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REAL DIMENSION OF THE LIE ALGEBRA OF S-SKEW-HERMITIAN
MATRICES*

JONATHAN CAALIM? AND YU-ICHI TANAKA?

Abstract. Let M, (C) be the set of n X n matrices over the complex numbers. Let S € M, (C). A matrix A € M,(C)
is said to be S-skew-Hermitian if SA* = —AS where A* is the conjugate transpose of A. The set ug of all S-skew-Hermitian
matrices is a Lie algebra. In this paper, we give a real dimension formula for ug using the Jordan block decomposition of the
cosquare S(S*)~! of S when S is nonsingular.
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1. Main result. The unitary group of degree n, denoted by U(n), is the Lie group of all n x n unitary
matrices under matrix multiplication. Associated with U(n) is its Lie algebra u(n) consisting of all n x n
skew-Hermitian matrices where the Lie bracket is the commutator. The notion of unitary groups and the
algebras of skew-Hermitian matrices can be generalized naturally in the following manner. Let S € M, (C).
We say that a matrix A € GL,(C) is S-unitary if ASA* = S. Here, GL,(C) is the set of all nonsingular
n x n matrices over C. Let Ug be the set of all S-unitary matrices. We see that Ug is a Lie group with a
corresponding Lie algebra ug = {4 € M, (C) | SA* = —AS}. An element of ug is said to be an S-skew-
Hermitian matrix. Observe that if S is the identity matrix I,,, we recover U(n) and u(n). In the past years,
there has been a great amount of research work extending to S-unitary and S-skew-Hermitian matrices the
linear algebraic properties of their usual counterparts (see e.g., [1, 5, 6, 10]).

In [3], the problem of determining whether two Lie groups Ug and Ur are isomorphic is investigated.
The strategy employed in the paper is to look at the associated Lie algebras ug. We know that if two Lie
algebras have different real dimensions, then their parent Lie groups are necessarily non-isomorphic. Thus,
a significant part of the problem can be addressed by providing a dimension formula for ug.

Such a dimension formula is given in [7, Theorem 3.3] by De Terdn and Dopico (see also [8]). The
derivation of their formula employs the idea of reducing the matrix .S into its so-called canonical form for
*congruence introduced by Horn and Sergeichuk in [9, Theorem 1.1]. Denote by J;(8) the Jordan block of
size [ € N corresponding to 8 € C. In the *congruence decomposition, the matrix S is written as a direct
sum of matrix blocks:

1. (Type 0) Jx(0).
2. (Type I) k x k matrix al'y, where |a| =1 and
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-1 -1
1 1 0

3. (Type II) Hop(p), which is the skew sum of Ji (1) and the size k identity matrix I, where |pu| > 1
ie.,
0 I
A

Je(p) 0

Their formula is composed of 8 summands that record the contribution to the real dimension of ug of
the three blocks listed above and their interaction to one another. When S is nonsingular, the number of
summands is 4. In particular, the summand corresponding to two Type I blocks involves cases according to
the parity of the size of the blocks.

The motivation of the paper of De Teran and Dopico is to solve the matrix equation SA*+ AS = 0 (with
S fixed). In contrast, our motivation is to provide an insight on the structure of ug and find a convenient
Lie algebra basis. This paper continues the authors’ earlier works ([3] and [4, Corollary 2.1]) on ug where S
is normal and nonsingular. In particular, we generalize the dimension formula given in [3, Theorem 3.19] by
eliminating the normality condition on S.

To this end, we develop an approach that depends on the Jordan block decomposition of the cosquare
S(S*)~t of S when S € GL,(C). For simplicity, we write S=* for (S*)~!.

Define mult(SS~*; 5,1) as the number of Jordan blocks J;(8) appearing in the Jordan normal form of
SS57*. We have the following main result.

