
ELA

A FURTHER LOOK INTO COMBINATORIAL ORTHOGONALITY∗
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Abstract. Strongly quadrangular matrices have been introduced in the study of the combi-

natorial properties of unitary matrices. It is known that if a (0, 1)-matrix supports a unitary then

it is strongly quadrangular. However, the converse is not necessarily true. In this paper, strongly

quadrangular matrices up to degree 5 are fully classified. It is proven that the smallest strongly quad-

rangular matrices which do not support unitaries have exactly degree 5. Further, two submatrices

not allowing a (0, 1)-matrix to support unitaries are isolated.
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1. Introduction. Orthogonality is a common concept which generalizes per-
pendicularity in Euclidean geometry. It appears in different mathematical contexts,
like linear algebra, functional analysis, combinatorics, etc. The necessary ingredient
for introducing orthogonality is a notion that allow to measure the angle between
two objects. For example, in sufficiently rich vector spaces, this consists of the usual
inner product 〈·, ·〉. Specifically, two vectors u = (u1, . . . , un) and v = (v1, . . . , vn),
from a vector space over a generic field F, are said to be orthogonal, if 〈u, v〉 = 0. It
is immediately clear that u and v are orthogonal only if there is a special relation
between their entries, and that this relation does not only involve the magnitude and
the signs, but also the position of the zeros, if there are any.

At a basic level, dealing with orthogonality from the combinatorial point of view
means, among other things, to study patterns of zeros in arrangements of vectors,
some of which are orthogonal to each other. A natural, somehow extremal scenario,
is when the vectors form a square matrix. Indeed, a matrix M with entries on F is
said to be orthogonal if 〈Mi,Mj〉 = 0, for every two different rows and columns, Mi

and Mj . In this setting one can state the following natural problem: characterize
the zero pattern of orthogonal matrices. This is a typical problem in combinatorial
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matrix theory, the field of matrix theory concerning intrinsic properties of matrices
viewed as arrays of numbers rather than algebraic objects in themselves (see [4]).

The term “zero pattern” is not followed by a neat mathematical definition. By
zero pattern, we intuitively mean the position of the zeros seen as forming a whole.
A more concrete definition may be introduced in the language of graph theory. Let
D = (V,E) be a directed graph, without multiple edges, but possibly with self-loops
(see [2] for this standard graph theoretic terminology). Let A(D) be the adjacency
matrix of D. We say that a matrix M with entries on F is supported by D (or,
equivalently, by A(D)), if we obtain A(D) when replacing with ones the nonzero
entries of M . In other words, D supports M , if A(D) and M have the same zero
pattern. If this is the case, then D is said to be the digraph of M . Equivalently,
A(D) is said to be the support of M .

Studying the zero pattern of a family of matrices with certain properties is equiv-
alent to characterizing the class of digraphs of the matrices. When the field is R or
C, an orthogonal matrix is also said to be real orthogonal or unitary, respectively.
These are practically ubiquitous matrices, with roles spanning from coding theory to
signal processing, and from industrial screening experiments to the quantum mechan-
ics of closed systems, etc. Historically, the problem of characterizing zero patterns
of orthogonal matrices was first formulated by Fiedler [10, 11], and it is contextually
related to the more general problem of characterizing ortho-stochastic matrices.

Even if not explicitly, the same problem can also be found in some foundational
issues of quantum theory (see [14]). Just recently, this was motivated by some other
questions concerning unitary quantum evolution on graphs [1, 17]. Like many other
situations involving orthogonality, characterizing the zero pattern of orthogonal ma-
trices is not a simple problem. In some way, a justification comes from the difficulty
that we encounter when trying to classify weighing, real and complex Hadamard ma-
trices [16, 20, 21], and the related combinatorial designs [12] (see [13], for a more
recent survey). One major obstacle is in the global features of orthogonality. Loosely
speaking, it is in fact evident that the essence of orthogonality can not be isolated by
looking at forbidden submatrices only, but the property is subtler because it asks for
relations between the submatrices.

