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ON LINEAR PRESERVERS OF SEMIPOSITIVE MATRICES*

SACHINDRANATH JAYARAMANT AND VATSALKUMAR N. MERf

Abstract. Given proper cones K7 and Kg in R™ and R™, respectively, an m X n matrix A with real entries is said to be
semipositive if there exists a x € K7 such that Az € K3, where K° denotes the interior of a proper cone K. This set is denoted
by S(K1, K2). We resolve a recent conjecture on the structure of into linear preservers of S(RT}F, RT) We also determine linear
preservers of the set S(K7, K2) for arbitrary proper cones K; and K». Preservers of the subclass of those elements of S(K1, K2)
with a (K2, K1)-nonnegative left inverse as well as connections between strong linear preservers of S(K1, K2) with other linear
preserver problems are considered.
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1. Introduction. We work throughout over the field R of real numbers. Let M, , denote the set of
all m x n matrices over R. When m = n, this set will be denoted by M,, or M,. A matrix A € M, ,, is
said to be semipositive if there exists a z > 0 such that Az > 0, where the inequalities are understood
componentwise. A is said to be minimally semipositive if it is semipositive and no proper m X p submatrix of
A is semipositive for p < n. A is said to be redundantly semipositive if it is semipositive but not minimally
semipositive. It is known that an m X n matrix A is minimally semipositive if and only if A is semipositive
and A has a nonnegative left inverse. Semipositivity characterizes invertible M-matrices within the class of
Z-matrices (see Chapter 6, [4]). For recent results on semipositive matrices, their structure and preservers,
one may refer to [1, 7, 9, 19] and the references cited therein.

For a field F and the set M,, ,(F) of m x n matrices over F, a linear preserver L is a linear map
L : My, (F) — M, »(F) that preserves a certain property or a relation. There are two types of preserver
problems. Given a subset S of M,, ,(F), characterize linear maps L on M,, ,(F) such that (i) L(S) C
S and (it) L(S) = S. The first one is called an into preserver and the latter an onto/strong preserver. There
is rich history on this topic within linear algebra as well as other areas of mathematics.

Recall that an m x n matrix A is row positive if A is a nonnegative matrix with at least one nonzero
entry in each row. A square matrix B is said to be a monomial matrix if in addition to being a nonnegative
matrix, each row and column of B contains exactly one nonzero entry. The starting point and motivation for
this work comes from the following results (Theorems 2.4, 2.11 and Corollary 2.7) due to Dorsey et al. [9].

1. (Theorem 2.4, [9]) Let L(A) = X AY for some X € M,, and Y € M,,. Then L is an into preserver of
semipositivity if and only if X is row positive and Y is inverse nonnegative, or —X is row positive
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and —Y is inverse nonnegative. L is an onto preserver of semipositivity if and only if X and Y are
monomial, or —X and —Y are monomial (Corollary 2.7, [9]).

2. (Theorem 2.11, [9]) Let L(A) = X AY for some X € M,, and Y € M,,. Then L is an into preserver
of minimal semipositivity if and only if X is monomial and Y is inverse nonnegative, or —X is
monomial and —Y is inverse nonnegative. L is an onto preserver of minimal semipositivity if and
only if X and Y are monomial, or —X and —Y are monomial.

Our primary aim in this manuscript is to resolve the following conjecture due to Dorsey et al. [9]:

CONJECTURE 1.1. Let L : M, , = My, be an invertible linear map. If L is an into preserver of
SRY,RT), then L(A) = XAY for all A € My, ,,, where X is row positive and Y is inverse nonnegative.

Dorsey et al. had pointed out through an example that invertibility of the map L is crucial in the above
conjecture (see the example in Section 4 of [9]). They had also added that there was computational evidence
that the conjecture is true in the 2 x 2 case, but had no proof nor a counterexample.

The purpose of this manuscript is twofold. The first one concerns resolving Conjecture 1.1. The second
part concerns linear preservers of the set S(K7, K2) (see the next section for definitions and notations). We
begin by recalling preliminaries about convex sets, nonnegative, and semipositive matrices. Other necessary
results on convex cones and positive operators are presented in a later section when we discuss linear
preservers of S(K71, K3). Our first result says that if an invertible linear map L preserves the set of semipositive
matrices and also maps every rank one semipositive matrix to a rank one (semipositive) matrix, then L is
a rank one preserver (Theorem 3.1) and consequently, L(A) = XAY for invertible matrices X and Y.
This result provides a hint for resolving Conjecture 1.1. Our main result says that an invertible linear map
L on M,,, that preserves semipositive matrices is of the form L(A) = XAY for all A € M, , for some
invertible row positive matrix X € M, and inverse nonnegative matrix Y € M, if and only if every rank one
semipositive matrix of a special form gets mapped to a rank one matrix (see Theorem 3.12). The structure of
invertible maps L on M, that preserve semipositivity (Theorems 3.3) is discussed following Theorem 3.1. A
similar argument also works for maps on M,, 2. The proof is constructive and we deduce that L(A) = XAY
for some row positive matrix X and inverse nonnegative Y. The general case is taken up next. The proof
follows ideas that were verified for an invertible linear map L on M3 (and more generally on M, 5,m > 3)
that preserves semipositive matrices. Since the calculations are involved and lengthy, the details of the 3 x 3
case are not included in the main part of the manuscript. We include these as an Appendix. The second part
of the manuscript concerns linear preservers of the set S(K7, Ks). This section is subdivided into further
subsections as follows: (1) useful results, (2) linear preservers of S(K7, K3), (3) preservers of MS(K;, Ks)
(see the next section for the definition), (4) general strong preservers of S(K71, K3), and (5) left semipositivity
and their preservers. Interesting connections between onto preservers of S(K;, K3) and into preservers of
nonnegativity are also brought out. To the best of our knowledge this appears new and completely settles
this problem both over all proper cones, including the nonnegative orthants.

REMARK 1.2. We shall use the same notation for a linear map 7" : R” — R™ and its matrix representa-
tion, which we assume throughout to be with respect to the standard basis of R™ and R™, respectively.

2. Preliminary results. We present the preliminary results in this section.
2.1. Convex cones, nonnegative, and semipositive matrices. Let us recall that a subset K of

R™ is called a convex cone if K + K C K and aK C K for all « > 0. K is said to be proper if it is
topologically closed, pointed (K N —K = {0}), and has nonempty interior K°. K is said to be polyhedral
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if K = X(RT) for some n x m matrix X and simplicial when X is invertible. The dual, K*, is defined
as K* = {y € R" : (y,x) > OVx € K}, where (.,.) denotes the usual Euclidean inner product on R™.
When K is a convex cone in R™ such that K = K*, we say that K is a self-dual cone in R™. The most
well-known example of a proper (convex) self-dual cone is the nonnegative orthant in R": K = R’} = {z =
(z1,...,xp) €ER" 12, >0V 1 <i<n}. We assume that all cones in this manuscript are proper cones.

The following definitions, notations, and basic results are standard (see, for instance, [3]). The only
exception is Definition 2.2, which is a natural generalization to proper cones the notion of minimally semi-
positive matrices (see [12] for the definition).

DEFINITION 2.1. For proper cones Ky and Ko in R™ and R™, respectively, we have the following notions.
A€ My, is

1. (K4, Ks)-nonnegative if A(K1) C K.
2. (K1, Ksy)-semipositive if there exists a x € K{ such that Az € KJ.

We denote the set of all matrices that are (K7, Ks)-nonnegative by 7(K7, Ks). When K1 = Ky = K,
this will be denoted by 7(K). Let us also denote the set of all matrices that are (K, Ks)-semipositive by
S(K1, K3). When Ky = Ky = K, this will be denoted by S(K).

DEFINITION 2.2. Let A € M, ,, be (K1, Ky)-semipositive. We say A is (K1, K2)-minimally semipositive
if A has a (K, K1)-nonnegative left inverse.

The set of all (K7, K5)-minimally semipositive matrices will be denoted by M S(K, K»).

DEFINITION 2.3. A square matriz Y is K-inverse nonnegative if Y is invertible with Y ~1 being K-
nonnegative.

3. Main results. The main results of this manuscript are presented in this section. As stated previously,
our aim in this manuscript is to resolve Conjecture 1.1. The primary motivation for this problem comes from
Theorems 2.4, 2.11, and 3.5 due to Dorsey et al. [9]. We assume that m > n and n > 2.

3.1. The nonnegative orthants case. We begin by proving that if L is an invertible linear preserver
of semipositive matrices that also maps every rank one semipositive matrix to a rank one (semipositive)
matrix, then L is in the standard form. It is obvious that if L(A) = X AY for some invertible row positive
matrix X and inverse nonnegative matrix Y, the map L has the property mentioned above.