THEOREM 1.1. Let S € GL,(C). Let A be the set of distinct eigenvalues of SS™*. Then

n

dimg (ug) = Z Zmin(l,m)mult(SSf*;ﬂ,l)mult(S’Sf*;B_l,m).

m,l=1BEA

If, in addition, S is normal, then SS™* is unitary, and hence, diagonalizable. The dlistinct eigenvalues of
SS~* are f1,...,Bx where 3; = a;/|a| for some eigenvalue «; of S. We have 3; = 3;  if and only if i = j.
Then the following corollary simplifies the formula given in [3, Theorem 3.19].

COROLLARY 1.2. Let S € GL,(C) be normal. Let 31,..., Bk be the distinct eigenvalues of SS™* and let
mult(SS™*, B;) be the algebraic multiplicity of 5; as an eigenvalue of SS™*. Then

k
dimg (ug) = Z mult(SS™*, ;)%
i=1

The formula in Theorem 1.1, in contrast with the formula given by De Teran and Dopico, provides a
uniform treatment for Type I and Type IT matrices into one case and avoids discussion on the parity. Hence,
the formula allows for a simpler computation of dimg g when S is nonsingular.

To end this section, we provide some examples illustrating Theorem 1.1.
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ExAMPLE 1.3. For p # 0, consider

Hop(p) = [ 0 } :

Je(p) 0
The cosquare of Hay () is similar to Ji(p) ® Jr(2~'). By Theorem 1.1, if |u| = 1, then dimg (up,, (4)) = 4k.
Otherwise, dimg (up,, () = 2.

ExaMPLE 1.4. Here and throughout the article, we use the symbol i to denote the square root of -1. Let

01 0
S=1]1 i 0 |. Note that S is not normal and as such, [3, Theorem 3.19] cannot be used. The cosquare
0 0 1

of S is similar to J1(1) ® J2(1). By Theorem 1.1, dimgug = 5. The following may be taken as a basis for
Ug:

0 0 O 0 0 O i 00 0 0 O 0 0 O
0 0 0,0 O i],]0 i Of,[i O O],|0 O -1
0 0 i i 00 0 0 0 0 0 0 1 0 O

2. Proof of Theorem 1.1. We say that the set {vy,vs,...,v;} C C* = C"*! is a Jordan chain of a
matrix A associated with an eigenvalue «, if it satisfies the following properties:

Avy = anp

Avip1 = avjp1 +v; (fOI‘ 1<1< l)7

and, moreover, there is no vector w € C" such that Aw = aw + v;. The vectors vy, vs,...,v; are generalized
eigenvectors associated with « (see [2, Sec. 9.4 - 9.5]). For two Jordan chains C = {vq,...,v} and
D ={us,...,un} (which may be associated with the same eigenvalue), we define the vector space

V(4;C, D) Z Cu; (Au;)* Z Cuj(Av;)*

1<4<1 1<4i<1
1<5<m 1<5<m

2.1. CASE 1: Distinct Jordan blocks. Let S € GL,(C). Consider Jordan chains C' = {vy,..., v}
and D = {uq,...,un} of SS™* associated with the eigenvalues o and o’ of SS™*, respectively. Without loss
of generality, we may assume | < m (by interchanging the roles of the Jordan chains C' and D, if needed).
Suppose CUD is linearly independent over C. Note that if & # o/, then CUD is always linearly independent.
The condition is imposed, in particular, to the case where o = o’ and their corresponding Jordan chains are
distinct.

For 2 <i <, we have
SS™*; = av; + v;_1,

and
SS™*v1 = av;.
Likewise, for 2 < j < m,
SS™ uj = a'uj + uj_q,
and
SS™*up = 'uy.
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Extend C'U D to a basis {w1,...,w,} of C". Let W = (w1,...,wy) € GL,(C), and let {e; | 1 <i<n}
be the standard basis of C". Then We; = w;. Let us consider the linear map

O: X — WIXSW,

where X € M, (C). Then

O(w; (S w;)*) = W lwawiS W
= W lw (W twy)”
= eie”f

je

Clearly, {e;ej | 1 <14, j < n} is a basis of M,,(C). Consequently, {w;(S™"w;)* | 1 <i,j < n}is alinearly
independent set. For each pair 4, j satisfying 1 <7 <[ and 1 < j < m, define

Eij = ’Ui(S_*Uj)*,
and

E;7 = ’U,j(Si*Ul')*.