A first simple condition for orthogonality was proposed by Beasley, Brualdi and
Shader in 1991 [3]. As a tool, the authors introduced combinatorial orthogonality.
A (0, 1)-matrix is a matrix with entries in the set {0, 1}. A (0, 1)-matrix M is said
to be combinatorially orthogonal, or, equivalently, quadrangular, if 〈Mi,Mj〉 �= 1, for
every two different rows and columns, Mi and Mj . It is immediate to observe that
the adjacency matrix of the digraph of an orthogonal matrix needs to be combina-
torially orthogonal. However, as it was already pointed out in [3], this condition is
not sufficient to characterize the zero pattern of orthogonal matrices. For the next
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ten years, the few sporadic papers on this subject did focus on quantitative results,
mainly about the possible number of zeros [5, 6, 8, 7]. In [18] the problem was re-
considered with the idea of pursuing a systematic study of the qualitative side. The
first step consisted of defining an easy generalization of combinatorial orthogonality.
This led to the notion of strong quadrangularity. Let M be a (0,1)-matrix of degree
n, and let S be a set of rows of M , forming an |S|×n matrix. Suppose that for every
u ∈ S there exists a row v ∈ S such that 〈u, v〉 �= 0. Thus, if the number of columns
in S containing at least two ones is at least |S| then M is said to be row-strongly-
quadrangular. If both M and its transpose are row-strongly quadrangular then M is
said to be strongly quadrangular (for short, SQ). Even if strong quadrangularity helps
in exactly characterizing some classes of digraphs of orthogonal matrices [18], the
condition is not necessary and sufficient. A counterexample involving a tournament
matrix of order 15 was exhibited by Lundgren et al. [15].

Let us denote by Un the set of all (0,1)-matrices whose digraph supports unitaries.
Recall that an n×n matrix M is said to be indecomposable if it has no r×(n−r) zero
submatrix. The goal of the paper is to investigate SQ matrices of small degree and
find certain forbidden substructures which prevent a (0,1)-matrix to support unitary
matrices.

One of the tools used through the paper is a construction due to Diţă [9], which
is a generalization of the Kronecker product. Although the original construction was
defined for complex Hadamard matrices, it can be easily extended to any unitary of
composite degree.

Lemma 1.1 (Diţă’s construction). Let U1, U2, . . . , Uk be unitaries of degree n,
and let [H ]ij = hij be a unitary of degree k. Then the following matrix Q of degree
kn is also unitary.

Q =




h11U1 h12U2 . . . h1kUk

h21U1 h22U2 . . . h2kUk

...
...

. . .
...

hk1U1 hk2U2 . . . hkkUk


 .

Corollary 1.2. IfM1,M2, . . .Mk ∈ Un then also the following matrix K ∈ Ukn:

K =




M1 M2 . . . Mk

M1 M2 . . . Mk

...
...

. . .
...

M1 M2 . . . Mk


 .
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Proof. Choose H = 1√
k
Fk, where Fk is the matrix of the Fourier transform over

Zk, the abelian group of the integers modulo k.

It is clear why Diţă’s construction is useful for our purposes. For example, the
following matrix

M =




1 0 1 1
0 1 1 1
1 0 1 1
0 1 1 1


 ,

is in U4, since we can choose U1 = I2, U2 = 1√
2
F2 and then apply the construction.

2. SQ matrices of small degree. The purpose of this section is twofold. On
the one hand, we would like to give a detailed list of SQ matrices of small degree. This
is done in the perspective of further investigation. On the other hand, we directly
enumerate indecomposable, SQ matrices up to degree 5. The method that we adopt
in this enumeration is a three-step procedure. First, we simply construct all (0, 1)-
matrices of degree n ≤ 5. Second, we exclude from this list matrices which are not
SQ or contains a line (row or column) of zeros. Finally, we determine representative
from equivalence classes of the remaining matrices. We also compute the order of
their automorphism group. Recall that two matrices M1 and M2 are said to be
equivalent if there are permutation matrices P and Q such that PM1Q = M2. As
usual, the automorphism group of a (0, 1)-matrix M is the set of ordered pairs (P,Q)
of permutation matrices such that PMQ = M . Some heuristics helps to simplify our
task.

Lemma 2.1. Two (0, 1)-matrices having a different number of zeros are not
equivalent.

Of course, the converse statement is not necessarily true (see, e.g., the two matri-
ces of degree 4 with exactly four zeros below). Another natural heuristic consists of
the number of ones in each row. For a given (0,1)-matrix [M ]i,j = mij , we define the

multiset Λ =
{∑

j mij : i = 1, ..., n
}

. Thus the following observation is easy verify:

Lemma 2.2. Two (0, 1)-matrices with different Λ’s are not equivalent.