3.1.1. A sufficient condition. For 0 # z € R™ and consider the set U, := {zu' : v € R"}, an
n-dimensional subspace of M,, , consisting of matrices rank at most one.

THEOREM 3.1. Let L : My, , = M, », be an invertible linear map. Assume that L satisfies the following
conditions:

1. L is an into preserver of S(R,R'").
2. rank(L(A)) = 1, whenever rank(A) =1 and A € S(R",R7").

Then L(A) = XAY for any A € M, , where X € M,, is invertible and row positive and Y € M, is inverse
nonnegative.
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Proof. The proof involves four steps.
Claim 1: For any z € (R7")° U (=(R")°), any 0 # A € L(U,) has rank one.

Proof: Let x € (R")°. We discuss two cases here.
Case 1: Suppose u € R™\ (—=R"). Then zu’ € S(R%,R"") and so rank(L(zu')) = 1.

Case 2: 0 # u € —R’. In this case, z(—u)" € S(R,R7"), and once again rank(L(z(—u)")) = 1. A similar
conclusion holds for x € (—R7")°.

Claim 2: For x € (R")° U (=(R7})°), L(U,) = U, for some y € R™.

Proof: Suppose the claim is not true. Without loss of generality, assume that there exist linearly independent
vectors ui, up € R™ such that zut, zub € S(R, R, L(zu}) = 214} and L(zub) = z2¢5, where 21,2, € R}
are linearly independent and q1,q2 € R™. We then have L(z(uj 4+ u2)?) = L(zul) + L(zub) = 214} + 2245.
Since rank(z(u; +uz2)t) = 1, we have L(x(ui +uz)?) = z3¢%. Therefore, q; and gz must be linearly dependent.
We thus have a 2-dimensional subspace of M, ,, that is mapped to a 1-dimensional subspace of M,, ,,. This
contradiction proves the claim.

Claim 3: For 0 # z € R™, L(U,) =U, for 0 # p € R™.

Proof: If z € (RT")°U(—(R)°), then we have L(U.) = Uy, for some p € R™ (by Claim 2). If z belongs to the
complement of (R7")°U(—(R")°), then we can write z = 2, — 23, for some linearly independent 21, 2o € (R")°.
Since z; and 2o are linearly independent, there exist linearly independent p; and py such that L(U.,) = Uy,
and L(U,,) = U,,. Suppose there exists ¢ € R™ such that L(z1¢") = p1¢} and L(z2¢") = paqb, where ¢; and
q2 are linearly independent. We then have L((21+22)¢") = p1q} +p2qb, a rank two matrix. This contradiction
(using Claim 1) proves that L(U,) = U, for some 0 # p € R™.

We have thus proved that L preserves the set of rank 1 matrices in M,, ,,. It now follows from Theorem 2
of [13] that L(A) = XAY or m = n and L(A) = XA'Y, for all A € M,,,, for invertible matrices X and
Y. Since A — A? need not preserve semipositivity, there exist no invertible matrices X and Y such that
the map A — X A'Y preserves semipositivity. Therefore, the map A — X A'Y can be ruled out. Finally,
Theorem 2.4 of [9] yields the desired conclusion on X and Y. |

Theorem 2 of [13] is actually a real version of the Marcus-Moyls result on rank one preservers (see
Theorem 1 and the Corollary following it in [15]). The idea behind Theorem 3.1 comes from [18]. It gives
us a sufficient condition to check for a map to preserve semipositivity. Note that Theorem 3.1 also holds
for m < n. We prove that if L is an invertible linear map on M,,, that preserves semipositivity, then
any rank one semipositive matrix of the form A; = xy!, where x = (z1,22,...,2,,)" € R™, and y; =
0,...,9i,...,0)t € R" gets mapped to a rank one matrix. We exploit this to prove the result for n = 2.

3.1.2. The n = 2 case. Let us observe that a 2 x 2 matrix A is semipositive if and only if A has a
positive column or has one of the forms

a —b -b a
A—[_C d} orA—{d —c]’

where a > 0,d > 0,0 > 0,c > 0 and ad — bc > 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 37, pp. 88-112, January 2021.

S. Jayaraman and V.N. Mer 92

Let us take the usual basis {E;; : i = 1,2,j = 1,2} of M. For a linear map L on M, let us write
down the matrix representation of L(E;;). It is then easy to write the matrix representation of any rank one
matrix A = xy’. We do this below.

Let L be a linear map on M3 and let A = xy! be a rank one matrix, where x = (z1,72)" and y = (y1,92)".
We then have

L(A) = {(061301 + azzo)yr + (aozr + auxe)ys  (frz1 + Bzza)yr + (Bexr + 54$2)y2]
(M1 +y3w2)y1 + (V2w1 +yaw2)y2 (0121 + G3w2)ys + (d2x1 + 0aw2)y2]

where «;, B;,7i,0i, 1 = 1,...,4 are fixed real numbers. In other words, we have

L(A) = [(01331 +azze) (Bran + /33332)} {(0@%1 +aqwa)  (Bawy + ﬂ4mz)}

(M1 +y3x2) (9121 + d322) (Va1 + yaz2)  (d2z1 + dax2)
A similar form exists for n > 3 that will be used later.

THEOREM 3.2. Let L be an invertible linear map on My and L(S(R%)) C S(R2). If Ay = zy} € S(RY)
and Ay = zyly, € S(R?%), where & = (z1,22)", y; = (y1,0)" and y, = (0,y2)*, then rank (L(A1)) =1 and rank
(L(As)) = 1. Moreover, L(A1) = uwv'y; and L(As) = pq'ys, where u = ((a1z1 + azzs), (Y1201 +v372))t, v=

(L —a)t, p= ((Bow1 + Pax2), (0221 + 4a22))", = (—7,1)", [al a3] [52 Ba

>0
M3 da 04

}20, a>0&~v>0.

Proof. The proof involves several steps.
Claim 1: L(A;) and L(As) are not minimally semipositive.

Suppose there exists a A; = xy} € S(R?3) such that L(A;) is a minimally semipositive matrix. We know

b a

¢ morzan =7

—C —C

that either L(A;) = [ ] y1, where a > 0,d > 0,b >0, ¢ >0, and ad > bc.

—T1 T1Y2

Consider the matrix B = [
—T2 T2Y2

}, where yo > 0. It is clear that B is semipositive. If the inverse

- ofy . . o . . .
of L( [ e O} ) is negative, it is possible to choose a yo > 0, sufficiently small, such that the inverse
—

—x

of L(B) is nonpositive. It follows that L(B) ¢ S(R2). If the inverse of L( [ 0} ) is nonpositive, say

—XT2 0
L([_xl Ob - {_“ b] witha > 0, b > 0, d > 0, then L(B) = {_“ b]+[* *] Itf>0

—z9 0 0 —d ’ ’ ’ 0 —d o= -7
then choose a sufficiently small yo > 0 such that the inverse of L(B) is nonpositive, thereby making L(B)
not semipositive. If f < 0, then choose y2 > 0 such that the second row of L(B) is negative. This once
again makes L(B) not semipositive. This proves the claim. Thus, L(A4;) must be a redundantly semipositive
matrix.

Claim 2: L(A1) cannot have a positive row.

-1 flyz] c
—T2  T2Y2
S(RZ), we can show that L(B) contains nonpositive row and consequently will not be semipositive.

If L(A;) has positive row, then by choosing y2 > 0 sufficiently small and by taking B = [
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—b
We can thus assume without loss of generality that L(A;) = {a d} y1, where a > 0,¢ > 0,0 > 0,d > 0.
c —

Thus, L(A;) = a1ry + azxre Gz + 53962]

Y171+ 322 6171 + 0372
Claim 3: (a1, a3)t and (81, 83)¢ are linearly dependent.

a1 Q3

B Bs
} € S(R%), where p = (p1,p2)" is such that Wp = d, =1 > 0,

Suppose (a1, a3)t and (B1, B3)" are linearly independent. Consider the invertible matrix W = [ ] and

let d = (—dy, —dy)t < 0. Take B = [pl w12
P2 X2Y2
29 > 0 and yo > 0 is sufficiently small enough. It is then possible to make the first row of L(B) is negative,

thereby making L(B) not semipositive. This contradiction proves the claim.

Since a1r1 + azrs = a and Bixq + f3ry = —b, there exists o > 0 such that (31, 33)! = —a(a1,a3)t.
Similarly, we can show that (d1,d3)" = —8(71,73)!, where 8 > 0.

Claim 4: The matrix {al a3] > 0.
Y173

If (a1, a3)? contains both positive and negative entries, then there exists (z1, 22)" > 0 with (a1, a3)(21,22)" =
z1 0 .

! O]’ we see that L(B) contains a zero row. Thus,
29

L(B) ¢ S(R?), which implies that (o, o)’ > 0. Similarly, we can show that (y1,73)" > 0.

