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Abstract. A matrix is said to have the Perron-Frobenius property if its spectral radius is an

eigenvalue with a corresponding nonnegative eigenvector. Matrices having this and similar properties

are studied in this paper as generalizations of nonnegative matrices. Sets consisting of such gener-

alized nonnegative matrices are studied and certain topological aspects such as connectedness and

closure are proved. Similarity transformations leaving such sets invariant are completely described,

and it is shown that a nonnilpotent matrix eventually capturing the Perron-Frobenius property is in

fact a matrix that already has it.
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1. Introduction. A real matrixA is called nonnegative (respectively, positive) if
it is entry-wise nonnegative (respectively, positive) and we write A ≥ 0 (respectively,
A > 0). This notation and nomenclature is also used for vectors. A column or a
row vector v is called semipositive if v is nonzero and nonnegative. Likewise, if v
is nonzero and entry-wise nonpositive then v is called seminegative. We denote the
spectral radius of a matrix A by ρ(A).

Following [29], we say that a real square matrix A has the Perron-Frobenius
property if Av = ρ(A)v for some semipositive vector v. In the latter case, we call
v a right Perron-Frobenius eigenvector for A. Similarly, if uTA = ρ(A)uT for some
semipositive vector u then we call u a left Perron-Frobenius eigenvector for A.

The Perron-Frobenius property is naturally associated with nonnegative matrices.
Perron [21] proved that a square positive matrix has the following properties:

1. Its spectral radius is a simple positive eigenvalue.
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2. The eigenvector corresponding to the spectral radius can be chosen to be
positive (called a Perron vector).

3. No other eigenvalue has the same modulus.

This result was extended by Frobenius [9] to nonnegative irreducible matrices and
consequently to nonnegative matrices, using a perturbation argument. In the latter
case, the spectral radius is an eigenvalue with a nonnegative eigenvector.

These results and other extensions, all of which are known now as the Perron-
Frobenius theory, have been widely applied to problems with nonnegative matrices,
and also with M -matrices and H-matrices; see, e.g., the monographs [2], [14], [25],
[30]. Applications include stochastic processes [25], Markov chains [28], population
models [18], solution of partial differential equations [1], and asynchronous parallel
iterative methods [10], among others.

In this paper, we are interested in matrices having the Perron-Frobenius property
but which are not necessarily nonnegative.

We begin by mentioning some relevant earlier work. A real square matrix A is
said to be eventually nonnegative (respectively, eventually positive) if Ak ≥ 0 (re-
spectively, Ak > 0) for all k ≥ k0 for some positive integer k0. Eventually positive
matrices do satisfy properties 1–3 and in general, nonnilpotent eventually nonnega-
tive matrices possess the Perron-Frobenius property. We note here that an eventually
nonnegative matrix A which is nilpotent may not have the Perron-Frobenius property.
We illustrate this with the following example.

Example 1.1. Let A =
[

1 1
−1 −1

]
, then A2 = 0. Hence, A is an eventually

nonnegative matrix which is nilpotent and 0 is its only eigenvalue. Moreover, all the
eigenvectors of A are of the form [t,−t]T for some t ∈ R, t �= 0. Therefore, A does not
possess the Perron-Frobenius property. On the other hand, the zero matrix possesses
the Perron-Frobenius property despite the fact that it is nilpotent. Hence, a nilpotent
matrix may or may not have the Perron-Frobenius property.

Friedland [8] showed that for eventually nonnegative matrices the spectral radius
is an eigenvalue. Such an eigenvalue and any other eigenvalue whose modulus is equal
to the spectral radius is called a dominant eigenvalue. Furthermore, if a matrix has
only one dominant eigenvalue (regardless of its multiplicity), then we call such an
eigenvalue strictly dominant.

Zaslavsky, McDonald, and Tam [31], [32] studied the Jordan form of eventually
nonnegative matrices. Carnochan Naqvi and McDonald [5] studied combinatorial
properties of eventually nonnegative matrices whose index is 0 or 1 by considering
their Frobenius normal forms. Eschenbach and Johnson [7] studied sign patterns of a
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matrix requiring the spectral radius to be an eigenvalue. They called such a property
the Perron property. Other earlier papers looking at issues relating to the spectral
radius being an eigenvalue, at positive or nonnegative corresponding eigenvector, or
at matrices with these properties, include [11], [12], [13], [16], [17], [19], [26], [27], [29].

We mention in passing the work of Rump [23], [24], who generalized the concept
of a positive dominant eigenvalue, but this is not related to the questions addressed
in this paper.

Different nomenclature for different “Perron properties” appear in the literature.
In [7], as we already mentioned, the Perron property stands for having the spectral
radius as an eigenvalue, whereas, in [11] the weak Perron property stands for having
the spectral radius as a simple positive and strictly dominant eigenvalue. In [19],
the Perron-Frobenius property stands for having the spectral radius as a positive
eigenvalue with a nonnegative eigenvector; this is also the definition used in [6]. On
the other hand, in this paper we say that a real matrix A possesses the Perron-
Frobenius property if ρ(A) (whether it is zero or positive) is an eigenvalue of A having
a nonnegative eigenvector (which is the same as the definition introduced in [29]).
Moreover, we say that A possesses the strong Perron-Frobenius property if A has a
simple, positive, and strictly dominant eigenvalue with a positive eigenvector (which
is the same as the definition introduced in [19]).

Following [16], we let PFn denote the collection of n × n real matrices whose
spectral radius is a simple positive and strictly dominant eigenvalue having positive
left and right eigenvectors. Equivalently, we can say that PFn is the collection of
matrices A such that both A and AT possess the strong Perron-Frobenius property.
Similarly, WPFn denotes the collection of n × n real matrices whose spectral ra-
dius is an eigenvalue having nonnegative left and right eigenvectors. Equivalently,
WPFn is the collection of matrices A such that both A and AT possess the Perron-
Frobenius property.

In this paper, we address several issues relating to matrices having the Perron-
Frobenius property and the sets consisting of these matrices. We first show how PFn,
WPFn, and other sets of matrices having the Perron-Frobenius property relate to one
another (section 2). In section 3, we consider an extension of the Nonnegative Basis
theorem (due to Rothblum [22]) to an eventually nonnegative matrix with index at
most 1.

Eventually nonnegative matrices generalize nonnegative matrices, and WPFn
generalizes eventually nonnegative matrices. A natural question is then, what can
be said about matrices that are “eventually in WPFn” or that “eventually possess”
the Perron-Frobenius property? For nonnilpotent matrices, we show that “eventu-
ally possessing” the Perron-Frobenius property is actually the same as possessing
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the Perron-Frobenius property (section 4). We completely describe similarity trans-
formations preserving the Perron-Frobenius property (section 5) and we study some
topological aspects such as connectedness and closure of the collection of matrices
having the Perron-Frobenius property and other sets of interest (section 6). In this
latter section, we prove a new result which asserts that a given pair of semipositive
vectors with a nonzero inner product can be mapped to a pair of positive vectors by
real orthogonal matrices arbitrarily close to the identity. This new tool may be useful
in other contexts as well. Applications to generalizations ofM -matrices are presented
in the forthcoming paper [6].

2. Relations between sets. We present in this short section inclusion relations
between the different sets defined in the introduction.

We begin by mentioning that

PFn = {Eventually Positive Matrices in Rn×n},(2.1)

which follows from [32, Theorem 4.1 and Remark 4.2].

The proof of the following lemma can be found in [19]. Here, we have added the
necessary hypothesis of having at least one nonzero eigenvalue or equivalently having
a positive spectral radius.

Lemma 2.1. If A is a real n×n eventually nonnegative matrix that has a nonzero
eigenvalue, then ρ(A) is a positive eigenvalue of A with corresponding nonnegative
right and left eigenvectors. Hence, A ∈ WPFn.

Observe that from Example 1.1 and Lemma 2.1 all eventually nonnegative ma-
trices are inside WPFn with the exception of some nilpotent matrices. In fact, the
set of nonnilpotent eventually nonnegative matrices is a proper subset of WPFn as
we show in the following proposition.

Proposition 2.2. The collection of n × n nonnilpotent eventually nonnegative
matrices (n ≥ 2) is properly contained in WPFn.

Proof. It suffices to find a matrix A in WPFn which is not eventually nonnegative.
Consider the matrix A = J ⊕ [−1] where J is the matrix of dimension (n− 1) having
all its entries equal to 1. Then, Ak = [(n − 1)(k−1)J ] ⊕ [(−1)k]. Clearly, A is not
eventually nonnegative because the (n, n)-entry ofA keeps alternating signs. However,
A ∈WPFn since ρ(A) = n−1 and there is a semipositive vector v = [1, . . . , 1, 0]T ∈ Rn

satisfying vTA = ρ(A)vT and Av = ρ(A)v.