Again, the converse statement does not hold in general. Recall that a (0,1)-
matrix is said to be regular if the elements of Λ are all equal. The following lemma
is specifically useful for distinguishing regular matrices:

Lemma 2.3. Two (0, 1)-matrices with nonisomorphic automorphism groups are
not equivalent.

It follows that two (0, 1)-matrices with automorphism groups of different order are
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not equivalent. Unfortunately, there are examples of nonequivalent matrices whose
automorphism groups are isomorphic. In particular, it might happen that a matrix
and its transpose are not equivalent. By combining together the above facts, with
the help of a computer, one can fully classify matrices in Un for n ≤ 5. By a careful
analysis of the results, in Section 3 we are able to describe certain cases in which
a matrix M /∈ Un even if it is SQ. The smallest such an example is of degree 5.
Additionally, if M ∈ Un for n < 5 then M is SQ and vice versa. We hereby present, up
to equivalence, the list of all indecomposable, SQ matrices of degree n ≤ 5. We need to
fix some notational conventions: if a matrix is equivalent to a symmetric one we index
it by S; if a matrix is not equivalent to its transpose we index it by T . Regular matrices
will be indexed by R. Finally, the order of the automorphism group of a matrix is
written as a subscript. This information describes the number of equivalent matrices
in a given class. In particular, (n!)2 = |AutM | · # {Equivalent matrices to M} .

2.1. n=1. {[
1

]RS

1

}

This matrix, and more generally, every all-one matrix Jn, clearly supports uni-
taries, since there is an n× n complex Hadamard matrix for any n [13, 21].

2.2. n=2. {[
1 1
1 1

]RS

4

}

2.3. n=3. 



 0 1 1

1 1 1
1 1 1




S

4

,


 1 1 1

1 1 1
1 1 1




RS

36




2.4. n=4.





0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




S

36

,




0 1 1 1
1 0 1 1
1 1 1 1
1 1 1 1




S

8

,




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1




S

6

,




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




RS

24

,




0 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1




S

4

,




0 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1




T

24

,




1 0 1 1
0 1 1 1
1 0 1 1
0 1 1 1




T

16

,




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




RS

576




Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 376-388, August 2008



ELA

A Further Look Into Combinatorial Orthogonality 381

With the data above and going through all the few decomposable matrices, we
can give the following statement:

Proposition 2.4. A (0, 1)-matrix of degree n ≤ 4 supports a unitary if and only
if it is SQ. We will see later that in general this is not the case.

2.5. n=5. The following list contains 63 items. Here, we double count the
matrices with index T . We can observe that not all of these support unitaries, as
we will see in Section 3.

8>>>>><
>>>>>:

2
66664

0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

576

,

2
66664

0 1 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

72

,

2
66664

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

24

,

2
66664

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

3
77775

S

24

,

2
66664

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3
77775

RS

120

,

2
66664

0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

4

,

2
66664

0 0 0 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

16

,

2
66664

0 0 0 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 0 0
1 1 1 0 0

3
77775

S

16

,

2
66664

0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

36

,

2
66664

0 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

4

,

2
66664

0 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

3
77775

S

2

,

2
66664

0 0 1 1 1
0 1 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3
77775

S

6

,

2
66664

0 0 1 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

144

,

2
66664

0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

16

,

2
66664

0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

3
77775

NS

8

,

2
66664

0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3
77775

NS

24

,

2
66664

0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

4

,

2
66664

0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 1 1 0 1
1 1 1 1 1

3
77775

S

1

,

2
66664

0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 1 1 0 1
1 1 1 1 0

3
77775

S

2

,

2
66664

1 0 0 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

S

16

,

2
66664

1 0 0 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 0 1
1 1 1 1 1

3
77775

S

4

,

2
66664

1 0 0 1 1
0 1 1 1 1
0 1 1 1 1
1 1 1 0 1
1 1 1 1 0

3
77775

S

8

,

2
66664

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

RS

14400

,

2
66664

0 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

288

,

2
66664

0 0 0 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

288

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

24

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

8

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

3
77775

T

12

,

2
66664

0 0 0 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 0 0

3
77775

T

72

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 0 0

3
77775

T

8

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1
1 1 1 0 0

3
77775

T

4

,

2
66664

0 0 0 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 0

3
77775

T

12

,
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2
66664

0 0 1 1 1
0 1 0 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

24

,

2
66664

0 0 1 1 1
0 1 0 1 1
1 1 1 0 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