0. Then, by taking the semipositive matrix B = [

Claim 5: a = .
Suppose « # 5. We first consider the 5 > « case; the other case is similar.

Case 1: 5 —a > 0.

aq

Since L is invertible, the matrix V' = [ 043:| is invertible. Let (q1, q2)t € R? such that V (g, ¢2)t = (—1,1)%.

DAL
Let B = {ql x1y2] € S(]Ri), where z1 and 9 are positive and yo > 0. As in Claim 1, we can choose y2 > 0

a2 T2Y2
that is sufficiently small such that L(B) either has a nonpositive inverse or a nonpositive row, thereby making

it not semipositive. Thus, this case does not arise.

Case 2:  —a < 0. This can be dealt with similarly as in Case 1.

Hence, we have L(A;) = uvly;.
By the previous argument, we can show that either L(Ay) = jk'ys, where j = (a1 + ayxs), (Yaz1 +
vx2))" and k = (1, —7)" or L(A2) = pq'ys.

Claim 6: L(Ay) cannot be in the form jk'ys.

1 1
Suppose L(Ay) = jk'ys. It can be easily seen that L(A; 4+ Ay) = uvty; +jk'ys. As L is invertible, { }
—a -y

is also invertible. Let us take (—d; — d2)! < 0 and discuss two cases.
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Case 1: —y+a > 0.

There exists (y1, —y2)* € R?, where y; and ys are positive such that (121 +azxs)(y1)+ (a1 +asz2)(—y2) =
—d; and (121 + asx2)(y1)(—a) + (agx1 + aswse)(—y2)(—v) = —ds. Observe now that the first row of

L( [y1561 —ygxl] ) is negative.
Y1T2  —Y2Z2

Case 2: —y+ a < 0.

There exists (—y1,y2)! € R? where y; and ys are positive, such that (a121 + azza)(—y1) + (aery +

ays)(y2) = —dy and (aqz1 + asxa)(—y1)(—a) + (a2x1 + ag®a)(y2)(—7) = —ds. This makes the first row of

L( [_ylxl y2x1] ) is negative. Thus, L(As) must be in the form pqlys.
—YiT2 Y22

Combining the above claims, the theorem follows. ]

We now prove our main theorem.

THEOREM 3.3. Let L be an invertible linear map on M. If L is an into preserver of S(Ri), then
L(A) = XAY, for some invertible row positive X € My and an inverse nonnegative Y € Ms.

o1 + azxe) —alogr; + azxs)

Proof. By Theorem 3.2, we have L(4;) = [(
(mz1 +y322)  —a(yizr + y3T2)

]yl and L(A,) =

—y(Bawy + Bawa)  (Box1 + Bawa)
—v(02x1 + 0422) (221 + dax2)
and v > 0.

]yg, where {al a?’] and [52 ”84} are nonnegative matrices, a > 0
"o 92 04

Claim 1: (aq,a3)t and (B2, 84)t are linearly dependent.

Suppose not. We consider two cases. Let B = {_a?’ g4]. If det(B) < 0, then B € S(R?2) and the first

ar  —P2
row of L(B) is zero. If instead det(B) > 0, then —B € S(R3) and the first row of L(—B) is zero. Thus,
(a1, a3)t and (B2, B4)t are linearly dependent. This proves the claim.

Similarly, we can show that (vy1,73)! and (ds,d4) are linearly dependent. Notice that (8z, 84)¢ = 0(a1, a3)t
and (82,04)" = X(71,73)", where 6 > 0 and A > 0.

Claim 2: 0 = \.

Observe that L( {a b] ) _ {ala + azec —y0(arb+ azd) —alaia + asce) + 0(arb + asd)
C

d Y10+ 93¢ = YA(b+y3d)  —a(yia +73¢) + A(nb+y3d) |

Suppose 0 # X. We contradict the A > 6 case; the other case is similar. Say A > 6, and let d;,ds > 0. We can

find (u1,u2)t € R? and (vy v2)! € R? such that aqus + agus = —di, y1uy + Y3z = do, 1 + agve = 4
and yiv1 + y3v = 7%2. It can be easily verified that B = [ul Ul} is a minimally semipositive matrix.
U2 V2

However, L(B) = {(1 +7)(—d1) (1+ a)dy

2
(1 +7)d> (1+a)(—d2)} ¢ S(RY).
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1 —
Finally, we get L( {a b] ) = [al a?’} {a b} { a} Observe that X = {al a3] is an invert-
c d v 73] le d] |—70 0 Y13

1
—0
REMARK 3.4. Before proceeding further, let us write down the matrix representation of L(A;) in the
general case, where A; = xy!, with x = (z1,22,...,2,)' € R™ and y, = (0,...,9i,...,0)" € R". Let L be a

ible row positive matrix and Y = [ _Z] is inverse nonnegative (see Theorem 2.4, [9]). |

linear map on M,, ,. We then have

81 82 PR Sn
Sn+1 Sn+2 et Son
L(A,) = . . Yi,
S(m—1)n+1  S(m—-D)n+2 ~°° Smn
where sp = Il %1 + lgnti®2 +  + lp (m—1)n+iTm and l;j, @ = 1,...,mn, j = 1,...,mn are fixed real

numbers.

The above representation is obtained similar to the n = 2 case by taking the usual basis E;; of My, .

REMARK 3.5. Letting n = 2 in Remark 3.4, we observe that the arguments of Theorems 3.2 and 3.3
carry over for invertible maps on M, 2, m > 2 that preserve semipositivity. Recall that when m > 2, an
m X 2 matrix is semipositive if and only if every 2 x 2 submatrix is semipositive. We thus have the following
theorem.

THEOREM 3.6. Let L be an invertible linear map on M,, o, where m > 2. Then,

1. rank (L(A;)) = 1, where A; is as above.
2. L(A) = XAY, for some invertible row positive X € M, and an inverse nonnegative Y € M.

3.1.3. The general case: m > n. We assume that m > n. As in the 2 x 2 case, the first step is
to prove that a rank one semipositive matrix of the form A; (as described in REMARK 3.4) does not get
mapped to a minimally semipositive matrix. For simplicity, we present a proof in the 3 x 3 case, which
extends to any n x n matrix. The reduction to m x n case follows as an m X n matrix is semipositive if and
only if every n x n submatrix is semipositive. Recall that a square matrix A is said to be reducible if it is
permutation similar to a matrix of the form

A A
0 A’

where A;; and Asy are square and nonzero matrices. A is said to be irreducible if it is not reducible. Two
matrices A and B are said to be permutation equivalent if there exist permutation matrices P and () such
that A = PBQ. A square matrix A is said to be partially decomposable if it is permutation equivalent to
a matrix of the form given above. Otherwise A is said to be fully indecomposable. One can show that A
is fully indecomposable if and only if PA is irreducible for every permutation matrix P. If A is partially
decomposable, then A is permutation equivalent to

A A - A
0 Ay -+ Ay

0 e 0 Agk
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where the A;; are either 1 x 1 zero matrices or are fully indecomposable. We shall use the following notions
and results from [11].

e (Corollary 1, [11]) If an n x n sign pattern matrix B is fully indecomposable, then the following are
equivalent.
1. B is inverse nonnegative.
2. B is inverse positive.
e (Theorem 2, [11]) Suppose B is an n x n decomposable sign pattern matrix in the following block

Bll B12 .« e Blk
0 By ... By
foom B = | 0 Bs, , where each Bj;; is square and either fully indecomposable or a
0 . B
1 x 1 zero matrix. Then B is inverse nonnegative if and only if
1. each (fully indecomposable) sign pattern matrix B;;, ¢ = 1,...,k is inverse nonnegative.
2. no submatrix of the form [Bi,i—s-l . Bij] or : is nonnegative and nonzero, 1 < i <
Bj-1;

J< k.

THEOREM 3.7. Let L be an invertible linear map on Mz that preserves semipositive matrices. Consider
the rank one matrix Ay. If Ay is semipositive, then L(A1) cannot be a minimally semipositive matriz.
Z1
Proof. Suppose A1 = |x9 [yl 0 O] is a rank one semipositive matrix, so that x; > 0 for i = 1,2,3
T3
and g1 > 0. If L(A;) is minimally semipositive, then it is inverse nonnegative. We then have the following
cases.

Case 1: Suppose L(A;) is fully indecomposable.

In this case, it follows from Corollary 1, [11] that L(A;) will have a positive inverse. Consider the semipositive
T 1o T

matrix B = |z9 [—1 Y2 O}, where y3 > 0. Then L(B) = L( To [—1 0 O] ) —|—L( To [0 Yo O] )
z3 3 z3

The inverse of the first term is negative, whereas the second term is semipositive. It is now possible to choose

a yo, sufficiently small, so that the inverse of L(B) is nonpositive. This forces L(B) ¢ S(R3).