Hence, Proposition 2.2 establishes that all the inclusions are proper in the follow-
ing statement:

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 389-413, August 2008



ELA

On General Matrices Having the Perron-Frobenius Property 393

PFn = {Eventually Positive Matrices in Rn×n}
⊂ {Nonnilpotent eventually nonnegative matrices in Rn×n}
⊂WPFn.

Moreover, it turns out that an irreducible matrix in WPFn does not have to be
eventually nonnegative as Examples 2.4 and 2.5 below show.

The following theorem is due to Zaslavsky and Tam [32, Theorem 3.6]. We present
it here for completeness, since it is a useful tool to construct irreducible matrices in
WPFn which are not eventually nonnegative.

In Theorem 2.3 below, we denote the multiset of all elementary Jordan blocks
of an n × n complex matrix A by U(A), we say that an n × n complex matrix A is
eventually real if Ak is real for all integers k ≥ k0 for some positive integer k0, and
we denote the 1× 1 elementary Jordan block corresponding to 0 by J1(0).

Theorem 2.3. Let A be an n× n complex matrix.

(i) The matrix A can be expressed uniquely in the form B + C, where B is a
matrix in whose Jordan form the singular elementary Jordan blocks, if any,
are all 1× 1 and C is a nilpotent matrix such that BC = CB = 0.

(ii) With B, C as given in (i), the collection of non-singular elementary Jordan
blocks in U(A) is the same as the collection of non-singular elementary Jor-
dan blocks in U(B), and the collection of singular elementary Jordan blocks
in U(A) can be obtained from U(C) by removing from it r J1(0)’s, where
r = rank B.

(iii) With B as given in (i), A is eventually real (eventually non-negative, even-
tually positive) if and only if B is real (eventually non-negative, eventually
positive).

The following example was inspired by [5, Example 3.1], and its construction
follows from Theorem 2.3.

Example 2.4. Let

A =



1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 1 −1 −1


 , B =



1 1 0 0
1 1 0 0
1 1 −1 −1
1 1 −1 −1


 ,
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and C =



0 0 1 −1
0 0 −1 1
0 0 0 0
0 0 0 0


 .

Note that A is an irreducible matrix. Also, note that ρ(A) = 2 and that for
v = [2, 2, 1, 1]T and w = [1, 1, 0, 0]T , we have that Av = ρ(A)v and wTA = ρ(A)wT .
Thus, A is an irreducible matrix in WPF4. Furthermore, it is easy to see that
A = B + C and that BC = CB = C2 = 0. Hence, Aj = Bj for all j ≥ 2. But
B is not eventually nonnegative since the lower right 2×2 diagonal block of Bj keeps
alternating signs. Thus, A is not eventually nonnegative.

In the following example, we present a nonsingular irreducible matrix A in WPF3
which is not eventually nonnegative. Unlike Example 2.4, we do not make use of
Theorem 2.3 to show that A is not eventually nonnegative because in this case the
decomposition A = B+C given by Theorem 2.3 is simply A = A+0. More precisely,
we show in Example 2.5 below that there is a matrix A in WPF3 that satisfies the
following: A is not eventually nonnegative although the spectral radius of A is a
simple positive (but not strictly dominant) eigenvalue of A having corresponding
positive right and left Perron-Frobenius eigenvectors.

Example 2.5. Consider the symmetric matrix

A =


 −1 1 1

1 −1 1
1 1 1


 .

By direct calculation, one can find that the eigenvalues of A are 2, −2, and −1. Hence,
ρ(A) = 2 is a simple positive eigenvalue which is not strictly dominant. Moreover,
v = [1, 1, 2]T is a positive right and left eigenvector of A that corresponds to ρ(A).
For every odd positive integer k, the matrix Ak is not nonnegative since trace Ak =
2k + (−2)k + (−1)k = −1 < 0. Hence, A is not eventually nonnegative.

We end this section by noting that the set of n× n matrices having the spectral
radius as an eigenvalue with a corresponding positive eigenvector properly includes
the set PFn and has elements outside WPFn. This can be seen from the following
example which is [19, Example 2.1].

Example 2.6. Consider the following matrix:

A =
1
5


 5 10 5

−2 5 5
−2 25 40


 .

The matrix A possesses the strong Perron-Frobenius property, whereas its transpose
AT does not even possess a nonnegative eigenvector corresponding to ρ(A). All the
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eigenvectors of AT corresponding to ρ(A) have both positive and negative entries.
Hence A /∈ WPF3.

3. The algebraic eigenspace and the classes of an eventually nonnega-
tive matrix. Let σ(A) denote the spectrum of a matrix A. The index of a matrix
A is the smallest nonnegative integer k such that rank Ak = rank Ak+1.

Our main result in this section is Theorem 3.8 which generalizes Rothblum’s result
[22] on the algebraic eigenspace of a nonnegative matrix and its basic classes. The
tools we use in its proof are taken from the work of Carnochan Naqvi and McDonald
[5], who showed that if A is an eventually nonnegative matrix whose index is 0 or 1
then the matrices A and Ag share some combinatorial properties for large prime
numbers g. We review those results here in a slightly more general form, namely by
expanding the set of powers g for which the results hold.

Following the notation of [5], for any real matrix A, we define a set of integers
DA (the denominator set of the matrix A) as follows

DA := {d | θ − α = c/d, where re2πiθ , re2πiα ∈ σ(A), r > 0, c ∈ Z+,

d ∈ Z\{0}, gcd(c, d) = 1, and |θ − α| /∈ {0, 1, 2, . . .}}.
The set DA captures the denominators of the reduced fractions that represent the
argument differences (normalized by a factor of 1/2π) of two distinct eigenvalues of
A lying on the same circle in the complex plane with the origin as its center. In other
words, if two distinct eigenvalues of A lie on the same circle in the complex plane with
the origin as its center and their argument difference is a rational multiple of 2π, then
the denominator of this rational multiple in the lowest terms belongs to DA. Note
that the set DA defined above is empty if and only if one of the following statements
is true:

1. A has no distinct eigenvalues lying on the same circle in the complex plane
with the origin as its center.

2. The argument differences of the distinct eigenvalues of A that lie on the same
circle in the complex plane with the origin as its center are irrational multiples
of 2π.

Note also that DA is always a finite set, and that 1 is never an element of DA.
Moreover, d ∈ DA if and only if −d ∈ DA.

We define now the following sets of integers:

PA := {kd | k ∈ Z, d > 0 and d ∈ DA} (Problematic Powers of A).
NA := {1, 2, 3, . . .}\PA (Nice Powers of A).

Since DA is finite and 1 is never an element of DA, NA is always an infinite set. In
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particular, NA contains all the prime numbers that are larger than the maximum
of DA.

The eigenspace of A for the eigenvalue λ is denoted by Eλ(A) and the (complex)
Jordan canonical form of A is denoted by J(A). By Gλ(A) we denote the generalized
eigenspace of matrix A for the eigenvalue λ. The following result follows from [15,
Thereom 6.2.25].

Lemma 3.1. Let A ∈ Cn×n and let λ ∈ σ(A), λ �= 0. Then for all k ∈ NA we
have Eλ(A) = Eλk(Ak) and the elementary Jordan blocks of λk in J(Ak) are obtained
from the elementary Jordan blocks of λ in J(A) by replacing λ with λk.

We present now some further notation. Let Γ(A) denote the usual directed graph
of a real matrix A; see, e.g., [2, 14]. A vertex j has access to a vertex m if there is a
path from j to m in Γ(A). If j has access to m and m has access to j, then we say
j and m communicate. If n is the order of the matrix A, then the communication
relation is an equivalence relation on 〈n〉 := {1, 2, . . . , n} and an equivalence class is
called a class of the matrix A. If in the graph Γ(A) a vertex m has access to a vertex
j which happens to be in a class α of matrix A, then we say m has access to α. If
A ∈ Cn×n and α, β are ordered subsets of 〈n〉, then A[α, β] denotes the submatrix of
A whose rows are indexed by α and whose columns are indexed by β according to the
prescribed orderings of the ordered sets α and β. For simplicity, we write A[α] for
A[α, α]. If A is in Cn×n and κ = (α1, α2, · · · , αm) is an ordered partition of 〈n〉 (see,
e.g., [4, 5]), then Aκ denotes the block matrix whose (i, j)th block is A[αi, αj ]. The
reduced graph of A, denoted by R(A), is the graph whose vertices are the classes of
A and there is an edge (α, β) in R(A) if and only if A[α, β] is nonzero. Moreover, we
say that a class α has access to a class β if in the reduced graph, R(A), α has access
to β. We define the transitive closure of R(A) as the graph with the same vertices as
R(A) but in which there is an edge (α, β) if and only if α has access to β in R(A). A
class of A is called an initial class if it is not accessed by any other class of A, and it
is called a final class if it does not access any other class of A. If α is a class of A for
which ρ(A[α]) = ρ(A), then we call α a basic class. We note here that the concept
of a basic class is normally used for a square nonnegative matrix [2], and that it is
justifiable to extend this definition to an arbitrary square real matrix because, in view
of the Frobenius normal form of A, for every class α, we have ρ(A[α]) ≤ ρ(A). (In
other words, the possibility that ρ(A[α]) > ρ(A) is ruled out.)