4

,

2
66664

0 0 1 1 1
0 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

3
77775

T

4

,

2
66664

0 0 0 1 1
0 1 1 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

48

,

2
66664

0 0 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

24

,

2
66664

0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

8

,

2
66664

0 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

3
77775

T

12

,

2
66664

0 0 0 1 1
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1

3
77775

T

48

,

2
66664

0 0 0 1 1
0 0 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

24

,

2
66664

0 0 0 1 1
0 0 1 1 1
1 1 0 0 0
1 1 1 1 1
1 1 1 1 1

3
77775

T

8

,

2
66664

0 0 0 1 1
0 1 1 0 0
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3
77775

T

16

9>>>>>=
>>>>>;

While constructing unitaries matching a given pattern up to degree 4 is a simple
task, considering n = 5 brings up several difficulties. First of all, as one can see, there
are many equivalence classes and presenting unitaries for each and every class is out
of reach. Secondly, it turns out that there are at least two such matrices which do not
support a unitary. We index these matrices by N . This statement will be formally
proved in Section 3. Since the number of SQ matrices grows very fast, lacking of
computational power, we did stop our counting at n = 5. However, we propose two
further special cases which are arguably easier to handle.

2.5.1. Symmetric SQ matrices. It is evident that the main difficulty in clas-
sifying SQ matrices is not the actual construction of the matrices, but determining
equivalence classes. This is a time-consuming procedure even for small degrees. The
following lemma shows that classifying only symmetric SQ matrices is definitely an
easier problem.

Lemma 2.5. If a (0, 1)-matrix M is equivalent to a symmetric one, then there is
a permutation matrix R, such that RMR = MT .

Proof. Suppose that M is equivalent to a symmetric matrix, denoted by S.
Then there are permutation matrices P and Q, such that PMQ = S = ST , so
PMQ = QTMTPT , and hence (QP )M (QP ) = MT . This implies that R = QP is a
permutation matrix, as required.

Determining whether a (0, 1)-matrix M is equivalent to a symmetric one therefore
simply boils down to a two phase procedure: first, we check if there are permutations
matrices for which RMR = MT ; second, we check if QTRMQ is symmetric for a
certain Q. If there exists such a pair of permutation matrices R and Q, then M is
equivalent to a symmetric matrix. This procedure is clearly faster than simultaneously
looking for P and Q such that PMQ is symmetric.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 376-388, August 2008



ELA

A Further Look Into Combinatorial Orthogonality 383

2.5.2. Regular SQ matrices. Here we focus on regular SQ matrices. We have
classified these matrices up to degree 6. The results up to degree 5 can be found in the
lists above. The list for degree 6 is included below. Let σ be the number of nonzero
entries in each row of a regular matrix. There are regular SQ matrices of order 6 with
σ = 6, 5, 3, 2, 1, since J6, J6 − I6, J3 ⊕ J3, J2 ⊕ J2 ⊕ J2, I6 are such examples, where
In denotes the n × n identity matrix. It can be checked that in fact these are the
only ones. However, the case σ = 4 turns out to be interesting, since one out of the
four regular matrices does not support unitaries. This fact will be investigated later
in Theorem 3.1 of Section 3.

8>>>>>><
>>>>>>:

2
6666664

1 0 0 1 1 1

0 1 0 1 1 1

0 0 1 1 1 1

1 1 1 1 0 0

1 1 1 0 1 0

1 1 1 0 0 1

3
7777775

RS

72

,

2
6666664

0 0 1 1 1 1

0 0 1 1 1 1

1 1 0 0 1 1

1 1 0 0 1 1

1 1 1 1 0 0

1 1 1 1 0 0

3
7777775

RS

384

,

2
6666664

1 1 1 1 0 0

0 1 1 1 1 0

0 0 1 1 1 1

1 0 0 1 1 1

1 1 0 0 1 1

1 1 1 0 0 1

3
7777775

RS

12

,

2
6666664

0 0 1 1 1 1

0 0 1 1 1 1

1 1 1 1 0 0

1 1 0 1 1 0

1 1 0 0 1 1

1 1 1 0 0 1

3
7777775

NRS

32

9>>>>>>=
>>>>>>;

We conclude by summarizing our observations:

• The number of inequivalent indecomposable SQ matrices of degree n =
1, 2, ..., 5 is 1, 1, 2, 10, 63, respectively. All known terms of this sequence match
the number of triples of standard tableaux with the same shape of height less
than or equal to three. This sequence is A129130 in [19].