Case 2: Suppose L(A;) is partly decomposable and has the form

a —b —f1
L(A)) = |—c d —fo|, where a,b, ¢, and d are positive, f; and fy are nonnegative and ad — be > 0.
0 0 e
—ar b ff
Consider the matrix B as in Case 1. Choose y2 > 0 and sufficiently small so that L(B) = caa —di 3,
ES * —e€1

where a1, b1, c1,d; and, e; are positive and f; and f5 are nonnegative. In this case, it is easy to check that
L(B) cannot be minimally semipositive. L(B) cannot be a redundantly semipositive matrix as well, as no
3 X 2 submatrix is semipositive.
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a —fi —f

Case 3: Suppose L(A) is partly decomposable and has the form L(A) = [0 d —fs|, where a,d, and e
0 0 e

are positive and f1, fo, and f3 are nonnegative. This case can be dealt with similar to Case 2.

Combining everything, we see that L(A;) cannot be a minimally semipositive matrix. a0

REMARK 3.8. It follows from the above proof that L(As) and L(A3) cannot be mapped to minimally
semipositive matrices as well. Moreover, the above proof works for any n > 4 with appropriate modifications
as well as for the rectangular case.

We have thus proved that no rank one semipositive matrix of the form A; can be mapped to a minimally
semipositive matrix. We are now ready to prove our main results for maps on M,, ,, when m > n > 3.

THEOREM 3.9. Let Ay be the rank one matrix described earlier. If Ay is semipositive and if L is an
invertible linear map on M, ,, that preserves semipositivity, then the matric

hia e coo lmengt
log 2 (ny1) coo Ao metyng1
1= . . . )

ln,l ln,(n+1) o ln,(m—l)n—i—l

has rank one.
Proof. Suppose C; has rank n. For z = —(21,...,2,) <0, choose a vector ¢ = (q1,...,qm)" such that
q1 T1Y2 0 ... 0
, : g2 22 0 ... 0 P
C1q = z. Consider the matrix B = | | . . .|, where y5 > 0. Then, B is semipositive as it
Gm Tmy2 0 ... O
—&1 —r2 —Zn
contains a positive column (recall that A; is semipositive). We then have L(B) = | . . ) |+
* * *
0 zo 0 ... O
yQL( ) The second term in the above expression is semipositive as L preserves semi-
0 z, 0 ... O
positivity. Choosing ys sufficiently small, it is possible to make L(B) not semipositive. Thus, C; cannot have
rank n.
Lk Ut coo W me Dtk
, , b lmiry oo lamotnsk . .
Consider the matrix Cj = . . . . Let us consider the n x mn matrix C' =
ln,k ln,(n-i—k:) cee ln,(nL—l)n-{-k

[C1]Cs]. .. |Cy]. Since L is an invertible map, C has rank n. Suppose Cy has rank n — 1. Assume without loss

of generality that [C]|Cs] has rank n. For z = —(21,...,2,)" < 0, choose a p € R?*™ such that [C;|Cs]p = 2.
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P1 Pm+1 T1y3 0 ... O
. o . P2 Pm+y2  T2yz 0O 0 .
Consider the semipositive matrix B = . . ) . .|, where y3 > 0. By choosing y3
m DPom ITmYs3 0 e O

sufficiently small, it is possible to make L(B) not semipositive (the argument is similar to the one used in
the previous step). Thus, C cannot have rank n — 1. Proceeding analogously, we see that C cannot have
rank n — 2 and so on, thereby proving that the rank of Cy is 1. 0

We now prove that if L is an invertible map on M,, ,, that preserves semipositivity, then L(A;) has rank
one for each i =1,...,n.

THEOREM 3.10. Let L be an invertible map on My, that preserves semipositivity. Suppose for each
i=1,...,n, A; is semipositive. Then, L(A;) has rank one for each i =1,... n.

Proof. We will prove the result for A;. A similar argument works for ¢ = 2,...,n. We indicate the
steps below, where each successive step assumes the previous one. We have already proved that the theorem
when n = 2. Recall that L(A;) is a redundantly semipositive matrix. The argument presented below has
been verified for n = 3; since the calculations are very lengthy, we are not including them here and a brief
explanation is included as an Appendix when n = 3. Before proceeding further, let us denote by Py,..., P,
the following numbers:

Pr=lhazi +lhptize+ o+l D1 Tm
Py i=lh1121 g1 + o 4 gt (m—1)n+1%m

P = lm—1)n+1,171 T lm—Dnt1,n41%2 T+ lm—1)n+1,(m=1)n+1%m-

. Step 1: The first step is Theorem 3.9.

. Step 2: Deduce that L(A;) contains a positive column. This involves several steps and the calcula-
tions are involved and lengthy even in the n = 3 case. See the Appendix for a brief explanation.

3. Step 3: Using the expressions P, ..., Py, Steps 1 and 2 and assuming that the first column of L(A4;)

N =

is positive, we write L(A;) as

P oo P ... oaip—oPt a1 P
P agiPy .. s oPr agn P
L(A) =] . ] ) ) , where «; ; € R.
Pm am,lpm cee am,n72pm am,nflpm
a1 ... Q1p—2 Q1p—1
A . Q21 e a2 n—2 Q2 n—1 . . . L
4. Step 4: Consider the matrix E := . . . . If the matrix E is semipositive,
Am1 - Opmpn—2 OQmnp—1
Py
Py
then L(A;) has rank one. Therefore, L(4;) = [1 o1 .- al’n,l].
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5. Step 5: If the matrix —FE is semipositive, whereas E is not, then again L(A;) has rank one and
Py

Py
L(Al) = . |:1 Q11 ... al,nfl]-

P,

6. Step 6: Verify that L(As) has a positive column. If both E and —E are not semipositive, then
L(A;) has rank one. The proof of this goes as follows. Assuming that the second column of L(As)
B1ai@r Q1 . Bra—1@r
B2,1Q2 Q2 ... Pon-1Q2

is positive, we have L(Az) = . Choose a vector p € R™ such

ﬁm,lQm Qm ce Bm,n—lQm

P1 0 ... 0 1 1.1 1,2 a1.n—1
0 ... 0 1 Q21 a2 2 e a2 n—1 . . .
that L( ) = |. ] ] . . If Ay is semipositive, then the ma-
m 0 ... 0 1 am1 ama ... ampn—1
—P1 0 0
—p2 0 0
trix . . .| + As is semipositive and so is its image under L. Note that it is pos-
—pPm 0 ... O
sible to choose a y3 > 0, so that the first column of the image of the above matrix under L
pr 0 ... 0 0 ¢« 0 ... O
pe 0 ... 0 0 g 0 ... 0
is negative. Let ¢ € R™ be such that L( L. A —v !l - - 0 ) equals
m 0 0 0 ¢n : ... 0
1=51ay2 a1 —%Y2 .. Q-1 — Bia—1Y2
1=05oay2 a1 —%Y2 ... Q2p—1— Bon-1Y2 ) ) ,
. . . . It is now possible to choose a sufficiently small
1—=Bmiy2 ami—Y2 -« Gmn—1— Bmn-1¥Y2
y2 > 0 so that the first column of the above matrix is positive and the matrix
11— Y2 .. Qlgp—1— Bia—1Y2
Q21— Y2 ... Q2p-1— Ban-1Y2 . . . .
- . . is semipositive. From the previous case, it follows that
Um,1 — Y2 .. Omnpn-1— /Bm,nflyQ
Q11 — Y2 = Q21 — Y2 = 0 = Qm1 — Y2, which in turn yields a1 = g1 = = Q1 = 0.
Similarly, we can show that a1; = az; = -+ = ay; = 0 for i = 2,...,n — 1. We finally have
P
Py
LA)=| . |[t 0 ... 0]
P
This proves the theorem. ]

We now prove our main result concerning the structure of an into preserver of semipositivity.
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THEOREM 3.11. For m > n, let L be an invertible linear map on My, , such that L(S(R",RT")) C
SRY,RT). Then, L(A) = XAY for all A € My, ,,, where X € My, is an invertible row positive matriz and
Y € M,, is an inverse nonnegative matriz.

Proof. We know from Theorem 3.10 that L(A;) has rank one for each i = 1,...,n. Suppose the first and
Py

Py
second columns of L(A;) and L(Ay), respectively, are positive. Let L(A1) = | | [1 a11 ... @11

P
@1

Q2
and L(AQ) = . [042,1 1 ... 042771_1] .

Qm

Claim 1: The vectors (I1,1,11n415-- 01 (m-1)n41)" and (l22,02 12, ... lo (m—1)nt2)" are linearly depen-
dent. If not, then there will exist two vectors u = (u1,...,u,)" and v = (vy,...,v,)" in R™ such that
ul U1

lag lopya ... 12,(m—1>”+2] u_2 1).2 [1 ﬂ.Since {12’2 e is a rank two

b hn+r oo lm-nntt i hmsr oo lmetmt
Um  Um
Uq V1 0 ... 0O

U V2 0o ... 0
nonnegative matrix, we see that the matrix B = | | . .| is an m X m semipositive matrix.

