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ON LINEAR PRESERVERS OF SEMIPOSITIVE MATRICES∗

SACHINDRANATH JAYARAMAN† AND VATSALKUMAR N. MER‡

Abstract. Given proper cones K1 and K2 in Rn and Rm, respectively, an m× n matrix A with real entries is said to be

semipositive if there exists a x ∈ K◦1 such that Ax ∈ K◦2 , where K◦ denotes the interior of a proper cone K. This set is denoted

by S(K1,K2). We resolve a recent conjecture on the structure of into linear preservers of S(Rn
+,Rm

+ ). We also determine linear

preservers of the set S(K1,K2) for arbitrary proper cones K1 and K2. Preservers of the subclass of those elements of S(K1,K2)

with a (K2,K1)-nonnegative left inverse as well as connections between strong linear preservers of S(K1,K2) with other linear

preserver problems are considered.

Key words. Semipositive matrices, Row positive matrices, Inverse nonnegative matrices, Linear preserver problems, Rank

one preserver, Proper cones.
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1. Introduction. We work throughout over the field R of real numbers. Let Mm,n denote the set of

all m × n matrices over R. When m = n, this set will be denoted by Mm or Mn. A matrix A ∈ Mm,n is

said to be semipositive if there exists a x > 0 such that Ax > 0, where the inequalities are understood

componentwise. A is said to be minimally semipositive if it is semipositive and no proper m×p submatrix of

A is semipositive for p < n. A is said to be redundantly semipositive if it is semipositive but not minimally

semipositive. It is known that an m× n matrix A is minimally semipositive if and only if A is semipositive

and A has a nonnegative left inverse. Semipositivity characterizes invertible M-matrices within the class of

Z-matrices (see Chapter 6, [4]). For recent results on semipositive matrices, their structure and preservers,

one may refer to [1, 7, 9, 19] and the references cited therein.

For a field F and the set Mm,n(F) of m × n matrices over F, a linear preserver L is a linear map

L : Mm,n(F) −→ Mm,n(F) that preserves a certain property or a relation. There are two types of preserver

problems. Given a subset S of Mm,n(F), characterize linear maps L on Mm,n(F) such that (i) L(S) ⊂
S and (ii) L(S) = S. The first one is called an into preserver and the latter an onto/strong preserver. There

is rich history on this topic within linear algebra as well as other areas of mathematics.

Recall that an m × n matrix A is row positive if A is a nonnegative matrix with at least one nonzero

entry in each row. A square matrix B is said to be a monomial matrix if in addition to being a nonnegative

matrix, each row and column of B contains exactly one nonzero entry. The starting point and motivation for

this work comes from the following results (Theorems 2.4, 2.11 and Corollary 2.7) due to Dorsey et al. [9].

1. (Theorem 2.4, [9]) Let L(A) = XAY for some X ∈Mm and Y ∈Mn. Then L is an into preserver of

semipositivity if and only if X is row positive and Y is inverse nonnegative, or −X is row positive
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and −Y is inverse nonnegative. L is an onto preserver of semipositivity if and only if X and Y are

monomial, or −X and −Y are monomial (Corollary 2.7, [9]).

2. (Theorem 2.11, [9]) Let L(A) = XAY for some X ∈Mm and Y ∈Mn. Then L is an into preserver

of minimal semipositivity if and only if X is monomial and Y is inverse nonnegative, or −X is

monomial and −Y is inverse nonnegative. L is an onto preserver of minimal semipositivity if and

only if X and Y are monomial, or −X and −Y are monomial.

Our primary aim in this manuscript is to resolve the following conjecture due to Dorsey et al. [9]:

Conjecture 1.1. Let L : Mm,n → Mm,n be an invertible linear map. If L is an into preserver of

S(Rn+,Rm+ ), then L(A) = XAY for all A ∈Mm,n, where X is row positive and Y is inverse nonnegative.

Dorsey et al. had pointed out through an example that invertibility of the map L is crucial in the above

conjecture (see the example in Section 4 of [9]). They had also added that there was computational evidence

that the conjecture is true in the 2× 2 case, but had no proof nor a counterexample.

The purpose of this manuscript is twofold. The first one concerns resolving Conjecture 1.1. The second

part concerns linear preservers of the set S(K1,K2) (see the next section for definitions and notations). We

begin by recalling preliminaries about convex sets, nonnegative, and semipositive matrices. Other necessary

results on convex cones and positive operators are presented in a later section when we discuss linear

preservers of S(K1,K2). Our first result says that if an invertible linear map L preserves the set of semipositive

matrices and also maps every rank one semipositive matrix to a rank one (semipositive) matrix, then L is

a rank one preserver (Theorem 3.1) and consequently, L(A) = XAY for invertible matrices X and Y .