• The number of inequivalent SQ matrices of orders n = 1, 2, ..., 5 is 1,2,4,15,80,
respectively.

• The number of inequivalent indecomposable symmetric SQ matrices of degree
n = 1, 2, ..., 5 is 1, 1, 2, 6, 23, respectively.

• The number of inequivalent symmetric SQ matrices of degree n = 1, 2, ..., 5
is 1, 2, 4, 11, 44, respectively.

• The number of inequivalent indecomposable regular SQ matrices of orders
n = 1, 2, ..., 6 is 1, 1, 1, 2, 2, 4.

• The number of inequivalent regular SQ matrices of degree n = 1, 2, ..., 6 is
1, 2, 2, 4, 3, 9, respectively.

3. Beyond strong quadrangularity. In [15], the authors exhibited the adja-
cency matrix of a tournament on 15 vertices, which, despite being SQ, it is not in
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U15. The first result of this section is a refined version of that. Specifically, we have
the following:

Theorem 3.1. LetM (or its transpose) be a (0, 1)-matrix equivalent to a matrix
in the following form, for k ≥ 1:

[
Q J3×k X

Y Z ∗
]
, where Q =


 1 0

0 1
1 1


 .

Further, suppose that

1. the rows of X are mutually orthogonal,
2. every column of Y is orthogonal to every column of Z.

Then M does not support unitaries.

Proof. The idea of the proof is exactly the same as in [15]. Suppose on the
contrary that there exists a unitary U whose support is M . Let Ri and Ci denote
the i-th row and column of U respectively, for each i = 1, . . . , n and let [U ]ij = ui,j .
Now observe, that 〈C1, Cj〉 = u1,1u1,j + u3,1u3,j = 0, where j = 3, 4, . . . , k + 2.
This implies −u1,1/u3,1 = u3,j/u1,j, where j = 3, 4, . . . , k + 2. So the vectors
[u1,3, . . . , u1,k+2] and [u3,3, . . . , u3,k+2] are scalar multiples of each other. Similarly:
〈C2, Cj〉 = u2,2u2,j + u3,2u3,j = 0, where j = 3, 4, . . . , k + 2. So, this implies
−u2,2/u3,2 = u3,j/u2,j, where j = 3, 4, . . . , k + 2. So the vectors [u2,3, . . . , u2,k+2]
and [u3,3, . . . , u3,k+2] are scalar multiples of each other. It follows that 〈R1, R2〉 =
〈[u1,3, . . . , u1,k+2] , [u2,3, . . . , u2,k+2]〉 �= 0, a contradiction.

The next statement summarizes the main features of the matrices satisfying the
conditions of Theorem 3.1.

Proposition 3.2. Under the conditions of Theorem 3.1, a SQ matrix of degree
n satisfies the following properties:

1. k ≥ 2;
2. The first row of Y is [1, 1];
3. The first row of Z is [0, . . . , 0];
4. X has at least two columns;
5. n ≥ 6.

Proof. Suppose that we have a matrix equivalent to M . Since its first two rows
share a common 1, and X cannot have two rows who share a common 1, k ≥ 2
follows. Similarly, the first and second column of M share a common 1, hence by
quadrangularity, these share another 1, and up to equivalence, we can suppose that
it is in the 4th row of M . Thus, the first row of Y can be chosen to be [1, 1]. By
the second condition of Theorem 3.1, the first row of Z should be [0, . . . , 0]. Again,
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since the 1st and 4th rows share a common 1, by quadrangularity, they should share
another 1. However, we have already seen that the first row of Z is all 0. Thus, these
rows must share this specific 1 in X . The same argument applies for the 2nd and 4th
row of M , and since two rows of X cannot share a common 1, it must have at least
two columns. It follows that k ≤ n− 4 and therefore n ≥ 6.

Next, we estimate the possible number of ones in matrices satisfying the condi-
tions of Theorem 3.1.

Lemma 3.3. Suppose that a SQ matrix M of degree n ≥ 6 satisfies the conditions
of Theorem 3.1. Then, its possible number of ones is at most n2 − 3n+ 6, and hence,
it has a least 3n− 6 zeros.