However, L(B) = |, . o is not semipositive. Therefore, there exists a positive real number A; ; such
Do *

that (I2,2,l2,n42,- -+ b2, (m-1)n+2)" = A,1(l1,1, ling 1y - -5 11, (m—1)n41)"- Proceeding in a similar way, it can be

shown that L(As) = [012’1 1 ... ag,n,l], where A\;; > 0 for j =1,...,m. More generally, it

3

can be shown that L(A;) = ) [O‘i,l Qo ... aiyn], where some a;, >0, i =3,4,...,n.
)\m,i—lpm
Claim 2: )\177;_1 = )\2)1'_1 == )\m,i—la 1= 2, ey

We prove that A;; = A2, and skip the remaining arguments, as the idea is the same. Assume
that A1 > A21. Choose positive numbers dj,d> and form the matrix B defined as
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- —d -
R 00 0
l li1 l l1nt1 . l I, (m=1)nt1 —d2 35 00 0
n+1,1 n+l,n+1 . n+1,(m—1)n+1 0 0 1 0 0 ) )
. . . 0 0 0 1 ol It is clear that B is
l(m—l)n-‘,—l,l l(m—l)n+1,n+1 s l(m—l)n+1,(m—1)n+1 : . M .
| 0 0o 0 0 ... 1]
(1 —ag1)d: (11 —ag1)dr ... (1p-1—a2p_1)d1
—(1—ag1)ds —(a1g—azg1)ds ... —(oap—1— Q2p_1)ds
a semipositive matrix. But L(B) = " « « , which
* * *

is not semipositive (notice that each 2 x 2 submatrix of the matrix formed from the first rows of
L(B) is not semipositive). Therefore, A1 < Ag;. Similarly, it can be proved that A1 > Ag1.

Consequently, A1; = Ag,1. Proceeding this way, it can be seen that A1 ;1 = A1 = -+ = Ay im1, & =
2,...,n. We finally have L(A) = XAY for any A € M,,,, where X and Y are the matrices
l171 l17n+1 A ll,(mfl)njtl
lnt1,1 Lnt1int1 ln+1,(m=1)n+1
X = . . " (m, o , a row positive matrix and
l(m—l)n+1,1 l(m—l)n+1,n+1 cee l(m—l)n+1,(m—1)n+1
1 0(171 e (117"_1

)\1,1042,1 >\1,1 cee >\1,10¢2,n—1
Y = | A2as Ar2032 ... A1203n || Since L preserves semipositivity, it follows from Theo-

AMn-10n1 Mpn-1Qn2 .. Alp_10ng
rem 2.4 of [9] that Y is inverse nonnegative. O

Summarizing everything, we have proved the following theorem.

THEOREM 3.12. Let L be an invertible linear map on My, such that L(S(R,R7T)) C S(R%},RT)
(m >mn >2). Then, L(A) = XAY for all A € M,,,,, where X € My, is an invertible row positive matriz
and 'Y € M, is an inverse nonnegative matriz if and only if each A; that is semipositive gets mapped to a
rank one matriz.

3.2. The proper cones case. We begin this section with useful results needed in subsequent sections.
These include the preserver properties of S(K7, K3) and M S(K7, K3) under a specific map and the existence
of a basis for M,, , from either of the above sets. Recall that all the cones are assumed to be proper.

3.2.1. Useful results. We begin with the following result known as a Theorem of the Alternative.

THEOREM 3.13 ([5, Theorem 2.8]). For proper cones K1 and Ko in R™ and R™, respectively, and an
m X n matriz A, one and only one of the following alternatives holds.

(a) There exists x € Ky such that Az € K3.
(b) There exists 0 #y € K3 such that —Aly € KF.
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It is a fairly well-known result that the closure of the interior of a convex subset K of R™ equals the
closure of K. We shall use this in the proofs later on. For completeness, we present a proof.

LEMMA 3.14. Let F be a convex set in R™ with a nonempty interior. Then, F° = F.

Proof. We only need to prove that F' C F°. If a € F,b € F, then the set {(1/n)a+ (1 —1/n)b:n € N}
is contained in the interior of F. Moreover, elements of the above set converge to b. Thus, b € F°. ]

The following is a well-known fact concerning nonnegative matrices.

LEmMMA 3.15 ([10, Corollary 3.3]). Let K1 and Ko be proper cones in R™ and R™, respectively, and
S :R™ — R™ be a linear map such that S(K1) C K. Then S*(K3) C K.

We now prove that given any element v of a proper cone K, there is a subcone K7 of K which is simplicial
and containing the point v.

LEMMA 3.16. Let K be a proper cone in R™ and v € K. Then there exists an invertible T € (R, K)
such that Tx = v for some x € R .

Proof. If n = 2, then K is a simplicial cone. Therefore, T(R%) = K for some invertible 7' € M>(R). In
such a case, the result is obvious.

Let n > 3 and v € K. Since K is a proper cone, there exits vo € K which is linearly independent of v.
Suppose for every z € K, z = avy + v for some a, f € R. Then K C span{v,vs}, a proper subspace of R™.
Since such a subspace has empty interior and K° # (), we get a contradiction. Thus, there exists vz € K

such that {v,vq,v3} is linearly independent. Proceeding by induction, we get a basis {v,vs,...,v,} for R
such that v,va,...,v, € K. Take T = [v vy - v,]. Then, Tz = v, where = [1 0---0]* € R”. Since K is a
convex cone, T' € w(R’, K). This completes the proof. 0

Let us recall the following result from [1].

THEOREM 3.17 ([1, Theorem 2.4]). For proper cones K1, Ko in R™, let S € w(K;, K2) be an invertible
linear map on R™. If a matriz A is Ki-semipositive, then the matric B = SAS™! is Ky-semipositive.

Conversely, if the cones are self-dual and if C is Ko-semipositive, then there exists a K1-semipositive matriz
A such that C' = (S*)~tAS?.

The following will be used subsequently. We state it without proof.
LEMMA 3.18. Let K1 and Ky be proper cones in R™ and R™, respectively. Then the following hold:

1. Let Q1 € (K2, RT) with Q1((K2)°) C (R7)° and an invertible Q2 € w(K1,RY). If A € S(K1, K>),
then Q1AQ5" € S(RT,RT).

2. Let Sy € m(R?, K3) with S1((R}")°) C (K32)° and an invertible Sy € ©(R"}, Ky). If B € S(R",RY"),
then S1BS; ' € S(K1, Ko).

The following two results are similar to that of Theorem 3.17 for MS(K7, K3).

LEMMA 3.19. Form > n, let K1 and Ky be proper cones in R™ and R™, respectively, with Ko simplicial.

L. If S and T are invertible maps on R™ and R™ such that S € n(R}, K1) and T(R}) = K», then
TAS ' € MS(Ky, K3) whenever A € My, ,, is minimally semipositive.

2. If S and T are invertible maps on R™ and R™ such that S € n(R}, K{) and T(RT}') = K, then
T=1B(58%) 71 is minimally semipositive whenever B € M S(K1, Ka).
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Proof. We prove only the first statement as the proof of the second statement is similar. Observe that
TA € S(R},K3). Let B € M, ,, be a nonnegative left inverse of A. Then SBT! € 7(Ka, K;) is a left
inverse of TAS™!. Therefore, it is enough to prove that TAS™! € S(K7, Kz). Suppose TAS™! ¢ S(K1, K2).
By the Theorem of the Alternative (Theorem 3.13), there exists 0 # z € K} such that —(S") "1 ATz € K.
We then have —A'T"z € R” which implies that TA ¢ S(R", K3), a contradiction. O

Observe that we need not assume that the cone Kj is simplicial if m = n, where we have the following
result: For proper cones K; and K3 in R”, let S € 7(R"}, K1) and T' € n(R, K3) be invertible matrices.
Then, (I%)"'AS™! € MS(Ki,K>) whenever A is minimally semipositive. Similarly, if S € 7(R%,K7)
and T € 7w(R%,K>) are invertible matrices, then 77'B(S?)~! is minimally semipositive whenever B €
MS(Ky, K3). We skip the proof as it is similar to the above lemma.

Before proceeding further, let us mention the following useful results that follow from Lemmas 3.18 and
3.19.

OBSERVATION 3.20. For A € M,,,, and proper cones K; and Ky in R" and R™, respectively, the
following hold:

1. There exists B,C € S(K;, K3) such that A= B+ C.
2. There exists C1,Cy € MS(K1, Ks) such that A = Cy — Cy, if in addition the cone Ky is simplicial
when m > n.