The following three results follow from Lemma 3.1 with the same proofs as in [5].

Lemma 3.2. Suppose that A ∈ R
n×n with index equal to 0 or 1, and that As ≥ 0

for all s ≥ m. Then, for all g ∈ NA ∩ {m,m + 1,m + 2, . . .}, if for some ordered
partition κ = (α1, α2) of 〈n〉 we have (Ag)[α1, α2] = 0 and (Ag)[α2] is irreducible or
a 1× 1 zero block, then A[α1, α2] = 0.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 389-413, August 2008



ELA

On General Matrices Having the Perron-Frobenius Property 397

Lemma 3.3. Suppose that A ∈ Rn×n with index equal to 0 or 1, and that As ≥ 0
for all s ≥ m. Then, for all g ∈ NA ∩ {m,m + 1,m + 2, . . .}, if (Ag)κ is in the
Frobenius normal form for some ordered partition κ, then Aκ is also in the Frobenius
normal form for the same partition κ.

Lemma 3.4. Suppose that A ∈ Rn×n with index equal to 0 or 1, and that As ≥ 0
for all s ≥ m. Then, for all g ∈ NA ∩ {m,m+ 1,m+ 2, . . .}, the transitive closures
of the reduced graphs of A and Ag are the same.

We will use the next result to prove the main theorem of this section.

Lemma 3.5. Let A ∈ Cn×n and let λ ∈ σ(A), then Gλ(A) = Gλk(Ak) for all
k ∈ NA.

Proof. There exists a nonsingular matrix P such that P−1AP = J1 ⊕ J2, where
J1 is the direct sum of all elementary Jordan blocks of A corresponding to λ and J2

is the direct sum of all elementary Jordan blocks corresponding to other eigenvalues
of A. Then, we have P−1AkP = Jk

1 ⊕ Jk
2 . Since k ∈ NA, it is clear that λk /∈ σ(Jk

2 ).
So, λk is an eigenvalue of Ak of multiplicity m where m is the size of J1. Note that
the subspace spanned by the first m columns of P is equal to Gλ(A). On the other
hand, from AkP = P (Jk

1 ⊕ Jk
2 ), we also see that the subspace spanned by the first m

columns of P is invariant under Ak and the restriction of Ak to the latter subspace is
represented by the upper triangular matrix Jk

1 . It follows that the latter subspace is
included in Gλk(Ak) and hence it is Gλk(Ak) since they have the same dimension.

Remark 3.6. Lemma 3.5 does not hold in general if the power k to which the
matrix A is raised is not in the set of “nice powers” NA. Take, e.g., the diagonal

matrix A =
[
1 0
0 −1

]
. If λ = 1, then Gλ(A) = Span {e1} whereas (for k = 2 ∈ DA)

Gλ2(A2) = R2. Hence, Gλ(A) is a proper subspace of Gλ2(A2).

We note that since for any eventually nonnegative matrix A having index 0 or 1,
the transitive closures of the reduced graphs of A and Ap are the same for p ∈ NA

large enough (by Lemma 3.4) and the generalized eigenspaces Gλ(A) and Gλp(Ap),
λ �= 0, are the same for p ∈ NA (by Lemma 3.5), it is natural to expect that any result
one has on the generalized eigenspaces of nonnegative matrices and their classes to
carry over to eventually nonnegative matrices having index 0 or 1. In particular, this
situation applies to the following result due to Rothblum [22, Theorem 3.1]:

Theorem 3.7. Let A be a square nonnegative matrix having m basic classes
α1, . . . , αm. Then, Gρ(A)(A) contains a basis consisting of m semipositive vectors
v(1), . . . , v(m) associated with the basic classes of A such that v(j)i > 0 if and only if
vertex i has access to αj in Γ(A), j = 1, . . . ,m, and any such collection is a basis for
Gρ(A)(A).
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We now show that this theorem holds as well for eventually nonnegative matrices
A with index 0 or 1.

Theorem 3.8. Let A ∈ Rn×n be an eventually nonnegative matrix whose index is
0 or 1 and assume that A has m basic classes α1, . . . , αm. Then, Gρ(A)(A) contains
a basis consisting of m semipositive vectors v(1), . . . , v(m) associated with the basic
classes of A such that v(j)i > 0 if and only if vertex i has access to αj in Γ(A),
j = 1, . . . ,m, and any such collection is a basis for Gρ(A)(A).

Proof. Since A is eventually nonnegative, it follows that there is p ∈ NA such that
As ≥ 0 for all s ≥ p. Let κ be an ordered partition of 〈n〉 that gives the Frobenius nor-
mal form of Ap and assume that Ap hasm′ basic classes. By Theorem 3.7, Gρ(Ap)(Ap)
contains a basis consisting of m′ semipositive vectors v(1), . . . , v(m

′) associated with
the basic classes of Ap such that v(j)i > 0 if and only if i has access to αj in Γ(Ap),
j = 1, . . . ,m′, and any such collection is a basis for Gρ(Ap)(Ap). By Lemma 3.3, we
know that the ordered partition κ also gives the Frobenius normal form of A and that
m′ = m. Moreover, by Lemma 3.5 we have Gρ(Ap)(Ap) = Gρ(A)(A). Furthermore, we
claim that i has access to αj in Γ(Ap) if and only if i has access to αj in Γ(A). To
prove this claim, let β denote the class to which the index i belongs and consider the
reduced graphs of A and Ap. By Lemma 3.4, the transitive closures of the reduced
graphs of A and Ap are the same. Hence, the reduced graphs of A and Ap have the
same access relations. Thus, β has access to αj in the reduced graph of A if and only
if β has access to αj in the reduced graph of Ap. Since i communicates with any
vertex in β, it follows that i has access to αj in Γ(Ap) if and only if i has access to
αj in Γ(A), and thus, the theorem holds.

Remark 3.9. We note here that if A is any eventually nonnegative matrix
in Rn×n then by Theorem 2.3 the matrix A has the decomposition A = B + C
in which B is a real n × n eventually nonnegative matrix whose index is 0 or 1,
ρ(A) = ρ(B), the matrix C is a real nilpotent matrix, and BC = CB = 0. Moreover,
Gρ(A)(A) = Gρ(B)(B). Hence, if B has m basic classes α1, . . . , αm. Then, Gρ(A)(A)
contains a basis consisting ofm semipositive vectors v(1), . . . , v(m) associated with the
basic classes of B such that v(j)i > 0 if and only if vertex i has access to αj in Γ(B),
j = 1, . . . ,m, and any such collection is a basis for Gρ(A)(A). However, we point out
here that the observation that Gρ(A)(A) = Gρ(B)(B), though of interest, is not that
useful as it seems difficult to determine B.

The following results are immediate from Theorem 3.8 and they are generaliza-
tions of theorems known for nonnegative matrices; see, e.g., [2].

Proposition 3.10. Suppose that A ∈ Rn×n is an eventually nonnegative matrix
with index equal to 0 or 1. Then, there is a positive eigenvector corresponding to ρ(A)
if and only if the final classes of A are exactly its basic classes.
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Proposition 3.11. Suppose that A ∈ Rn×n is an eventually nonnegative ma-
trix with index equal to 0 or 1. Then, there are positive right and left eigenvectors
corresponding to ρ(A) if and only if all the classes of A are basic and final, i.e., A
is permutationally similar to a direct sum of irreducible matrices having the same
spectral radius.

Remark 3.12. Propositions 3.10 and 3.11 do not hold for eventually nonnegative
matrices whose index is greater than 1. Consider, for example, the matrix

A =



1 1 1 −1
1 1 −1 1
1 1 1 1
1 1 1 1


 .

