted power mean satisfies in-betweenness w.r.t. Φ−1 for 1
2 ≤ p ≤ 1 :

Theorem 5.2. The weighted p-power mean µp (X,Y, t) = (tXp + (1− t)Y p)
1
p , 0 ≤ t ≤ 1, satisfies

in-betweenness w.r.t. Φ−1 for 1
2 ≤ p ≤ 1.

Proof. We need to show that Φ−1 (X,µp (X,Y, t)) ≤ Φ−1 (X,Y ). Equivalently,

Tr (µp (X,Y, t)−X −X lnµp (X,Y, t) +X lnX) ≤ Tr (Y −X −X lnY +X lnX)

and

Tr (µp (X,Y, t)−X lnµp (X,Y, t)) ≤ Tr (Y −X lnY.) .

Note that since 1 ≤ 1
p ≤ 2, the function x

1
p is operator convex. Hence,

µp (X,Y, t) = (tXp + (1− t)Y p)
1
p ≤ tX + (1− t)Y

and

Trµp (X,Y, t) ≤ Tr [tX + (1− t)Y ] .

Hence, it now is enough to prove

Tr [tX + (1− t)Y −X lnµp (X,Y, t)] ≤ Tr [Y −X lnY ] ,

or

Tr [t (X − Y ) +X lnY ] ≤ Tr [X lnµp (X,Y, t)] .

Now, since the function lnx is operator concave, we get

lnµp (X,Y, t) = ln (tXp + (1− t)Y p)
1
p =

1

p
ln (tXp + (1− t)Y p) ≥ t lnX + (1− t) lnY

and

Tr [X lnµp (X,Y, t)] ≥ Tr [tX lnX + (1− t)X lnY ] .

Hence, the proof is completed if we can verify

Tr [tX lnX + (1− t)X lnY ] ≥ Tr [t (X − Y ) +X lnY ] ,

or equivalently,

Tr (Y −X −X lnY +X lnX) ≥ 0.

However, this is nothing but a consequence of the Klein inequality. Indeed, since the function f (x) = x lnx

is convex on (0,∞), by the Klein inequality ([14]), we have

Tr [f (X)− f (Y )− (X − Y ) f ′ (Y )] ≥ 0.

Equivalently,

Tr [X lnX − Y lnY − (X − Y ) (lnY + In)] ≥ 0

and

Tr (Y −X −X lnY +X lnX) ≥ 0.
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6. Barycenters. In this section, we assume that α ∈ (−1, 1) and recall that

Φα (X,Y ) =
4

1− α2

[
1− α

2
TrX +

1 + α

2
TrY − Tr

(
X

1−α
2 Y

1+α
2

)]
.

Let A1, . . . , Ak be a k-tuple in Pn and w1, . . . , wk be positive weights such that
∑k
j=1 wj = 1. In this section,

we consider the barycenter problem

(6.4) min
X∈Pn

k∑
j=1

wjΦα (Aj , X) .

We will prove the following result:

Theorem 6.1. The minimization problem (6.4) has a unique solution

X =

 k∑
j=1

wjA
1−α
2

j

 2
1−α

.

Proof. By Theorem 1.2, the function Ψ (X) =
∑k
j=1 wjΦα (Aj , X) is convex. Therefore, a critical point

of Ψ is the global minimum of Ψ. To find such critical points, we will solve the equation DΨ (X) = 0.

Note that

DΨ (X) (B) =

k∑
j=1

wj
∂Φα
∂X

(Aj , X)

=

k∑
j=1

wj
4

1− α2

[
1 + α

2
TrB − Tr

(
A

1−α
2

j D
(
X

1+α
2

)
(B)

)]

=
4

1− α2

1 + α

2
TrB −

k∑
j=1

wjTr
(
A

1−α
2

j D
(
X

1+α
2

)
(B)

) .

We now recall the following identity (see [9, page 143])

x
1+α
2 = cos

(
1 + α

4
π

)
+

sin
(
1+α
2 π

)
π

∞∫
0

(
λ

λ2 + 1
− 1

λ+ x

)
λ

1+α
2 dλ.