We end this subsection by proving that M, ,, contains a basis from S(K;,K>) and MS(K7, Ks). The
following result was proved recently by P. N. Choudhury et al. [6].

THEOREM 3.21 ([6, Theorem 3.1]).  There is a basis of minimally semipositive matrices for My, »,
m>n.

Below is the proof that M,, , contains a basis from both S(K, K3) and M S(K;, Ka).
THEOREM 3.22. Given proper cones Ky and Ko in R™ and R™, respectively, the following hold:

1. S(K1, K3) contains a basis for My, ».
2. MS(K1, K2) contains a basis for My, », if in addition the cone Ko is simplicial, when m > n.

Proof. (1) From [9], we know that S(R’,R"") contains a basis for M,, . Let {4;;} C S(R},R7) be a
basis for M,, . Then by Lemma 3.18(2), {B;; = TA4;;S™'} C S(K1, K>) will be a basis for M,, ,,, where
Sen(RY,K;) and T € m(R7, K3) are invertible matrices with T'((R})°) C (K3)°.

(2) By Theorem 3.21, let {Aw} be a collection of minimally semipositive matrices that form a basis for
M, . Then by Lemma 3.19, {Bw = TAUS '} € MS(Ky, K3) is a basis for My, ,, where S € m(R", K1)
and T(R7?) = K are invertible matrices. |

We are now in a position to tackle preservers of S(K7, K3). Recall the following.

DEFINITION 3.23. A linear map L on My, ,, is an onto preserver of S if L(S) = S.

We shall use the following lemma in our proofs (see [8] for details).

LEMMA 3.24. If S contains a basis for M, ,,, then L is an onto preserver of S if and only if L and L1
are into preservers of S.
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3.2.2. Preservers of S(K7, K>). We begin this section with results that will be used in the proof of
Theorem 3.29.

LEMMA 3.25. Let X € My,. If SXT € n(R"}) for all invertible matrices T € m(R", K) and S € (K, R’ ),
then X € n(K).

Proof. Let v € K. By Lemma 3.16, there exists T" € m(R"}, K) such that Tx = v for some z € R’}.
We have SXTz = SXv € R for all invertible S € 7(K,R"). Therefore, (SXv,u) = (Xv,S'u) > 0 for all
u € R%} and all invertible S € 7(K, R’ ). Let us take p € K*. By Lemma 3.16, there exists an invertible
Ty € n(R%, K*) such that Ty = p for some y € R". In particular, (Xv,T1y) = (Xv,p) > 0. Therefore, we
get Xv e K. 0

Recall that a square matrix A is said to be row positive if A is nonnegative with a nonzero entry in each
row.

LEMMA 3.26. Let X € M,. If SXT is row positive for all T € n(R"},K) and S € w(K,R’}) with
T((R%)°) € K° and S(K°) C (R)°, then X(K°) C K°.

Proof. Let v € K°. Take T' = [1v--- Lv]. We see that T € (R}, K) with T((R%)°) C K° and Tz = v,
where z = [1---1]" € (R)°. We have SXTxz = SXv € (R%})° for all S € 7(K,R%) with S(K°) C (R%})°.
Then, (SXv,u) = (Xv,S'u) > 0 for all 0 # v € R} and S € 7(K,R%) with S(K°) C (R’})°. Let us
take 0 # p € K* and Ty = [p q---q|, where ¢ € (K*)°. It is easy to verify that 71 € 7(R’}, K*) with
T((R7)°) € K° and Ty = p, where y = [1 0---0]* € R In particular, (Xv, T1y) = (Xv,p) > 0. Therefore,
we get Xv € K°. ]

The main theorems of this section are proved below.

THEOREM 3.27. Let Sy € (R}, K1) and Q2 € (K1, R") be invertible matrices and S1 € ©(R}, K3)
and Q1 € 7(K2,RT) with S1((R7T)°) C KS and Q1(K5) C (RT)°, respectively. Let Ti(A) = Q1AQy " and
T5(A) = SlASQ_1. If L: My, = My, is an into preserver of S(Ki, Ks), then L1 = T1 LT, is an into
preserver of S(R7,RT").

Proof. Let A € S(R",R7). By Lemma 3.18, T5(A) € S(K,K3). Then LT5(A) € S(K1, K3), since
L(S(K1,K3)) C S(K1, K3). By Lemma 3.18, we finally have T1 LT5(A) € S(R%,RT). |

REMARK 3.28. Suppose the map L as well as the matrices S; and @ are invertible (so that the maps
T; and T» are invertible), then the map L, is an invertible linear preserver of semipositivity. It then follows
from Theorem 3.11 that L;(A) = X AY for every A € M,, ,, for some invertible row positive matrix X and
an inverse nonnegative matrix Y. This also yields that L(A) = XAY for every A € M, , for some matrices
X and Y of appropriate sizes. This gives us a motivation to study preserver properties of the map A — X AY
for appropriate X and Y. We however wish to emphasize that no invertibility assumption is made in the
following result.

THEOREM 3.29. Let L(A) = X AY be a linear map on My, ,, where X € My, and Y € M,, are fized.
L is an into preserver of S(K1, K2) if and only if either X (K35) C K5 and Y is K;-inverse nonnegative or
—X(K$) C K$ and =Y is K;-inverse nonnegative.

Proof. Suppose X (K3) C K3 and Y is Kj-inverse nonnegative, then X AY € S(K;, K3) whenever

Ae S(Ki,K,). If —X(K3) C K3 and —Y is Kj-inverse nonnegative, then L(A) = (-X)A(-Y) = XAY €
S(K7, K3) whenever A € S(K1, K>).
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Conversely, by Theorem 3.27, the map Li(A) = T1LT5(A) = Q1 X S1AS; 'Y Q5! is an into preserver of
SRY,RT), for all Q1,Q2,S1,S2 (all of them satisfying the assumptions of Theorem 3.27). By Theorem 2.4
of [9], either @1 XS is row positive and S;lYQQ_1 is inverse nonnegative or —()1 X S7 is row positive and
—S; 'Y Q5! is inverse nonnegative. By using Lemmas 3.25 and 3.26, we finally have either X (K3) C K3 and
Y is K;-inverse nonnegative or —X (K$5) C K3 and —Y is Kj-inverse nonnegative. |

The following corollary follows from Theorems 3.22, 3.29, and Lemma 3.24.

COROLLARY 3.30. The linear map L(A) = XAY is an onto preserver of S(Ki,Ks) if and only if
X(KQ) = K2 and Y(Kl) = Kl, or —X(Kg) = K2 and —Y(Kl) = Kl.

Proof. We know that there is a basis for M,, ,, from S(K7, K3). Since L is an onto preserver of S(K7, K»),
both L and its inverse are into preservers of S(K, K3). Therefore, by the previous theorem, X (K5) C K3
and Y(K?) C Ky (or —X(K3) C K§ and =Y (Ky) C KY). Moreover, X and Y (or —X and —Y) are
Ks-inverse nonnegative and K;-inverse nonnegative, respectively. Since K° is dense in K by Lemma 3.14,
this shows one implication.

Conversely, if X(K3) = Ky and Y (K;) = K7, then L(A) = X AY is an into preserver of S(K1, K3) and
sois L71(A) = X "1AY 1. Thus, L is an onto preserver of S(Ki, K»). ad

3.2.3. Preservers of MS(K;, K3). We now turn our attention to linear maps L that preserve the set
MS (K, K3). We start with the following result on nonnegativity.

LEMMA 3.31. Let X € M,. If S7'X(T*")~' € n(R?%), for all invertible S € 7(R%,K) and T €
(R}, K*), then X € m(K).

Proof. Let € K. As K C (T")"'(R%}), (T*)"'xz = v for some z € R}. We get (S~ Xv,u) =
(Xv, (8")"tu) > 0 for all u € R} Since K* C (S*) "1 (R%), it follows that Xv € K. O

Our main result is the following.

THEOREM 3.32. Let S1 € n(R%},K{), S2 € n(RT,K3), Q1 € 7n(R},K;) and Q2 € ©(RT, Ks) be
invertible matrices. Assume further that Q2(RT) = Ko and S»(RT) = Ko. Let Pi(A) = Sy A(St)~! and
Py(A) = QQAQfl. If L: My, — My, is an into preserver of MS(K1, Ks), then Ly = PyLP, is an into
preserver of minimally semipositive matrices.

Proof. Notice that L and consequently Lo are invertible maps. Let A be minimally semipositive. By
Lemma 3.19, Py(A) € MS(K;,K3). Then LPy(A) € MS(Ky, K»), since L(MS(K1,Ks)) C MS(Ky, Ka).
Again, by Lemma 3.19, we have Py LP,(A) is minimally semipositive. ]

Similar to the previous section, we now focus our attention to the map L(A) = XAY. We have a
complete answer in this case too. We discuss the cases n < m and n = m separately.