Then {E;j, E;l |1<i<1,1<j<m}isa linearly independent set.

Denote by V;; the subspace CE;; + CEY; of M, (C). Then, V(S™*;C, D) is the direct sum

V(ST C,D)= Y CEj+ », CEj,= > Vi

1<i<l 1<i<l 1<i<l
1<5<m 1<5<m 1<5<m

For 1 <k <1+ m — 1, define the vector space V}, as
> Vi
itj=k+1

From the definition of V;;, it follows that dimg(V;;) = 4. Therefore,

Ak if1<k<l,
dimg (Vi) = { 4l if1<k<m,
41 —-k+m) ifm<k.

For simplicity, we set V<, = Ztgk Vi and Vo = {0}. Let i : V(S™*; C, D) — V}; be the canonical projection
from V(S™*;C, D) onto Vj with respect to the basis {£;;, £, | 1 <i <[,1 < j <m}. Also, we define the
projections m;;, <k, and m<y from V(S™*; C, D) onto V;;, V<p_1, and V<, respectively.

M, (C) given by d(A) = SA*S~14+ A, for A € M,,(C). Clearly,

Consider the R-linear map d : M (
= ;i and ( )= S™*v;uj, observe that, for all 1 <i </,

= ker(d). Using the fact that E

) —
S
o' B + Eij if j=1,
QB+ B+ By ifl<j<m’
and, for all 1 < j < m,

d(Ej;) = akij + Ej; ifi=1,
OéEij + Eifl,j + E;z ifl<i<l.
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Let E;; = E;l =0 when i =0 or j = 0. Then the above equations are reduced to the following equations:

d(Eij) = B} + Ej_y ; + Eij,
d(E;l) =akb;; +E,_q1;+ E;z

Let dj, = d|v, be the restriction of the map d on V. Similarly, define d;;, d<y, and d<j, for V;;, V<j_1,
and V<y, respectively. Note that, if i +-j = k+ 1, then the elements E;;, E;-i, il;;, and 1E§2 are in V. Thus,
d and dj coincide for these particular elements. Let us consider the composition 7, o dy : Vi, — V. If
1+ 3 =Fk+1, then

Ty odp(Eij) = Eij+dE,
mpodi(Ey) = Ej +aEy,
o dp(iE;;) = iE; — io/E;i7
T, 0 dy, (iE]/-i = iEJ/-Z- — ik,

Note that the last two identities use the fact that d(iA) = —id(A) + 2iA4, for A € M, (C).

LEMMA 2.1. Let 1 <k <l4+m—1. Then the real dimension of the image Im(mwy ody) of the map 7 ody,
is given by
dimR(Vk) Zf aa’ 75 1,

1
3 dimg (V)  otherwise.

Moreover, if i + j = k+1 and ao’ = 1, then Im(m;; o dy) = R(Ei; + o/ E};) + Ri(Ey; — o' E);).

Proof. Fix 1 <k <I+m—1. Suppose i + j = k + 1. Take £ = {E;;,1E;;, E};,iE";} as an ordered basis
of V;; over R. Then we encode the coordinates of the matrices 7y, o di(E;j), mg o dp(iE;;), T © dk(E;i), and

7 o di(iE};) with respect to E as the rows in the following matrix:

where R(z) and (z) denote the real and imaginary parts of a complex number z, respectively. The deter-
minant of this matrix is (e’ — 1)(o/@ — 1). If aa’ # 1, then Im(mg o di) contains V;; and, consequently,
Vi € Im(my, ody). So Im(mg ody) = Vi.. On the other hand, if aa’ = 1, the rank of the above matrix is 2. So
dimg (Im(7my, o d)) = 2dimg(Vy)/4. Moreover, 7, o di(E;;) and 7, o di(iE;;) are linearly independent and
span Im(m;; o dy). a0