The matrix A is an irreducible eventually nonnegative matrix whose index is 2. Hence,
A has one class which is basic and final yet one can easily check that ρ(A) = 2 and that
Eρ(A)(A) = Span {[0, 0, 1, 1]T}, and therefore, A does not have a positive eigenvector
corresponding to ρ(A).

4. Matrices that eventually possess the Perron-Frobenius property.
As we have seen, nonnilpotent eventually nonnegative matrices have the Perron-
Frobenius property. It is then natural to ask, what can we say about matrices whose
powers eventually possess the Perron-Frobenius property. We show in this short
section that if such matrices are nonnilpotent then they must possess the Perron-
Frobenius property.

Theorem 4.1. Let A be a nonnilpotent matrix in Rn×n. Then, A has the Perron-
Frobenius property (respectively, the strong Perron-Frobenius property) if and only if
for some positive integer k0, Ak has the Perron-Frobenius property (respectively, the
strong Perron-Frobenius property) for all k ≥ k0.

Proof. We show the case of the matrix having Perron-Frobenius property, the
other case being analogous. Suppose that A ∈ Rn×n has the Perron-Frobenius prop-
erty. For any λ ∈ σ(A) and all k ≥ 1, we have Eλ(A) ⊆ Eλk(Ak). In particu-
lar, this is true for λ = ρ(A). Using the fact that ρ(Ak) = (ρ(A))k , we see that
Eρ(A)(A) ⊆ Eρ(A)k(Ak). Therefore, Ak has the Perron-Frobenius property for all
k ≥ 1. Conversely, suppose that there is a positive integer k0 such that Ak has the
Perron-Frobenius property for all k ≥ k0. By picking distinct prime numbers k1 and
k2 larger than k0 and using the fact that the eigenvalues of A are kith roots of the
eigenvalues of Aki for i = 1, 2, we can see that ρ(A) must be an eigenvalue of A.
Furthermore, by picking k ∈ NA ∩ {k0, k0 + 1, k0 + 2, . . .} (“nice powers” k of A that
are larger than k0), we have Eρ(A)(A) = Eρ(A)k(Ak) (this follows from Lemma 3.1).
Hence, we can choose a nonnegative eigenvector of A corresponding to ρ(A). Thus,
A has the Perron-Frobenius property.
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Corollary 4.2. Let A be a nonnilpotent matrix in Rn×n. Then, A ∈ WPFn
(respectively, A ∈ PFn) if and only if for some positive integer k0, Ak ∈ WPFn
(respectively, Ak ∈ PFn), for all k ≥ k0.

5. Similarity matrices preserving the Perron-Frobenius property. If S is
a positive diagonal matrix or a permutation matrix then clearly S−1AS possesses the
Perron-Frobenius property whenever A does. This observation leads to the following
question: which similarity matrices S preserve the Perron-Frobenius property, the
strong Perron-Frobenius property, eventual nonnegativity, or being in WPFn or in
PFn? In other words, for which similarity transformations are these sets of matrices
invariant? We first prove a preliminary lemma that leads to answering this question.

Lemma 5.1. Let S be an n × n real matrix which has a positive entry and a
negative entry (n ≥ 2). If S is of rank one but not expressible as xyT , where x is a
nonnegative vector, or is of rank two or more, then there is a positive vector v ∈ Rn

such that Sv has a positive entry and a negative entry.

Proof. If S is a rank-one matrix with the given property, then S is expressible as
xyT , where x is a vector which has a positive entry and a negative entry. Choose any
positive vector v such that yT v �= 0. Then Sv, being a nonzero multiple of x, clearly
has a positive entry and a negative entry.

Suppose that S is of rank two or more and assume to the contrary that for each
positive vector v ∈ Rn, the vector Sv is either nonnegative or nonpositive. Choose
positive vectors v1, v2 such that Sv1 is semipositive, Sv2 is seminegative, and Sv1,
Sv2 are not multiples of each other. It is clear that there exists a scalar λ, 0 < λ < 1,
such that S((1 − λ)v1 + λv2) has both a positive entry and a negative entry. But
(1− λ)v1 + λv2 is a positive vector. Thus, we arrive at a contradiction.

By GL(n,R) we denote the set of nonsingular matrices in Rn×n. We call a matrix
S monotone if S ∈ GL(n,R) and S−1 is nonnegative. We call a matrix S ∈ Rn×n a
monomial matrix if S has exactly one nonzero entry in each row and each column.

Theorem 5.2. For any S ∈ GL(n,R), the following statements are equivalent:

(i) Either S or −S is monotone.
(ii) S−1AS has the Perron-Frobenius property (respectively, the strong Perron-

Frobenius property) for all matrices A having the Perron-Frobenius property
(respectively, the strong Perron-Frobenius property).

(iii) S−1AS has a positive right Perron-Frobenius eigenvector whenever A ∈ Rn×n

has a positive right Perron-Frobenius eigenvector.

Proof. First, we show that (i) is equivalent to (ii). Suppose (i) is true. We prove
only the case when S is monotone because (−S)−1A(−S) = S−1AS. If A is a ma-
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trix with the Perron-Frobenius property (respectively, the strong Perron-Frobenius
property) and v is a right Perron-Frobenius eigenvector of A, then S−1v is an eigen-
vector of S−1AS corresponding to ρ(A). The nonsingularity of S implies that none
of the rows of S−1 is 0. Therefore, S−1v is a semipositive (respectively, positive) vec-
tor. Also, ρ(A) is an eigenvalue (respectively, a simple positive and strictly dominant
eigenvalue) of S−1AS since S−1AS and A have the same characteristic polynomial.
This shows that (i) ⇒ (ii). Conversely, suppose (i) is not true, i.e., S and −S
are both not monotone. Then, in such a case, S−1 must have a positive entry and a
negative entry. By Lemma 5.1, there is a positive vector v such that S−1v has a pos-
itive entry and a negative entry. Consider the matrix A = vvT ∈ PFn and note that
ρ(A) = vT v > 0 and Av = ρ(A)v. For such a matrix, we have Eρ(A)(A) = Span{v}.
Since the eigenvectors in Eρ(A)(S−1AS) are of the form S−1w for some eigenvector
w ∈ Eρ(A)(A), it follows that Eρ(A)(S−1AS) does not have a nonnegative eigenvector.
Thus, S−1AS does not have the Perron-Frobenius property (respectively, the strong
Perron-Frobenius property). Hence, (ii) is not true, which shows that (ii) ⇒ (i).
Hence, (i) is equivalent to (ii). The proof of the equivalence of (i) and (iii) is analo-
gous to the proof of the equivalence of (i) and (ii), and thus, we omit it.

We note that we can apply Theorem 5.2 to AT , thus obtaining a similar result
for left eigenvectors.

Theorem 5.3. For any S ∈ GL(n,R), the following statements are equivalent:

(i) Either S or −S is a nonnegative monomial matrix.
(ii) S−1AS is nonnegative for all nonnegative A ∈ Rn×n.

(iii) S−1AS ∈ PFn for all A ∈ PFn.
(iv) S−1AS is a nonnilpotent eventually nonnegative matrix for any nonnilpotent

eventually nonnegative matrix A ∈ Rn×n.
(v) S−1AS is a nonnilpotent matrix in WPFn whenever A is a nonnilpotent

matrix in WPFn.
(vi) S−1AS ∈ WPFn for all A ∈ WPFn.

(vii) S−1AS has positive right and left Perron-Frobenius eigenvectors whenever
A ∈ R

n×n has positive right and left Perron-Frobenius eigenvectors.
(viii) S−1AS is positive for all positive A ∈ Rn×n.

Proof. Note that (i) is equivalent to saying that S and S−1 are both nonnegative
or both nonpositive. We show that (i) is equivalent to (vi), the other cases being
analogous. Suppose that (i) is true. Then, S and S−1 are both nonnegative or both
nonpositive. We consider only the case when S and S−1 are both nonnegative because
(−S)−1A(−S) = S−1AS. Let S−T denote the transpose of the inverse of matrix S.
Note that ST and S−T are both nonnegative. By Theorem 5.2, the matrix S−1AS

has the Perron-Frobenius property whenever A does and (S−1AS)T = STATS−T has
the Perron-Frobenius property whenever AT does. Thus, S−1AS ∈ WPFn whenever
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A ∈ WPFn, which shows (i) ⇒ (vi). Conversely, suppose that (i) is not true. Then,
we have four cases: 1. S−1 has a positive entry and a negative entry, 2. S−1 has a
positive entry and S has a negative entry, 3. S−1 has a negative entry and S has
a positive entry, and 4. S has a positive and a negative entry. We only consider
cases 1 and 2 since the other two cases are analogous. Suppose that case 1 holds, i.e.,
S−1 has a positive entry and a negative entry. Then, by the argument given in the
proof of Theorem 5.2, there is a positive matrix A such that S−1AS does not have
a Perron-Frobenius eigenvector. If case 2 holds, i.e., S−1 has a positive entry and S
has a negative entry, then we consider two subcases: I. S−1 has a positive entry and
a negative entry and II. S−1 is a nonnegative matrix. If subcase I holds then we are
back to case 1, so we are done. If subcase II holds then either S has a positive entry
(and a negative entry), and this is analogous to case 1, or S is nonpositive. But S
cannot be nonpositive because this would imply that I = S−1S ≤ 0, a contradiction.
Hence, in all cases, there is a positive matrix A such that S−1AS does not have a
Perron-Frobenius eigenvector.