Hence,

X
1+α
2 = cos

(
1 + α

4
π

)
In +

sin
(
1+α
2 π

)
π

∞∫
0

(
λ

λ2 + 1
In − (λIn +X)

−1
)
λ

1+α
2 dλ

and

D
(
X

1+α
2

)
(B) =

sin
(
1+α
2 π

)
π

∞∫
0

(λIn +X)
−1
B (λIn +X)

−1
λ

1+α
2 dλ.
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Therefore,

k∑
j=1

wjTr
(
A

1−α
2

j D
(
X

1+α
2

)
(B)

)

=

k∑
j=1

wjTr

A 1−α
2

j

sin
(
1+α
2 π

)
π

∞∫
0

(λIn +X)
−1
B (λIn +X)

−1
λ

1+α
2 dλ


= Tr

 k∑
j=1

wjA
1−α
2

j

∞∫
0

(λIn +X)
−1
B (λIn +X)

−1 sin
(
1+α
2 π

)
π

λ
1+α
2 dλ


= Tr

 ∞∫
0

(λIn +X)
−1

 k∑
j=1

wjA
1−α
2

j

 (λIn +X)
−1
B

sin
(
1+α
2 π

)
π

λ
1+α
2 dλ

 .

Hence, the equation DΨ (X) = 0 is equivalent to

1 + α

2
In =

∞∫
0

(λIn +X)
−1

 k∑
j=1

wjA
1−α
2

j

 (λIn +X)
−1 sin

(
1+α
2 π

)
π

λ
1+α
2 dλ.

Now, let X = U∗diag (xi)U , Z =
(∑k

j=1 wjA
1−α
2

j

)
and Y = UZU∗. Then

1 + α

2
In =

∞∫
0

(λ+X)
−1

 k∑
j=1

wjA
1−α
2

j

 (λ+X)
−1 sin

(
1+α
2 π

)
π

λ
1+α
2 dλ

= U∗
∞∫
0

(λ+ diag (xi))
−1
U

 k∑
j=1

wjA
1−α
2

j

U∗ (λ+ diag (xi))
−1 sin

(
1+α
2 π

)
π

λ
1+α
2 dλU

= U∗
∞∫
0

(λ+ diag (xi))
−1
Y (λ+ diag (xi))

−1 sin
(
1+α
2 π

)
π

λ
1+α
2 dλU.

Hence, we have

1 + α

2
In =

∞∫
0

(λ+ diag (xi))
−1
Y (λ+ diag (xi))

−1 sin
(
1+α
2 π

)
π

λ
1+α
2 dλ,

which implies
∞∫
0

yij
(λ+ xi) (λ+ xj)

sin
(
1+α
2 π

)
π

λ
1+α
2 dλ =

1 + α

2
δij .

This means that Y is diagonal with

1

yii
=

2

1 + α

∞∫
0

1

(λ+ xi)
2

sin
(
1+α
2 π

)
π

λ
1+α
2 dλ.
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Note that by taking the derivative both sides of

x
1+α
2 = cos

(
1 + α

4
π

)
+

sin
(
1+α
2 π

)
π

∞∫
0

(
λ

λ2 + 1
− 1

λ+ x

)
λ

1+α
2 dλ,

we get
∞∫
0

1

(λ+ xi)
2

sin
(
1+α
2 π

)
π

λ
1+α
2 dλ =

1 + α

2
x
α−1
2

i .

Hence, yii = x
1−α
2

i and UZU∗ = Y = diag
(
x

1−α
2

i

)
= UX

1−α
2 U∗. Therefore, Z = X

1−α
2 . Equivalently,

k∑
j=1

wjA
1−α
2

j = X
1−α
2 .

Obviously, this equation has only one solution, that is,

X =

 k∑
j=1

wjA
1−α
2

j

 2
1−α

.

REFERENCES

[1] S. Amari. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, Vol. 28, Springer-Verlag, New York,

1985.

[2] S. Amari. Information Geometry and its Applications. Applied Mathematical Sciences, Vol. 194, Springer, Tokyo, 2016.

[3] K.M.R. Audenaert. In-betweenness, a geometrical monotonicity property for operator means. Linear Algebra Appl.,

438(4):1769–1778, 2013.
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Mathematical Physics (Toruń, 1992), Rep. Math. Phys., 33(1/2):87–93, 1993.

[28] F. Hiai, M. Mosonyi, D. Petz, and C. Bény. Quantum f -divergences and error correction. Rev. Math. Phys., 23(7):691–747,

2011.

[29] F. Hiai and D. Petz. From quasi-entropy to various quantum information quantities. Publ. Res. Inst. Math. Sci.,

48(3):525–542, 2012.

[30] F. Hiai and D. Petz. Introduction to Matrix Analysis and Applications. Universitext, Springer - Hindustan Book Agency,

New Delhi, 2014.

[31] F. Kittaneh and Y. Manasrah. Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl., 361(1):262–

269,2010.

[32] P.W. Lamberti, A.P. Majtey, M. Madrid, and M.E. Pereyra. Jensen-Shannon divergence: A multipurpose distance for

statistical and quantum mechanics. Nonequilibrium Statistical Mechanics and Nonlinear Physics, AIP Conference

Proceedings, Vol. 913, American Institute of Physics, Melville, NY, 32–37, 2007.
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