Note that if aa’ # 1, then ker(my o di) = {0} by Lemma 2.1. Suppose aa’ = 1. Recall that we assume
I<m.Fix1<k<l+m-—1. Supposei+j==k+ 1. Let

Ai = Eij — OLIE;i c Vk,

and
Then

dp(Ai) = Ej_, ; —a'E; 1,
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and
di(Bi) = =i(Ej_y; + ' Ei_1 ).
Clearly, 1 odp(A;) = mpodi(B;) = 0. In other words, A;, B; € ker(m, ody,). Recall that mpody(E;j) = Eij +
o/E;-i and mpod,(1E;;) = 1E;; —io/EJ’-Z-. For fixed ¢ and j, note that the set {A;, B;, T odi(E;j), T odk(iE;;)}
is a basis of V;; over R. Since V/(S~*;C, D) is a direct sum of all Vj;, the set
Qr ={A;, B; | max(1,k+1—m) <i <min(k, 1)},
is linearly independent over R. Moreover, since V;; N Q = {A4;, B;} and dimg(V;;) = 4, the cardinality of
Vij N Qy is dimr(Vi;)/2 = 2. Summing over all 4, we obtain the cardinality of Q2 to be
dimg (V%) /2.
By Lemma 2.1,

dimg (ker(mg o dy)) = dimg(Vy) — dimg(Im(7g o di))

Hence, Q, is a basis of ker(m, ody) over R. From the form of the matrices d(A;) = di(A;) and d(B;) = di(B;)
and the linear independence of {E;;, EY; [ i+ j = k} C Vi1 over R, we see that

U= d(Q)
is a linearly independent subset of Vi1 over R. The set ¥ also spans d(ker(my o dy)) over R.

We prove the following lemma.

LEMMA 2.2. Let ao/ =1 and let q be the quotient map
q: Vi1 — Vk_l/Im(wk_l o dk—1)~

If k < m, then q(V) spans Vi_1/Im(mg—1 o di—1) over R. If k > m, then q(V) is linearly independent over
R.

Proof. Fix k. By Lemma 2.1,

Im(m—1 0 dp—1) = Spang{E;; + o' E;

jio .(Eij - aIE_;i) ‘ Z+J = k}
This implies that ¢(E;;) = q(—a'E};) and q(iEi;) = q(ia’E};) for each pair 4, j such that i + j = k. For
a € C, it follows that q(aEy;) = q(—ad'EY;). Let A=3", ., aiFyj1+a;E;_, ; € Vi_1 where a;,a; € C.

Then
q(4) =¢q Z (—a;o’ +a))Ej_y
i+j=k+1

Thus, the quotients q(3_,, ;_j, aiEj_; ;), with a; € C, represent all the elements of Im(q).

Let A; = Eij — &'E};, Bi = i(Eij + o' E};) € Q) where max(1,k+1—m) <i < min(k,l) and j = j(i) =
k+1—14. Then
qod(A;) = q(
= q(Bj_;, —R(NEi_1; —S()iEi_1;)
= (B +R()'Ej;  — ()i E] ;)
(B i+ (« a')? Eli 1),
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and likewise,
qod(B;) = q(—i(E;_; ; + (O/)2E},ifl))'

Suppose k < m. In this case, 1 <14 < min(k,[). We prove, by induction on %, that

{Q(El/cfi,i% q(iEl/cfi,i)} C Spang q(¥).

For the base case,
qo d(Al) = Q(El/cfl,l)a
and
qod(By) = q(_iEllc—l,l)a

since Ej , = 0. Hence, q(V) contains ¢(Ej}_, ;) and g(iE}_; ;). The rest of the induction follows from the
fact that E%; ; in the expressions for g o d(A4;) and g o d(B;) above can be written as E,’c_(i_l) ;,_1- Hence,
q(¥) spans the quotients q(>_,, ;_; 1, @i Ej_; ;) over R. Thus, ¢(¥) spans Im(g) over R.