Proof. We simply count the number of ones in all blocks of M separately. First,
the number of ones in Q is 4, and clearly, the number of 1s in J are 3k. By the first
condition of Theorem 3.1, the number of ones in X is at most n − k − 2. Now by
Lemma 3.2 the first row of Z is [0, . . . , 0] (up to equivalence), hence the number of
ones in Y and Z together is at most k(n− 4) + 2, and finally the number of ones in
the lower right submatrix is at most (n− k− 2)(n− 3). Thus the possible number of
ones is

4+3k+n−k−2+k(n−4)+2+(n−k−2)(n−3) = n2−4n+10+k ≤ n2−3n+6.

We have the following:

Corollary 3.4. The 6 × 6 matrix A below is SQ. However, by Theorem 3.1,
A /∈ U6.

A =




1 0 1 1 1 0
0 1 1 1 0 1
1 1 1 1 0 0
1 1 0 0 1 1
1 1 0 0 1 1
0 0 1 1 1 1




Note that A is regular, therefore it is equivalent to the exceptional regular matrix of
degree 6 appearing in Section 2.

The example above shows that there are indeed SQ matrices of degree 6, which
cannot support unitaries. It is of particular interest to find out if there are such
exceptional matrices already for degree 5. Lemma 3.2 explains that we cannot rely
on Theorem 3.1, since this result does not say anything about matrices of order 5.
By analyzing the list of Section 2, one can observe that such exceptional matrices do
exist for degree 5. The reason for this phenomenon is summarized in the following:
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Theorem 3.5. Let M (or its transpose) be a (0, 1)-matrix equivalent to a matrix
in the following form:

[
Q J3×2 ∗
X Y ∗

]
, where Q =


 1 0

0 1
1 1


 .

Further, suppose that

1. the columns of Y are mutually orthogonal,
2. every column of X is orthogonal to every column of Y .

Then M does not support unitaries.

Proof. Suppose on the contrary that we have a unitary U , whose support is M .
Let us use the same notations as in the proof of Theorem 3.1. By orthogonality
〈C1, C3〉 = u11u13 + u31u33 = 0, 〈C1, C4〉 = u11u14 + u31u34 = 0, 〈C2, C3〉 = u22u23 +
u32u33 = 0, 〈C2, C4〉 = u22u24 + u32u34 = 0, hence u31 = −u11u13/u33, u14 =
−u31u34/u11, u32 = −u22u23/u33, u24 = −u32u34/u22. Thus

0 = 〈C3, C4〉 = u13u14 + u23u24 + u33u34 = −u13
u31u34

u11
− u23

u32u34

u22
+ u33u34 =

=
u34

u33

(
|u13|2 + |u23|2 + |u33|2

)
�= 0,

since the last expression in the brackets is strictly positive. This is a contradiction.

Now we present the dual of Proposition 3.2 and Lemma 3.3.

Proposition 3.6. Under the conditions of Theorem 3.5, a SQ matrix of degree
n satisfies the following properties:

1. The first row of X is [1, 1];
2. The first row of Y is [0, . . . , 0];
3. n ≥ 5;

Proof. The first two properties are evident from the proof of Proposition 3.2.
The third one follows from the fact that the only candidates of order 4 with these
properties are not SQ.

Lemma 3.7. Suppose that a SQ matrix M of degree n satisfies the conditions of
Theorem 3.5. Then, its possible number of ones is at most n2 − 2n+ 4, and hence, it
has at least 2n− 4 zeros.

Proof. We count the number of ones in each block of M separately. First, the
number of ones in Q is 4. Then the number of ones in J3×2 is 6. The first condition of
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Theorem 3.5 and Proposition 3.6 imply that the number of ones in X and Y cannot
be more than 2 in each row. Since there are n−3 rows in X and Y , we conclude that
the possible number of ones is at most 4 + 6 + 2(n− 3) + n(n− 4) = n2 − 2n+ 4.

Corollary 3.8. The following two symmetric, SQ matrices of degree 5 do not
support unitaries: 






1 0 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 0 0 1
1 1 0 0 1


 ,




1 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 0 0 1
1 1 0 0 1






.

These matrices are equivalent to the exceptional matrices of order 5 appearing in
Section 2. We conclude this section with a SQ matrix of degree 10 which satisfies the
conditions in both Theorem 3.1 and Theorem 3.5:



1 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1
0 0 1 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1




.
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