THEOREM 3.33. Let L(A) = XAY be a linear map on My, , with n < m (where n > 2) for fized
X € My, and Y € M,,. Then L is an into preserver of MS(K1, Ks) if and only if X(K3) = Ky and Y is
K -inverse nonnegative, or —X (Ko) = Ky and =Y is Kq-inverse nonnegative.

Proof. If A € MS(Ki,K3), then A has a (Ko, K;)-nonnegative left inverse. Let B be a (K3, K1)-
nonnegative left inverse for A. If X(K;) = K, and Y is Kj-inverse nonnegative, Y "!BX ! is (K, K;)-
nonnegative and a left inverse for X AY . Since X AY € S(K1, K>), it follows that XAY € MS(K;, K3).
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Conversely, suppose that L(A) is an into preserver of M S(K1, K2). By Theorem 3.32, Ly(A) = PLLP,(A)
= (S2) ' XQ2AQ7 'Y (S%)~! is minimally semipositive whenever A is minimally semipositive, where S, Sy,
Q1, and Q- satisfy the assumptions of Theorem 3.32. By Theorem 2.11 of [9], either (S2)~*X Q2 is mono-
mial and Q'Y (S!)~! is inverse nonnegative or —(S3) ' XQy is monomial and —Q; 'Y (S¢)~! is inverse
nonnegative. The result now follows from Lemmas 3.25 and 3.31. O

As in the case of onto preservers of M S(K7, K2), we have the following corollary. We assume again that
n < m and that the cone K5 is simplicial.

COROLLARY 3.34. The linear map L(A) = XAY is an onto preserver of MS(K1, Ks) if and only if
X(Kg) = K2 and Y(K]_) = K]_, or —X(Kg) = K2 and —Y(K]_) = K]_.

Proof. Suppose the map L is an onto preserver of MS(K7, Ks). Then L must be invertible and both L
and L~! are into preservers of M S(K;, K»). By the previous theorem, one implication follows.

Conversely, if X(K3) = Ky and Y (K;) = Kj, then obviously L is an onto preserver of MS(K7, Ks),
since for every B € MS(K1, Ks), we can set A = X 'BY ! € MS(K1, K3), so that L(A) = B (see also
Theorem 2.11 of [9]). 0

The n = m case is presented below, the into and onto separately. The proof is omitted as it is similar to
that of Theorem 3.33 and follows from Theorem 3.32, Lemmas 3.25 and 3.31, and Theorem 2.10 of [7]. Note
that we need not assume simpliciality of the cone K5 in this case.

THEOREM 3.35. Let L(A) = XAY be a linear map on M, for fired X,Y € M,. Then L is an into
preserver of MS(K1, Ks) if and only if X is Ky-inverse nonnegative and Y is Ki-inverse nonnegative or
—X is Ko-tnverse nonnegative and —Y 1is Ki-inverse nonnegative.

COROLLARY 3.36. Let L(A) = XAY be a linear map on M, for fired X,Y € M,. The map L is
an onto preserver of MS(K1, Ks) if and only if X(K3) = Ky and Y(K;) = Ki, or —X(K3) = Ko and
~Y(Ky) = K.

3.2.4. General onto preservers of S(K;, K3). We now turn our attention to general onto preservers
of S(K1, K3). Our main result is the following.

THEOREM 3.37. Let L be a linear map on My, . If L is an onto preserver of S(Ki, Ks), then L(A) =
XAY for all A € My, p, where X (K2) = Ko and Y (K7) = K.

Proof. By Theorem 3.27, we know that for invertible maps 77 and T5, the map Ly = T1LT5 is an
invertible into linear preserver of S(R},R7'). From Theorem 3.11, we infer that L;(A) = XAY for an
invertible row positive matrix X and an inverse nonnegative matrix Y. It follows that L(A) = X AY for
some X € M,, and Y € M,,. Finally, Corollary 3.30 yields the desired conclusion. 0

The following result was proved by A. Chandrashekaran et al.

THEOREM 3.38 ([2, Theorem 2.3]). Let A € My, and let Ky, Ky be proper cones in R™ and R™,
respectively. If A+ B € S(K1, Kz) for every B € S(Ky, Ks), then A € w(K1, K3).

We present below connections between onto preservers of S(K7, K2) and other preserver properties of
maps related to L. We begin with the following result.
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LEMMA 3.39. Suppose that L is an onto linear preserver of S(K1,Ks). Then L is an automorphism of
the cone w(K1, Ka).

Proof. The proof can be found in Theorem 2.6 of [2], by making suitable modifications. |

We now prove that if L is an onto preserver of S(K7, K3), then a map that is equivalent to L will be a
preserver of (R, R7").

THEOREM 3.40. Let Sy € n(R%}, K;), S2 € m(R},KY), Th € n(R}, K3), and Ty € n(R7, K3) be in-
vertible matrices. Let Ty(A) = TtASy and To(A) = ToASS. If L: My, — My, is an onto preserver of
S(K1, K3), then L1 = T1LT; is an into preserver of m(R},RT").

Proof. Let A € w(R",R""). Then Ty(A) € (K1, Ks). By Lemma 3.39, we know that L is an onto
preserver of w(Ky, Ks), so that LT5(A) € w(K,, K3). Hence, Ly = T1 LT>(A) € w(R},RT). O

REMARK 3.41. It follows from the above result that when L is an onto preserver of S(K;, Ks), the map

L is also of the form A — )N(AXN/, for some invertible matrices X and Y. It can be easily seen that X = TIXTy
and Y = SiY'Sy, which are nonnegative with respect to R’ and R, respectively.

3.2.5. Preservers of left semipositivity. We end with the notion of left semipositivity and a pre-
server result concerning the same.

DEFINITION 3.42. Let A € M, .. We say A is left (K1, K3)-semipositive if there exists x € K5 such
that Az € (K7)°.
The set of all left (K5, K2)-semipositive matrices will be denoted by LS(K7, Ka).
LEMMA 3.43. Let Ky and Ko be proper cones in R™ and R™, respectively. Then the following hold:
1. Let Q1 € w(K2,RT) and Q2 € w(K1,RY) be invertible. If A € LS(RY,RT), then Q1AQ, €
LS(Ky, K3)).
2. Let S1 € n(R, K3) and Sy € w(RY, K1) be invertible. If B € LS(Ky,K3)), then Sl_lBSQ €
LS(R?,RT).
The following theorem can be proved and the proof follows similar to Lemma 3.2 of [9].

THEOREM 3.44. IfL: My, ,, — My, is an onto preserver of S(K1, K3), then L is also an onto preserver
OfLS(Kl, KQ)

THEOREM 3.45. Let Sy € n(R},Ky), Q2 € n(K1,RY), S1 € n(RY, Ks), and Q1 € 7(K3,RY) be
invertible matrices. Let Ty (A) = QlAle and To(A) = SlASgl, IfL: M, n, = M, » is an onto preserver of
S(K1,K>), then Ly = Ty LT» is an into preserver of S(R™ ,RT) and Ly is an into preserver of LS(R,RT).

Proof. By Theorem 3.27, L; is an into preserver of S(R’},R%"). It can be easily seen that Lfl is an into
preserver of LS(R%,R"). O
4. Appendix.
Proof of Theorem 3.10 - the 3 x 3 case

Let L be an invertible linear map on M3 and let A = xy® be a rank one matrix. Then, the matrix
representation of L(A) can be expressed as follows: Write A = xy!, where x = (x1,72,73)" and y =
(y1,y2,y3)t. We then have
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ly1wy + ligxo + li7as
lanxy + lyaxo + lyrzs
lrizy + lpazo + l773

L(A) =

[li2x1 + lis22 + ligws
lyoz1 + lys 22 + l4g3
Urowy + lzszo + l7gx3
(11371 + liex2 + L1973
lazzy + lagz2 + lg9T3
U3zt + lre2 + lrgx3

S. Jayaraman and V.N. Mer

lagzy + los o + logws
lIs2x1 + ls572 + I5873
lgaz1 + lgsx2 + 383
la3z1 + l26x2 + l293
53y + lsez2 + 5973
lgzxy + lgex2 + lggx3

lo1m1 + loaxo + laras
Is171 + ls472 + Is723
lg11 + lgaza + lgrs

I3o1 + I3522 + I3323 ]
le21 + les 2 + lesg T3
loaz1 + los 2 + logws |
I3y + 3672 + l3973]
lezx1 + lee T2 + legx3

lozzy 4 lgsxa + lgg T3 |

[3171 + 3422 + l3773
le1z1 + lgaxa + lo73
lor1 + lgaza + lgrzs

Yot

Ys,

IL
AS

108

n+

where l;;, 1 =1,...,9, j=1,...,9 are fixed real numbers.