6. Topological properties. In this section, we prove some topological prop-
erties of sets consisting of matrices with the Perron-Frobenius property. In subsec-
tion 6.1, we show that many of the sets we study are simply connected. This includes
PFn, WPFn, the set of matrices with the Perron-Frobenius property, the set of matri-
ces with the strong Perron-Frobenius property, etc. However, other related sets, such
as the set of nonnilpotent eventually nonnegative matrices and the set of nonnilpotent
matrices with the Perron-Frobenius property, while they might be simply connected,
we can only prove that they are path-connected. At the end of Subsection 6.1, we
present a counter-example showing that none of the sets of matrices that we consid-
ered is convex. In Subsection 6.2, we study the closure of some of the sets considered
in Subsection 6.1 and we prove some additional results on path-connectedness.

6.1. Simply connected and path-connected sets. The following theorem is
due to Brauer; see [3, Theorem 27].

Theorem 6.1. Let A be an n × n real matrix with eigenvalues λ1, . . . , λn. Let
v be a real eigenvector of A associated with some real eigenvalue λk and let w be
any n-dimensional real vector. Then, the matrix B = A + vwT has eigenvalues
λ1, . . . , λk−1, λk + wT v, λk+1, . . . , λn.

Corollary 6.2. Let A be a matrix in Rn×n with the Perron-Frobenius property,
and let v be its right Perron-Frobenius eigenvector. If w ∈ Rn, is such that vTw > 0
then for all scalars ε > 0 the following holds:

(i) The matrix B = A+ εvwT has the Perron-Frobenius property.
(ii) ρ(A) < ρ(B).
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(iii) If v > 0 then B has the strong Perron-Frobenius property.

The following lemma is a well-known lemma about eigenvalue and eigenvector
continuity; see, e.g., [20, p. 45].

Lemma 6.3. The eigenvalues of a matrix A ∈ Cn×n are continuous functions of
the elements of the matrix A. Moreover, if λ is a simple eigenvalue of A and x is a
corresponding eigenvector then for any E ∈ Cn×n the matrix A+E has an eigenvalue
λE and an eigenvector xE such that λE → λ and xE → x as E → 0.

Theorem 6.4. PFn is contractible, and thus, simply connected.

Proof. Johnson and Tarazaga proved in [16, Theorem 2] that PFn is path-
connected. Thus, it is enough to show that any loop in PFn can be shrunk to a
point. Let {At : t ∈ [0, 1]} be a loop of matrices in PFn. For all t ∈ [0, 1], let vt and
wt be respectively the unit right and left Perron-Frobenius eigenvectors of At. Note
that by Lemma 6.3 the vectors vt and wt depend continuously on t. Moreover, for
all scalars ε ∈ [0,∞) and all scalars t ∈ [0, 1], define the matrix B(t,ε) := At + εvtwT

t .
Note that the matrix B(t,ε) depends continuously on both t and ε. Consider the
loop {B(t,ε) : t ∈ [0, 1]} defined for each ε ∈ [0,∞). By Corollary 6.2, the loop
{B(t,ε) : t ∈ [0, 1]} is in PFn for all ε ∈ [0,∞). We claim that for large values of
ε ∈ [0,∞), the loop {B(t,ε) : t ∈ [0, 1]} is a loop of positive matrices. To see this,
pick t0 ∈ [0, 1]. There is some large value of ε ∈ [0,∞) which depends on t0, call it ε0,
such that B(t0,ε0) is a positive matrix. Note that B(t0,ε) must also be a positive matrix
for all scalars ε ≥ ε0. Since the entries of the matrix B(t,ε) depend continuously on
both t and ε, it follows that there is an open neighborhood U0 ⊂ R2 around the point
(t0, ε0) ∈ [0, 1]× [0,∞) such that whenever (t, ε) ∈ U0 ∩ ([0, 1]× [0,∞)) then B(t,ε) is
a positive matrix. Thus, there is an open interval L0 around t0 such that B(t,ε) is a
positive matrix whenever t ∈ L0∩ [0, 1] and ε ≥ ε0. Hence, we have shown that for ev-
ery t0 ∈ [0, 1] there is an open interval L0 around t0 and a nonnegative scalar ε0 such
that B(t,ε) is a positive matrix whenever t ∈ L0 ∩ [0, 1] and ε ≥ ε0. By compactness
of the interval [0,1], we can select finitely many open intervals, say k open intervals,
L1, L2, . . . , Lk with k nonnegative scalars ε1, ε2, . . . , εk such that [0, 1] ⊂

⋃k
j=1 Lj and

for each j ∈ {1, 2, . . . , k}, the matrix B(t,ε) is a positive matrix whenever t ∈ Lj ∩ [0, 1]
and ε ≥ εj. Let µ = max{ε1, ε2, . . . , εk}. Hence, the loop {B(t,ε) : t ∈ [0, 1]} is a
loop of positive matrices whenever ε ≥ µ. And thus, it can be continuously shrunk to
a point. As a consequence, the loop {At : t ∈ [0, 1]} can be continuously shrunk to
a positive matrix.

Similarly, we have the following theorem.

Theorem 6.5. The following sets of matrices in Rn×n are contractible, and thus,
simply connected:
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(i) The set of matrices whose spectral radius is a simple positive eigenvalue with
corresponding positive right and left eigenvectors.

(ii) The set of matrices whose spectral radius is a simple positive eigenvalue with
a corresponding positive right eigenvector.

(iii) The set of matrices with the strong Perron-Frobenius property.

We point out here that a result similar to that of part (ii) in Theorem 6.5 can be
obtained by replacing “right eigenvector” with “left eigenvector”. Likewise, a result
similar to that of part (iii) in Theorem 6.5 can be obtained for the set of matrices
{A ∈ Rn×n : AT has the strong Perron-Frobenius property}.

Theorem 6.6. The following sets of matrices in Rn×n are contractible, and thus,
simply connected:

(i) The set of matrices having the Perron-Frobenius property.
(ii) The set of eventually nonnegative matrices.

(iii) WPFn.

Proof. The proof is the same for (i), (ii), and (iii). Every matrix A in the set
under consideration is connected by the path {At : t ∈ [0, 1]} to the zero matrix
where At is defined as (1 − t)A for all t ∈ [0, 1]. Note that the matrix At is in the
set under consideration for all t ∈ [0, 1]. Hence, the set under consideration is path-
connected. Similarly, every loop of matrices in the set under consideration shrinks
continuously to the zero matrix.

Theorem 6.7. The set of nonnilpotent matrices in Rn×n having the Perron-
Frobenius property is path-connected.

Proof. Let A ∈ Rn×n be a nonnilpotent matrix having the Perron-Frobenius
property. Since the collection of positive matrices is a convex subset of the set of
nonnilpotent matrices with the Perron-Frobenius property, it is enough to show that
there is a path of nonnilpotent matrices having the Perron-Frobenius property that
connects matrix A to some positive matrix B. The proof goes as follows: connect
matrix A to a matrix Ã having a positive right Perron-Frobenius eigenvector by
a path {At : t ∈ [0, 1]} consisting of nonnilpotent matrices having the Perron-
Frobenius property and then connect the matrix Ã to a positive matrix B by a path
{Bε : ε ∈ [0, 1]} of nonnilpotent matrices having the Perron-Frobenius property.