Finally, we consider the case m < k. By the same argument above, we see that

q(V) U {(I(E;;l,l)a Q(iE;A,l)}»

spans ¢(Vi—1) over R. The cardinality of ¢(¥)U{q(E}_ ;),q(iE}_; 1)} is equal to Q| +2 = 2(I -k +m+1).
Moreover,

dimR q(Vk_l) = dimR Vk—l - dimR Im(ﬂk_l @) dk—l)
1.
= 5 dlmR Vk,1

= 2(l—k+m+1).

Therefore, ¢(¥) U {q(E’_;,),q(iEj_; 1)} is a basis of q(Vi-1) over R. Thus, ¢(¥) is linearly independent
over R. d

LEMMA 2.3. Let ac’ =1 and k < 1. Then V<j_1 C Im(d<y).

Proof. We prove this by induction on k. Clearly, the lemma holds when k = 1 as V<o = 0. Suppose that
Vek—2 CIm(d<g_1) holds for 1 < k < I. We show that V<;_1 C Im(d<j). By using the inductive hypothesis
and the fact that Veg_1 = V<g_o & Vj_1, it is sufficient to show that Viy_; C Im(d<y). By Lemma 2.2,
U U Im(mg—1 o dg—1) spans Vi_1 over R since k < I < m. From ¥ C Im(dg) and the induction hypothesis,
we have

\IJUIm(T{'k-_l Odk—l) C Im(dk) —|—Im(ﬂ'k_1 Odk—l)
C Im(dk) + Im(dk_l) + ng_g
C Im(dk) + Im(dgk,l)
C Im(dgk).
In other words, the linear space Im(d<y) contains a basis of Vi_1 over R. Therefore, Vi_1 C Im(d<y). d

LEMMA 2.4. The real dimension of ker(d<iim—1) is given by

2min(l,m) if aa =1,
dims (ker(dag ) = § - b o=
0 otherwise.
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Proof. Let 1 <k <1+ m — 1. First, we assume aa’ # 1. By Lemma 2.1,

Im(ﬂk o dk) = Vk.

By induction on k, we show Im(d<y) = V<. For k = 1, we have Im(d<1) = Im(m o dy) = V1 = V<;.
Suppose k > 1 is such that Im(d<y) = V<i. Then

Im(d<pr1) = Im(dpi1) @ Im(d<k)
= Im(ﬂk+1 o dk:—',—l) D Im(dgk)
= Vit1® Vap = Vapgr.
In particular, Im(d<;+m—1) = V<itm—1. Thus, dimg(ker(d<;4m,—1)) = 0.
Now, we suppose that aa’ = 1. Recall that we assume [ < m. Note that the subspaces ker(d<y) satisfy
ker(dgl) g ker(dgg) Q g ker(dSHm,l).
To prove the lemma, we claim that

2 if k<,

dimg (ker(d<y)/ ker(d<y)) = .
0 otherwise.

Using the above formula, we get
dimR(ker(d§l+m_1)) = 21.

Recall that ¥ = d(€) spans d(ker(my o dy)). Moreover, dimg (ker(my o di)) = dimg (V%) /2. As such,
1
dimg (Spang (¥)) = 5 dimg (V).
By Lemma 2.1,
. L.
dimg (Im(7i—1 0 dj—1)) = B dimg (Vi—1).

By Lemma 2.2, the sum Spang (%) + Im(m;—1 o di—1) is the full space Vj;_1 if & < m. On the other hand,
from the proof of the same lemma, we have dimg(Spang(¥) 4+ Im(7g—1 0 dg—1)) = dimg Vi—y — 2 if k& > m.
Since

dimR(Wl + W) = dimR(Wl) + dimR(Wg) - dimR(Wl n Wg),

where Wy = Spang (¥) and Wy = Im(7g—1 0 dy—1), we obtain

(dlmR(Vk) — dimR(V}c,ﬁ) if k& S m,

r(W; 2) { (dimg (V) — dimg(Vi—1)) +2 if &k > m.