Our aim is to prove that when A; is semipositive, L(A1) is mapped to a rank one (semipositive) matrix.
The proof involves several steps. Here A; represents a rank one matrix of the form A; = xy}, where
x = (71,72,73)" and y; = (y1,0,0)". We only indicate the main steps and include the proofs only when
necessary. We shall have an occasion to use the following Theorem of the Alternative.

THEOREM 4.1 ([5, Theorem 2.8]). For an mxn matriz A, one and only one of the following alternatives
holds.

(a) There exists x > 0 such that Az > 0.
(b) There exists 0 # y > 0 such that — Aty > 0.

The first step is the following.

LEMMA 4.2. Suppose A; is semipositive and L is an invertible linear preserver of semipositivity. Then,

li1 ha by
the matriz C1 = |la1  laa  la7| has rank one.
I31 l3a 37

The proof is very similar to the one given in Theorem 3.9. One can also prove that the matrices

lyn lag lur ley l7a g
l51 l54 l57 and lgl lg4 lg7 have rank one.
ler loa leor lor loa lo7

The second step is in proving that L(A;) contains a positive column when A; is semipositive. This is an
important step in the proof. Let us denote by P;, P>, and Pj the following numbers: P; := 1121 + l1472 +
lizws, P = lgwy +laaxe + lyzws, and Ps = lnz1 + lraxs + l77as.

LEMMA 4.3. If L is an invertible linear map on Ms that preserves S(R3.), then L(A;) contains a positive
column, when A; is semipositive.

Proof. Since L(A;) is redundantly semipositive, assume without loss of generality that the submatrix

Pla —Plb Pl fl
formed from the first two columns of L(A;) is semipositive. Suppose L(A;) = |—Poc  Pod  Pofs|, where
Pse  —Pf Psfs

a>0,d>0,e>0,6>0,c>0,f>0and f1, fo, f3 € R. The proof involves the following steps.

Suppose f3 > 0: If f1 >0, fo > 0, then L(A;) has a positive column. The next steps involve verifying that
the following subcases fail. In each such subcase, the idea is to find a semipositive matrix B such that L(B)
is not semipositive.
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1. f1>0and f2§0
2. fi<0and fy > 0.
3. f1§0and fzSO

Suppose f3 < 0: We discuss various subcases here too and check each such subcase fails. The argument is
once again to find a semipositive matrix B such that L(B) is not semipositive.

1. f1 > 0and fy > 0.
2. f1>0andf2§0.
3. f1 <0 and fQ > 0.
4. f1 SO and fg SO

This last step involves further subcases as follows: (i) f3 < 0, (i) f3 = 0 and f1 < 0, and finally (iii)
f3=0,f1 =0, and fo < 0. For completeness, we illustrate the proof of the following case: f3 > 0, f1 <0,
and fo < 0. We have

P —-Pb —Pf,
L(Ay) = |—Pac Pod —Psfs|, wherea >0,d>0,e>0,0>0,c>0,f>0, f1 >0,f2>0,f3>0.
Pie —P3f  Psifs
lin Ly lie
If either b # 0 or f; # 0, choose a vector ¢ such that Vg = (1,—1,—1)!, where V = |lyg laa la7 |-
lzn l7a 77

q1 0 0 0 X1 0
Form the semipositive matrix B as follows: B = |¢2 0 0| + y2 [0 xo O0f, where y2 > 0. Then,
g3 0 0 0 z3 O
—-b —f1 0 I 0
L(B) = c —d fol + y2L{ |0 z2 O ) Choose a g2 small enough so that B is semipositive,
—e [ —f3 0 x3 0
whereas L(B) is not semipositive. Suppose both b and f; are zero. If there is no yo > 0 such that L(B) is not
q1 0 0 0 X 0 0 0 I
semipositive, then form the matrix By = [¢a 0 0| + (—y2) [0 22 0| + y3 [0 0 xo|, whereys >0
qs 0 0 0 I3 0 0 0 I3

is small enough and y3 > 0. Notice that B; is a semipositive matrix. Now choose y3 sufficiently small to
make L(Bj) not semipositive. Combining all the steps mentioned above, we prove that L(A;) has a positive
column, when L preserves semipositivity. 0

A similar argument will ensure that L(As) and L(As) also have positive columns when L preserves semipos-
itive matrices and the matrices Ay and Ag are semipositive.

PP AP

We thus have L(A;) = | P, asPs [2P»| for some a; and f3; € R for i = 1,2, 3.
P3 azP; P3P3

ar B
Before proceeding further, let us denote by E the matrix |as o .
az B

The next step is the following result.
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LEMMA 4.4. Let L be an invertible linear map on M3 that preserves semipositive matrices. Assume that
Ay is semipositive, the first column of L(A1) is positive, and the matriz E is semipositive. Then, L(A1) has
rank one.

Proof. The first step is in proving that the matrix £ cannot contain any 2 x 2 submatrix that is minimally
semipositive. The second step is in proving that both the columns of £ cannot be positive. Consider the
following flowchart.

;> ag > ag and

B1 # B2 # B3
( l 2 | l
1 = g # ag and ;> g > g an
B # B2 # B3 B = B2 # B3
S | |
1 = g # az and jo; = g # az and| 1 > ag > az and
B = B2 # B3 B = B2 # B3 B1=pP2=083#0

I I
[ | [

; = ap = a3z and g = ag # a3z and oy = as # ag and| o # as = ag an

Pr=P2#Bs ||fr=P2=P37#0] |B1=PL2=Ps#0| |f1=P2=P37#0

The remaining argument of Lemma 4.4 is in proving that each of the steps in the above flowchart fails. As
in the previous lemma, the proof involves finding a semipositive matrix B such that L(B) is not semipositive.
We include the proof of the following two cases alone.

Suppose ay > ap > ag and 1 # B2 # Bs.

Suppose the vectors (a1, as,a3)t and (=B, —B2,—B3)" are linearly dependent. Let § > 0 be such that

(=B1, =2, —B3)" = —d(aq,az,as)t. Choose a vector q so that Vg = (1,—1,1)" and form a semipositive
1 (651 —(50&1 0 T1 0

matrix B as before. Observe that L(B) = |—-1 —as» dan | + ygL( 0 zo O ) If there exists a
1 (0%} 750&3 0 T3 0

y2 > 0 small enough so that L(B) is not semipositive, then we get a contradiction to our assumption. Else,
choose a vector ¢ such that Vg = (1,1,—1)" and proceed as above. Notice that in this case, it is possible to
choose a ys small enough that makes L(B) not semipositive in at least one of the cases.

Suppose the vectors (ay, g, a3)t and (=31, —f2, —33)! are linearly independent. Consider the invertible ma-

-1 - 51 * * *
trix D=1 1 as —fB2|. Suppose det D < 0. Notice that D~ = (ﬁ) * * *
-1 —a3 fBs az —a3z ) —az a1 — Qg

Notice that the last row entries of the matrix are positive. Therefore, u = (ﬁ)(ag — a3, 1 — Q3,01 —
az)! < 0. Now D'u = —D'(—u) = (0,0,1)" > 0. Thus, D is not semipositive (by the Theorem of the
Alternative 4.1). Now choose a vector ¢ so that Vg = (—1,1,—1)" and form the semipositive matrix
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-1 - 51 0 21 O
B as in the previous steps. Then, L(B) = 1 as —Po| + y2L< 0 2o O ) It is possible to
-1 —Qs3 63 0 T3 0
choose a yo small enough so that L(B) is not semipositive. If det D > 0, then it is easy to check that
* * *
(-D)™' = (=—5) * * * . The vector u = (—5) (a2 — as, a1 — a3, 01 —az)! <0

Qg —Q3 01 —Q3 Q] — Qg
and —(—D")(—u) = (0,0,1)" > 0. Once again, by the Theorem of the Alternative 4.1, we have —D ¢ S(R3).
Now choose a vector g so that Vg = (1,—1,1)" and proceed as in the case when det D < 0. 0

Combining all the steps in the above flowchart, we see that
P1 OéPl _BPI
L(A)=|P, aP, —BP|, where a >0 and 8> 0.
Pg an 7ﬂP3

The remaining steps involve the following lemmas.

LEMMA 4.5. Let L be an invertible linear map on Ms that preserves semipositive matrices. Then, the
following hold.

1. Suppose the first column of L(Ay) is positive, —E is semipositive, whereas E is not. Then, L(A1)
has rank one.

2. Suppose the first column of L(A1) is positive and both E and —E are not semipositive. Then, L(A7)
has rank one.

A similar argument shows that L(Az) and L(Ag) have rank one. We now have the result on the structure
of a preserver in this case. The proof is similar to that of Theorem 3.11.

THEOREM 4.6. Let L be an invertible linear map on Ms that preserves S(R3). Then L(A) = X AY for
all A € M3, where X is a row positive matriz and Y is an inverse nonnegative matric.
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