If A has a positive right Perron-Frobenius eigenvector then define Ã := A and
define At := A for all t in [0, 1]. The path {At : t ∈ [0, 1]} is the first of the two
desired paths. Otherwise, consider the real Jordan canonical form of A. We denote
the real Jordan canonical form of A by JR(A). Hence, we may write A = V JR(A)V −1

where V = [v w2 w3 · · ·wn] and v is a right Perron-Frobenius eigenvector of A. For
every scalar t ≥ 0, we construct the vector vt by replacing the zero entries of v by
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t, and we construct a new matrix Vt = [vt w2 w3 · · ·wn]. Since V0 = V ∈ GL(n,R)
and since GL(n,R) is an open subset of Rn×n, there is a positive scalar δ such that
whenever 0 ≤ t ≤ δ we have Vt ∈ GL(n,R). Define At := VδtJR(A)V −1

δt for 0 ≤ t ≤ 1.
Then, for all t in [0, 1], the matrix At has ρ(A) as a positive dominant eigenvalue with
a corresponding nonnegative eigenvector vδt. Furthermore, the vector vδt is positive
for all 0 < t ≤ 1. Let Ã = A1 and let vδ be its corresponding positive eigenvector.
The path {At : t ∈ [0, 1]} is the first of the two desired paths.

Let w be any positive vector. For all scalars ε ≥ 0, define the matrix Kε :=
Ã+ εvδwT . By Corollary 6.2, the matrix Kε is a nonnilpotent matrix that possesses
the Perron-Frobenius property for all ε ≥ 0. Since vδwT is a positive matrix, Kε is
positive for some large value of ε, say µ. Define Bε := Kµε for all ε in [0, 1]. Hence,
the path {Bε : ε ∈ [0, 1]} is the second of the two desired paths.

Theorem 6.8. The following sets of matrices in R
n×n are path-connected:

(i) The set consisting of nonnilpotent eventually nonnegative matrices.
(ii) The set of eventually nonnegative matrices whose spectral radius is a simple

positive eigenvalue.

Proof. We note first that the set of nonnilpotent nonnegative matrices in Rn×n is
a path-connected subset of the set of nonnilpotent eventually nonnegative matrices.
This statement is true because any nonnilpotent nonnegative matrix A ∈ Rn×n is
connected by the path {(1 − t)A + tI : t ∈ [0, 1]} of nonnilpotent nonnegative
matrices to the identity matrix I ∈ Rn×n. Hence, to prove that the set given in (i) is
path-connected, it is enough to show that every matrix in it connects to a nonnilpotent
nonnegative matrix by a path lying completely in the set given in (i).

Suppose that A ∈ Rn×n is a nonnilpotent matrix that satisfies Ak ≥ 0 for all
k ≥ m. Define the matrix At := (1 − t)A+ tAm for t in [0, 1] and consider the path
of matrices {At : t ∈ [0, 1]}. Note that (At)k ≥ 0 for all k ≥ m and all t ∈ [0, 1] and
that A1 = Am ≥ 0. Furthermore, the eigenvalues of At are of the form (1− t)λ+ tλm

where λ ∈ σ(A). For every λ ∈ σ(A), we have |(1− t)λ+ tλm| ≤ (1− t)|λ|+ t|λ|m ≤
(1 − t)ρ(A) + t (ρ(A))m. But, (1 − t)ρ(A) + t (ρ(A))m is a positive eigenvalue of At

because ρ(A) > 0. Hence, ρ(At) = (1 − t)ρ(A) + tρ(A) is a positive eigenvalue of At

for all t ∈ [0, 1], and thus, At is a nonnilpotent eventually nonnegative matrix for all
t ∈ [0,1]. This proves that the set given in (i) is path-connected. The proof of the
path-connectedness of the set given in (ii) is very similar, and thus, we omit it.

We mention here that another result on path-connectedness can be found in
Theorem 6.14 below.
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The following example (which is taken from [16, page 329]) shows that none of the
sets of “generalized nonnegative matrices” which we mentioned in Sections 1 and 2 is
a convex set.

Example 6.9. Let A =


 20 1 1

1 −10 1
1 1 −10


 and let B =


 −10 1 1

1 −10 1
1 1 20


.

Observe that A and B are matrices in PFn. However, the matrix

C =
1
2
A+

1
2
B =


 5 1 1
1 −10 1
1 1 5




is a nonnilpotent matrix which does not possess the Perron-Frobenius property. Hence
by Lemma 2.1, the matrix C is not even eventually nonnegative. Therefore, PFn is
not necessarily convex. Furthermore, in view of the relationship among the different
sets given in Section 2, we conclude from this example that none of the following sets
of matrices in Rn×n is necessarily convex: WPFn, the set of eventually nonnegative
matrices, the set of nonnilpotent eventually nonnegative matrices, the set of matrices
with the Perron-Frobenius property, the set of nonnilpotent matrices with the Perron-
Frobenius property, and the set of matrices with the strong Perron-Frobenius property.
In particular, for n = 3, none of them is convex.

6.2. Closure of sets. We begin by a series of lemmas leading to a new result
that asserts that a given pair of semipositive vectors with a nonzero inner product
can be mapped to a pair of positive vectors by real orthogonal matrices arbitrarily
close to the identity. We point out here that the results that appear in this subsection
and that involve a matrix norm || · || are true for any choice of matrix norm on Rn×n.
If k is a positive integer, then we denote the k × k identity matrix by Ik.

Lemma 6.10. For any semipositive vector v1 and for any positive scalar ε, there
is a path {Qt : t ∈ [0, 1]} of real orthogonal matrices such that Q0 = In, Qtv1 is a
positive vector for all t ∈ (0, 1], and ||Qt − In|| < ε for all t ∈ [0, 1]. Moreover, if the
ith entry of v1, call it γ, is positive then the ith entry of Qtv1 is γ cos(δt) for all t in
[0, 1] for a sufficiently small positive scalar δ which depends on ε.

Proof. Assume without loss of generality that v1 is a unit vector. If v1 is a
positive vector then define Qt := In for all t ∈ [0, 1], otherwise take a semipositive
unit vector v2 orthogonal to v1 such that v1 + v2 is positive. Extend {v1, v2} to
an orthonormal basis {v1, . . . , vn} of Rn. For every t ∈ [0, π

2 ], define an n × n real
orthogonal matrix Pt by Ptv1 = (cos t)v1+(sin t)v2, Ptv2 = (− sin t)v1+(cos t)v2 and
Ptvi = vi for i = 3, . . . , n. Note that Pt depends continuously on t. Moreover, it is
clear that limt→0+ Pt = In. Hence, there is a positive scalar δ such that whenever
t ∈ [0, δ] we have ||Pt − In|| < ε. Define the matrix Qt := Pδt for t ∈ [0, 1]. The path
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{Qt : t ∈ [0, 1]} is the desired path of real orthogonal matrices.
Lemma 6.11. Let u = [u1, . . . , un]T be a positive vector in Rn and let v = γe1 =

[γ, 0, . . . , 0]T be a vector in Rn where γ is a positive scalar. Then, for any positive
scalar ε there is a path {Qt : t ∈ [0, 1]} of real orthogonal matrices such that Q0 = In,
Qtu is a positive vector for all t ∈ (0, 1], Qtv is a positive vector for all t ∈ (0, 1], and
||Qt − In|| < ε for all t ∈ [0, 1]. Moreover, the first entry of Qtv is γ cos(δt) for all t
in [0, 1] for a sufficiently small positive scalar δ which depends on ε.

Proof. Let α = (
∑n

j=2(uj)2)1/2 and let ũ = [0, α−1u2, . . . , α
−1un]T . Then, ũ

is a semipositive unit vector orthogonal to e1. For all scalars θ such that 0 <
θ < π

2 , define the n × n real orthogonal matrix Pθ by Pθe1 = (cos θ)e1 + (sin θ)ũ,
Pθũ = (− sin θ)e1+(cos θ)ũ and Pθw = w for all vectors w orthogonal to Span{e1, ũ}.
Note that Pθ depends continuously on θ and that limθ→0+ Pθ = In. Moreover,
Pθv = γPθe1 is a positive vector for all 0 < θ < π

2 . Furthermore, since u = u1e1+αũ,
it follows that Pθu = u1Pθe1 + αPθũ = (u1 cos θ − α sin θ)e1 + (u1 sin θ + α cos θ)ũ.
Hence, if we choose θ > 0 sufficiently small, say less than or equal to a positive scalar
δ, then Pθu is a positive vector for all 0 < θ ≤ δ. Define Q0 := In and Qt := Pδt for
all t ∈ (0, 1]. Then, the path {Qt : t ∈ [0, 1]} is the desired path.

Theorem 6.12. Let u = [u1, . . . , un]T and v = [v1, . . . , vn]T be semipositive
vectors in Rn. Then, the following statements are equivalent:

(i) uT v > 0.
(ii) For any positive scalar ε there is a path {Qt : t ∈ [0, 1]} of n × n real

orthogonal matrices such that Q0 = In, Qtu is a positive vector for all
t ∈ (0, 1], Qtv is a positive vector for all t ∈ (0, 1], and ||Qt − In|| < ε

for all t ∈ [0, 1].