(I I

Using the explicit formula for dimg(V%), we obtain

2 ifk<l,

dimpg (Spang (V) NIm(7m,_1 0di_1)) =
=(Spang (V) N Im(mi—y © di-1)) {o i1 <k

Next, we show that

dimp (ker(d<y)/ ker(d<y)) = dimg(Spang (¥) N Im(mi_1 0 di—1)).
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First, we exhibit that Spang(¥) N Im(m,_1 o dx—1) contains d o mi(ker(d<y)). Suppose A € ker(d<g). Let
A=X+Y where X € V<;,_; and Y € V},. Then,

domp(A) = d(mp(X)) + d(mi(Y))

= ().

Since d(A) = 0, then d(Y) = —d(X) € V<g—1. Sompodp(Y) = —mp0d(X) = 0, ie. Y € ker(mg o di).
This implies that d o 7, (A) = d(Y) € Spang (V). Moreover, d o m;(A) € Vi_1 @ Vi, since Y € Vj,. Likewise,
dom(A) = —d(X) implies that dom(A) € V<p_1. Since (V3—1® Vi) NV<p_1 = Vi1, then domi(A) € Vi_1.
Consequently, d o m;(A) = —mi_1 0 d(X). Now, we can write X = m,_1(X) + X’ where X' is in Vej_o
because X € V<j_1. Since the map d is closed on V<j_o, i.e., the image of d|y., _, is inside V<j_o, we have

Tr-10d(X) = w1 od(m_1(X)) +mp_1 0d(X')
= TMk—1 Od(ﬂ'k—l(X))
= Tg—1 0 dg_1(mr—1(X)).

This implies that d o m;(A) € Im(m—1 o dg—1). Therefore, we get
domy(A) € Spang (V) NIm(mk—1 0 dp—1).
Define A : ker(d < k) — Spang(¥) N Im(mi—1 o di—1) to be the restriction of the map d o 7 on
ker(d < k). Note that there is an embedding
ker(d < k)/ker(A) — Spang(¥) N Im(mg_1 0 di—1).
We claim that ker(A) = ker(d<y) to conclude that
dimp (ker(d<g)/ ker(d<x)) < dimgr(Spang (¥) NIm(mx_1 0 di—1)).
Indeed, since ; and ¥ = d(§2) are both linearly independent over R and || = |¥|, we have
dimg (Spang (Qx)) = dimg (Spang (d(2))).
This implies that d : Spang () — Spang(d(Q4)) is an injective linear map. Moreover,
ker(dy) C ker(my, o di) = Spang (Q4).
Thus, ker(dy) = 0. Consequently,
ker(A) = ker(d<x) ® ker(dy)
= ker(d<y).
Recall that, if I < k, then dimg(Spang (¥) N Im(7,—1 0 dx—1)) = 0. Hence, if [ < k, then
dimp (ker(d<y)/ ker(d<x)) = 0.

Suppose k < I. We show that the map A is surjective. Let A € Spang(¥) N Im(mg_1 o dx—1). Then
A= d(Zz a;A; + biBi> where a;,b; € R and A;, B; € Q.
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Moreover, there exists A’ € V1 such that A = 7;_1 od(4’). Let A= > aiA;+b;B; — A" € V<i. Then

d(A) = A—d(A") € V<_1. Since the projection of d(A’) onto Vi_1 is A, then necessarily d(A) € Veg_s.

By Lemma 2.3, we have V<j_o C Im(d<j—1) for all £ < [. So, there exists A€ V<k—1 such that
d(A) = d(A). Thus, A — A € ker(d<y) but A — A ¢ ker(d<y) because mj,(A — A) = 3, a; A; + b; B;. In other
words, we obtain an element of ker(d<j) whose image via the map do 7, is A = d(_, a;A; + b;B;). This
means that A is surjective. Thus,

dimp (ker(d<g)/ ker(d<x)) > dimg(Spang (¥) N Im(mx_1 0 di—1)).
Therefore, if £ < [, we have
dimpg (ker(d<y)/ ker(d<r)) = dimg (Spang (¥) N Im(m,—1 0 dk—1)) = 2. 0

LEMMA 2.5. Let S € GL,(C). Let C = {v1,...,v;} and D = {uq,...,un} be Jordan chains of SS~*
associated with the eigenvalues o and o, respectively. Assume that C' U D is linearly independent. Then

dimg(us NV(S™;C, D)) =

otherwise.