Proof. Suppose that (i) is true and let a positive scalar ε be given. We will show
that (ii) is true by constructing the desired path {Qt : t ∈ [0, 1]} of real orthogonal
matrices in three steps: Step 1, Step 2, and Step 3. In Step j (where j ∈ {1, 2, 3}),
we will define an n × n real orthogonal matrix Q(j,t) for all t ∈ [0, 1]. The matrix
Q(j,t) is meant to replace the zero entries by positive entries in specific locations of the
semipositive vectors u and v. Furthermore, the matrices Q(1,t), Q(2,t), and Q(3,t) will
be such that they commute with each other for all t in [0, 1], and such that the vectors
Q(3,t)Q(2,t)Q(1,t)u and Q(3,t)Q(2,t)Q(1,t)v are positive for all t in (0, 1]. Moreover, each
matrix Q(j,t) will depend continuously on t ∈ [0, 1] and will satisfy Q(j,0) = In and
||Q(j,t) − In|| < ε for all t ∈ [0, 1]. Hence, the matrices Q(1,t), Q(2,t), and Q(3,t) will
satisfy limt→0+ Q(3,t)Q(2,t)Q(1,t) = In, and therefore, for a sufficiently small value of
t, say γ, they will satisfy ||Q(3,t)Q(2,t)Q(1,t) − In|| < ε for all t in [0, γ]. After that, we
define the matrix Qt as the product Q(3,γt)Q(2,γt)Q(1,γt) for all t in [0,1]. The path
{Qt : t ∈ [0, 1]} will be our desired path.
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To that end, partition the set 〈n〉 by writing 〈n〉 = α1 ∪ α2 ∪ α3 ∪ α4 where
α1 = {j | uj = vj = 0}, α2 = {j | uj > 0 and vj = 0}, α3 = {j | uj > 0 and vj > 0},
and α4 = {j | uj = 0 and vj > 0}. Let kj denote the cardinality of αj for j = 1, 2, 3, 4,
and note that k3 �= 0 because uT v > 0. We may assume that the elements of α1 are
the first k1 integers in 〈n〉, the elements of α2 are the following k2 integers in 〈n〉, the
elements of α3 are the following k3 integers in 〈n〉, and the elements of α4 are the last
k4 integers in 〈n〉, i.e., α1 = {1, 2, . . . , k1}, α2 = {k1 + 1, k1 + 2, . . . , k1 + k2}, α3 =
{k1+k2+1, k1+k2+2, . . . , k1+k2+k3}, and α4 = {k1+k2+k3+1, k1+k2+k3+2, . . . , n}.

Step 1: Let β1 = α2 ∪ {k1 + k2 + 1}. In this step, we will define an n × n real
orthogonal matrix Q(1,t) for every t in [0, 1] with the following properties:

• The matrix Q(1,t) depends continuously on t in [0, 1].
• The matrix Q(1,0) = In.
• For all t in [0, 1], we have ||Q(1,t) − In|| < ε.
• For all t in (0, 1], the vectors (Q(1,t)u)[β1] and (Q(1,t)v)[β1] are positive.
• If α2 is empty then the matrix Q(1,t) = In for all t in [0,1], otherwise,
there is a sufficiently small positive scalar δ1 which depends on ε such that
for all t in [0, 1] we have (Q(1,t)u)[{k1 + k2 + 1}] = uk1+k2+1 cos(δ1t) and
(Q(1,t)v)[{k1 + k2 + 1}] = vk1+k2+1 cos(δ1t).

• The matrix Q(1,t)[〈n〉\β1] = In−k2−1 for all t in [0, 1].

As a result of these properties, the vectors (Q(1,t)u)[α2 ∪α3] and (Q(1,t)v)[α2 ∪α3] in
Rk2+k3 will be positive for all t in (0, 1].

To construct the matrix Q(1,t), consider the set α2. If α2 is empty, then define
Q(1,t) := In for all t ∈ [0, 1], otherwise consider the vectors u[β1] and v[β1] in Rk2+1.
The vector u[β1] is a positive vector while the vector v[β1] is a semipositive vector
with only one positive entry. By Lemma 6.11, there is a path {Pt : t ∈ [0, 1]} of
(k2+1)× (k2+1) real orthogonal matrices such that P0 = Ik2+1, the vector Pt (u[β1])
is a positive vector for all t ∈ (0, 1], the inequality ||Pt − Ik2+1|| < ε holds for all
t ∈ [0, 1], and the last entries of the vectors Pt (u[β1]) and Pt (v[β1]) are respectively
uk1+k2+1 cos(δ1t) and vk1+k2+1 cos(δ1t) for all t in [0, 1] for a sufficiently small positive
scalar δ1 which depends on ε. Define Q(1,t) := Ik1 ⊕ Pt ⊕ Ik3+k4−1 for all t ∈ [0, 1].
Then, clearly the matrix Q(1,t) satisfies the properties required in this step.

Step 2: Let β2 = α4 ∪ {k1 + k2 + 1}. In this step, we will define an n × n real
orthogonal matrix Q(2,t) for every t in [0, 1] with the following properties:

• The matrix Q(2,t) depends continuously on t in [0, 1].
• The matrix Q(2,0) = In.
• For all t in [0, 1], we have ||Q(2,t) − In|| < ε.
• For all t in (0, 1], the vectors (Q(2,t)u)[β2] and (Q(2,t)v)[β2] are positive.
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• If α4 is empty then the matrix Q(2,t) = In for all t in [0,1], otherwise,
there is a sufficiently small positive scalar δ2 which depends on ε such that
for all t in [0, 1] we have (Q(2,t)u)[{k1 + k2 + 1}] = uk1+k2+1 cos(δ2t) and
(Q(2,t)v)[{k1 + k2 + 1}] = vk1+k2+1 cos(δ2t).

• The matrix Q(2,t)[〈n〉\β2] = In−k4−1 for all t in [0, 1].

As a result of these properties, the matrix Q(2,t) commutes with the matrix Q(1,t).
Moreover, the vectors (Q(2,t)Q(1,t)u)[α2 ∪α3 ∪α4] and (Q(2,t)Q(1,t)v)[α2 ∪α3 ∪α4] in
R

k2+k3+k4 will be positive for all t in (0, 1].

To construct the matrix Q(2,t), consider the set α4. If α4 is empty, then define
Q(2,t) := In for all t ∈ [0, 1], otherwise consider the vectors u[β2] and v[β2] in Rk4+1.
The vector u[β2] is a positive vector while the vector v[β1] is a semipositive vector with
only one positive entry. By the argument given in Step 1, a matrix Q(2,t) satisfying
the properties required in this step exists.

Step 3: Let β3 = α1 ∪ {k1 + k2 + 1}. In this step, we will define an n × n real
orthogonal matrix Q(3,t) for every t in [0, 1] with the following properties:

• The matrix Q(3,t) depends continuously on t in [0, 1].
• The matrix Q(3,0) = In.
• For all t in [0, 1], we have ||Q(3,t) − In|| < ε.
• For all t in (0, 1], the vectors (Q(3,t)u)[β3] and (Q(3,t)v)[β3] are positive.
• If α1 is empty then the matrix Q(3,t) = In for all t in [0,1], otherwise,
there is a sufficiently small positive scalar δ3 which depends on ε such that
for all t in [0, 1] we have (Q(3,t)u)[{k1 + k2 + 1}] = uk1+k2+1 cos(δ3t) and
(Q(3,t)v)[{k1 + k2 + 1}] = vk1+k2+1 cos(δ3t).

• The matrix Q(3,t)[〈n〉\β3] = In−k1−1 for all t in [0, 1].

As a result of these properties, the matrix Q(3,t) commutes with both Q(1,t) and Q(2,t).
Moreover, the vectors Q(3,t)Q(2,t)Q(1,t)u and Q(3,t)Q(2,t)Q(1,t)v in Rn will be positive
for all t in (0, 1].