{Zmin(l,m) if aa/ =1,

Proof. Recall that

l+m—1
V(Si*v CaD) = Z Vk = V§l+7n—1-
k=1
Thus,
ker(d<iym-1) =us NV(S™C, D).
Therefore,
dimR(ker(dgHm,l)) = dimR(uS N V(S_*; C, D))

The conclusion follows from Lemma 2.4. O

2.2. CASE 2: Same Jordan block. Let S € GL,(C). Let C = {vy,...,v;} be a Jordan chain of
S S~ associated with the eigenvalue o of SS™*. For 1 < i < [, we have

SS_*’UH_l = V41 + Vi,
and
SS™*v1 = av.
For 1 <i,5 <, define
Eij = ’Ui(Si*’Uj)*

and set
V(ST C,C)= Y CEj.

1<i,j <l

For 1 <k <2l -1, define V}, = Ziﬂ-:kﬂ CE;j. Note that

2% if k<1,

dimg (Vi) =
=) {41—% it < k.
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Define the maps d, di, and 7 as in Section 2.1. If i + j = k + 1, then

me o dp(Eij) = Eij +akj,
T O dk(lE”) = lEZ — iOéEji.

Analogous to Lemma 2.1, if a@ # 1, then Im(7y, o di) = Vi. If ax = 1, observe that

2 o] = 30w iy 25

3(@)
Therefore, Im (7, o di) is spanned over R by the set

{Eij + aBjii(Biy — aBy) |i < jii+j=k+1}.

In particular,
dlmR(Vk) if aa # 1,

dimp (Im(7, o d =
r(Im(my o dv)) %dimR(Vk) if oa = 1.

Assume aad = 1. Fix 1 <k <2l —1 and suppose i + j = k+ 1, where 1 < 1,5 <. Let

Ai = Eij - O[Eji,

and
Then

d(4;) = Ej_1,; —aB;_1
and

d(Bl) = *i(Ej_l,i +aEi_1,j).

Hence, A;, B; € ker(mody). If k is odd, then {A% , B%} is linearly dependent over R. The set Qy defined
below is a basis of ker(mj o di) over R:

Qr = {4, B |max(l,k+1-1)<i< (k+1)/2}
0 if k is even,
U {B%} if =1 and k is odd,
{A%} if o £ 1 and k is odd.

The set ¥ = d(@vk) is contained in Vj_; and it spans d(ker(my o di)) over R.
LEMMA 2.6. Let ace =1 and let q be the quotient map

q: Vi1 — Vlcfl/Im(ﬂ'kfl o dkfl)-

If k <1, then q(¥) spans Vi_1/Im(mp_1 0 di_1) over R. If k > I, then q(V) is linearly independent over R.
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Proof. We consider the quotient map ¢ : Vyz—1 — Vi_1/Im(mp_1 o dx—1). The image set Im(q) is
represented by the quotients q(Z:Z.S%ﬂ.ﬂ-:k+1 b;E;_1;), where b; € C. Indeed, recall that Im(7m;_1 o di—1) is
spanned over R by the set

{Eij =+ anivi(Eij — O[Eji> | 1 S j,Z+] = k}
It follows that
q(Eij) = q(—aE};),
and
q(iEsj) = q(iaEj;),
for each pair ¢, j such that ¢ + j = k and 7 < j. Moreover, for such a pair, ¢(aE;;) = ¢(—aaE;;) if a € C.
Set Ex » =0if kisodd. Let A=3",, . j ailyj =3 ;4 aiEij € V—1 where a; € C. Then

kE E
2°2

q(A) = ZQ(%E”)-F(] akE%% +Z CLZ ”

i<k i>k

Since i + j = k , then i < £ implies j > &. We have

q(A) = Z( azanz)+q g g% +Z (L1 ”

>k i>k

Y a((—@a+a;)Ey) + qlag Ex x).