To construct the matrix Q(3,t), consider the set α1. If α1 is empty, then define
Q(3,t) := In for all t ∈ [0, 1], otherwise consider the vectors u[β3] and v[β3] in Rk1+1

and let δ̃ := vk1+k2+1/uk1+k2+1 > 0. Then, the vector v[β3] = δ̃u[β3] is a semipositive
vector with only one positive entry. By Lemma 6.10, there is a path {Pt : t ∈ [0, 1]} of
(k1+1)×(k1+1) real orthogonal matrices such that P0 = Ik1+1, the vectors Pt (u[β3])
and Pt (v[β3]) are positive vectors for all t ∈ (0, 1], the inequality ||Pt − Ik1+1|| < ε
holds for all t ∈ [0, 1], and the last entries of the vectors Pt (u[β3]) and Pt (v[β3]) are
respectively uk1+k2+1 cos(δ3t) and vk1+k2+1 cos(δ3t) for all t in [0, 1] for a sufficiently
small positive scalar δ3 which depends on ε. Define the matrix Q(3,t) as follows:
Q(3,t)[β3] = Pt and Q(3,t)[〈n〉\β3] = In−k1−1. Then, the matrix Q(3,t) satisfies the
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properties required in this step.

Hence, (i) ⇒ (ii). Conversely, if (ii) is true then let a positive scalar ε be
given and let {Qt : t ∈ [0, 1]} be the path of real orthogonal matrices guaranteed
by (ii). Then, for any t ∈ (0, 1], we have uT v = (Qtu)T (Qtv) > 0. This shows that
(ii) ⇒ (i).

The following lemma is [14, Lemma 6.3.10]. By y∗ we denote the conjugate
transpose of a vector y ∈ Cn.

Lemma 6.13. Let A be a matrix in C
n×n and let λ be a simple eigenvalue of

A. If x and y are, respectively, right and left eigenvectors of A corresponding to the
eigenvalue λ then y∗x �= 0.

Theorem 6.14. The set of matrices in Rn×n whose spectral radius is a simple
positive eigenvalue with corresponding nonnegative right and left eigenvectors is path-
connected.

Proof. Let A ∈ Rn×n be a matrix whose spectral radius ρ(A) is a simple posi-
tive eigenvalue with corresponding nonnegative right and left eigenvectors, u and v,
respectively. Then, by Lemma 6.13 we have uT v > 0. And thus, by Theorem 6.12,
for any given positive scalar ε, there is a path {Qt : t ∈ [0, 1]} of n × n real or-
thogonal matrices such that Q0 = In, Qtu is a positive vector for all t ∈ (0, 1], Qtv

is a positive vector for all t ∈ (0, 1], and ||Qt − In|| < ε for all t ∈ [0, 1]. Define the
matrix At := QtAQ

T
t for all t in [0,1] and consider the path {At : t ∈ [0, 1]}. Note

that A0 = A and that for all t ∈ (0, 1] the spectral radius ρ(At) is a simple positive
eigenvalue of At with corresponding positive right and left eigenvectors. Set B = A1

and let x, y ∈ Rn be positive right and left eigenvectors of B corresponding to ρ(B).
Define the matrix Bt := B + txyT for all t ∈ [0,∞). The matrix Bt is a continuous
function of t ∈ [0,∞) and by Theorem 6.1 its spectral radius ρ(Bt) is a simple positive
eigenvalue of Bt with corresponding positive right and left eigenvectors. Moreover,
for some large values of t, the matrix Bt is positive.

Theorem 6.15. The closure of the set of n × n real matrices with the strong
Perron-Frobenius property is equal to the set of n× n real matrices with the Perron-
Frobenius property.

Proof. The fact that the closure of the set of n× n real matrices with the strong
Perron-Frobenius property is included in the set of n×n real matrices with the Perron-
Frobenius property easily follows by taking limits. To prove the reverse inclusion, let
A be an n×n real matrix that has the Perron-Frobenius property. Choose is an n×n
nonsingular real matrix P such that P−1AP is in real Jordan canonical form. We
may assume that the first diagonal block of P−1AP is Jk(ρ(A)) and the first column
of P is semipositive. For any ε > 0, let Pε denote the matrix obtained from P by
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replacing the zero entries (if any) in the first column of P by ε and also let Jε denote
the matrix obtained from P−1AP by replacing its (1,1)-entry by ρ(A) + ε. Note that
Pε is nonsingular for ε > 0 sufficiently small, and also that for any such ε, the matrix
PεJεP

−1
ε has the strong Perron-Frobenius property. Since limε→0+ PεJεP

−1
ε = A, it

follows that A belongs to the closure of the set of n× n real matrices with the strong
Perron-Frobenius property.

Corollary 6.16. The following sets of matrices are closed subsets of Rn×n:

(i) The set of matrices having the Perron-Frobenius property.
(ii) WPFn.

Remark 6.17. Theorem 6.15 does not imply that WPFn is the closure of PFn.
It is not generally true that the closure of PFn is equal to WPFn. Take, for example
PF2. The set PF2 is characterized as the set of all 2× 2 matrices with positive off-
diagonal entries and positive trace [16]. Hence, any convergent sequence of matrices
in PF2 would converge to a 2 × 2 matrix whose off-diagonal entries and trace are

nonnegative. If we look at the matrix A =
[
2 −1
0 2

]
, which is a matrix in WPF2,

we can see that there is no sequence of matrices in PF2 converging to the matrix A
since its (1,2)-entry, which is an off-diagonal entry, is negative. On the other hand, if
we restrict our attention to the set {A ∈ WPFn : ρ(A) is a simple eigenvalue}, we
get the following result.

Theorem 6.18. If A is a matrix in WPFn such that ρ(A) is a simple eigenvalue
then for every scalar ε > 0 there is a matrix B in PFn such that ||B −A|| < ε.

Proof. Consider the real Jordan canonical form of matrix A, which we denote
by JR(A). The matrix A can be written as V JR(A)V −1 = V [[ρ(A)] ⊕ J2]V −1 where
J2 is the direct sum of all diagonal blocks appearing in JR(A) that correspond to
eigenvalues other than ρ(A). Let u and v be, respectively, the first column of V and
the transpose of the first row of V −1. Thus, u and v are, respectively, right and left
eigenvectors of A corresponding to ρ(A). Moreover, we may assume that u and v are
semipositive. Then, uT v = 1. Let a scalar ε > 0 be given. By Theorem 6.12, there is a
path {Qt : t ∈ [0, 1]} of real orthogonal matrices such that Q0 = In, Qtu is a positive
vector for all t ∈ (0, 1], Qtv is a positive vector for all t ∈ (0, 1], and ||Qt − In|| < ε for
all t ∈ [0, 1]. Define the matrix Bt := QtV [[ρ(A) + t]⊕ J2]V −1QT

t for all t in [0, 1].
The matrix Bt is in PFn for all t in (0, 1]. Furthermore, for a sufficiently small value
of t in (0, 1], say t0, we have ||Bt0 − A|| < ε. The matrix B := Bt0 is the desired
matrix.

In our next result, we show that every normal matrix in WPFn is the limit of
normal matrices in PFn. Since WPFn is a closed set (by Corollary 6.16) and since
the set of normal matrices in Rn×n is also a closed set, it is easy to see that the next
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result indeed shows that the closure of the set of normal matrices in PFn is the set
of normal matrices in WPFn.

Theorem 6.19. If A is a normal matrix in WPFn then for any positive scalar
ε there is a normal matrix B in PFn such that ||B −A|| < ε.

Proof. Let A be a normal matrix in WPFn. Then,

A = V [[ρ(A)]⊕M2 ⊕ · · · ⊕Mk]V T ,

where V is a real orthogonal matrix and each Mi for i = 2, . . . , k is a 1 × 1 real
block or a positive scalar multiple of a 2 × 2 real orthogonal block; see, e.g., [14,
Theorem 2.5.8]. Moreover, the first column of V , which we denote by v, is both
a right and a left Perron-Frobenius eigenvector of A. Let ε be any given positive
real number. Choose a scalar δ > 0 sufficiently small so that the matrix Bδ =
V [[ρ(A) + δ]⊕M2 ⊕ · · · ⊕Mk]V T satisfies ||Bδ − A|| < ε

2 , where || · || is any norm
of the set of n × n real matrices. By Lemma 6.10, there is a path {Qt : t ∈ [0, 1]}
of n × n real orthogonal matrices such that Q0 = In, Qtv is a positive vector for
all t ∈ (0, 1], and ||Qt − In|| < ε

2 for all t ∈ [0, 1]. Note that QtBδQ
T
t is a real

normal matrix with a simple positive strictly dominant eigenvalue ρ(A) + δ and a
corresponding positive right and left eigenvector (namely, Qtv) for all t ∈ (0, 1], i.e.,
QtBδQ

T
t is in PFn for all t ∈ (0, 1]. For a sufficiently small value of t ∈ (0, 1], say t0,

we have ||Qt0BδQ
T
t0 −A|| < ε. Set B := Qt0BδQ

T
t0 . Then, B is the desired matrix.
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