(VB

By re-indexing,

A= > qbiBi1),

i<k itji=k+1
for some b; € C where the sum runs over max(1,k + 1 —1) <14 < min(k,1).
Now, for A;, B; € ﬁ;, we have
qod(A;) = q(Ej_1i+ ”Eji_1),
qod(B;) = q(—i(Ej_1i + o’ Ej;1)).
The rest of the proof follows as in Lemma 2.2. ]

Let aa = 1. We apply the same argument used in Lemma 2.4. Note that the cardinality of QNk is given

by
(% ifk<l,
Q| = o
20—k if k> 1.

Using this, we can show that

dimp (Spang ) - dlmR Vi.

By Lemma 2.6, if £ <, then

1 1
dimR(SpanR(\I/) NIm(mg_10dg—1)) = = dlmR(Vk) - = dlmR(Vk 1) =1
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Moreover, if k > [, then

Spang (V) NIm(mg—1 o di—1) = {0}.

So
dimR(d(ker(wk (e} dk)) N Im(ﬂk,1 o dkfl)) =0.

To summarize, we have

. 1 if k<l
dlmR(d(ker(wk o dk)) N IIIl(ﬂ'k_l o dk—l)) =
0 ifl <k,
and consequently,
1 if k<l

dimR(ker(dSk)/ker(d<k)) = .
0 otherwise.
Hence, we obtain the following as an analogue of Lemma 2.4.

LEMMA 2.7. The real dimension of ker(d<a1—1) is given by

I ifaa=1,

0 otherwise.

dimR(keI‘(dggl_l)) = {

Thus, we have the following result parallel to Lemma 2.5.

LEMMA 2.8. Let S € GL,(C). Let C = {vy,...,v} be a Jordan chain of SS™* associated with the
eigenvalue o of SS™*. Then

I if aa =1,

0 otherwise.

dimg (usg NV(S™*;C,C)) = {

Combining Lemmas 2.5 and 2.8 yields Theorem 1.1. Indeed, let € be a set of Jordan chains of S5*
such that

i. for each eigenvalue 5 of SS~* and m € N, there are mult(SS~*; 8, m) Jordan chains in % of length
m and associated with 3; and
ii. the union of the Jordan chains in % is linearly independent over C.

Then € yields a basis of C™ over C. For C, D € €, we have

VS~ C,D) = V(57 D,C)
= Spang({u(S™*v)" | (u,v) € (C x D)U (D x C)}.

Let ©(® be the set of all subsets of € with size 2. Thus,

M, (C) @ Spang ({u(S™*v)* |u € C,v € D})

C,De¥

= P vsTieD e PVESTCo).

{C,D}e€ 2 Ce%
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Recall that ker(d) = ug and that V(S—*; C, D) is closed under the linear map d for C, D € €. Thus,

us = ugn B vs™oDePVEsTieo)

{C,D}e%® cew
= P wsnV(STC.D) e @ usnV(STC,0)).
{C.D}eE® Ce€
Hence,
dimg(ug) = Y dimg(usNV(S™C, D))+ Y dimg(us N V(S C,C)).
{C,D}e¢® cee

For a chain C' € €, let I(C) be its length and let «(C) be the eigenvalue associated with it. We have

dimg (ug) = > 2min(i(C), (D) + Y. UC)
{C,D}e¢® cee
a(C)a(D)=1 a(C)a(C)=1
= > min(l(C), (D).
C,De¥
a(C)a(D)=1

Finally, counting the Jordan chains in the sum above, we obtain

n

dimg (ug) = Z Zmin(l,m)mult(SS_*;B,Z)mult(SS_*;Bil,m).

m,l=1BEA
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