This result provides a hint for resolving Conjecture 1.1. Our main result says that an invertible linear map

L on Mm,n that preserves semipositive matrices is of the form L(A) = XAY for all A ∈ Mm,n for some

invertible row positive matrix X ∈Mm and inverse nonnegative matrix Y ∈Mn if and only if every rank one

semipositive matrix of a special form gets mapped to a rank one matrix (see Theorem 3.12). The structure of

invertible maps L on M2 that preserve semipositivity (Theorems 3.3) is discussed following Theorem 3.1. A

similar argument also works for maps on Mm,2. The proof is constructive and we deduce that L(A) = XAY

for some row positive matrix X and inverse nonnegative Y . The general case is taken up next. The proof

follows ideas that were verified for an invertible linear map L on M3 (and more generally on Mm,3,m ≥ 3)

that preserves semipositive matrices. Since the calculations are involved and lengthy, the details of the 3× 3

case are not included in the main part of the manuscript. We include these as an Appendix. The second part

of the manuscript concerns linear preservers of the set S(K1,K2). This section is subdivided into further

subsections as follows: (1) useful results, (2) linear preservers of S(K1,K2), (3) preservers of MS(K1,K2)

(see the next section for the definition), (4) general strong preservers of S(K1,K2), and (5) left semipositivity

and their preservers. Interesting connections between onto preservers of S(K1,K2) and into preservers of

nonnegativity are also brought out. To the best of our knowledge this appears new and completely settles

this problem both over all proper cones, including the nonnegative orthants.

Remark 1.2. We shall use the same notation for a linear map T : Rn → Rm and its matrix representa-

tion, which we assume throughout to be with respect to the standard basis of Rn and Rm, respectively.

2. Preliminary results. We present the preliminary results in this section.

2.1. Convex cones, nonnegative, and semipositive matrices. Let us recall that a subset K of

Rn is called a convex cone if K + K ⊆ K and αK ⊆ K for all α ≥ 0. K is said to be proper if it is

topologically closed, pointed (K ∩ −K = {0}), and has nonempty interior K◦. K is said to be polyhedral
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if K = X(Rm+ ) for some n × m matrix X and simplicial when X is invertible. The dual, K∗, is defined

as K∗ = {y ∈ Rn : 〈y, x〉 ≥ 0∀x ∈ K}, where 〈., .〉 denotes the usual Euclidean inner product on Rn.

When K is a convex cone in Rn such that K = K∗, we say that K is a self-dual cone in Rn. The most

well-known example of a proper (convex) self-dual cone is the nonnegative orthant in Rn: K = Rn+ = {x =

(x1, . . . , xn)t ∈ Rn : xi ≥ 0 ∀ 1 ≤ i ≤ n}. We assume that all cones in this manuscript are proper cones.

The following definitions, notations, and basic results are standard (see, for instance, [3]). The only

exception is Definition 2.2, which is a natural generalization to proper cones the notion of minimally semi-

positive matrices (see [12] for the definition).

Definition 2.1. For proper cones K1 and K2 in Rn and Rm, respectively, we have the following notions.

A ∈Mm,n is

1. (K1,K2)-nonnegative if A(K1) ⊆ K2.

2. (K1,K2)-semipositive if there exists a x ∈ K◦
1 such that Ax ∈ K◦

2 .

We denote the set of all matrices that are (K1,K2)-nonnegative by π(K1,K2). When K1 = K2 = K,

this will be denoted by π(K). Let us also denote the set of all matrices that are (K1,K2)-semipositive by

S(K1,K2). When K1 = K2 = K, this will be denoted by S(K).

Definition 2.2. Let A ∈Mm,n be (K1,K2)-semipositive. We say A is (K1,K2)-minimally semipositive

if A has a (K2,K1)-nonnegative left inverse.

The set of all (K1,K2)-minimally semipositive matrices will be denoted by MS(K1,K2).

Definition 2.3. A square matrix Y is K-inverse nonnegative if Y is invertible with Y −1 being K-

nonnegative.

3. Main results. The main results of this manuscript are presented in this section. As stated previously,

our aim in this manuscript is to resolve Conjecture 1.1. The primary motivation for this problem comes from

Theorems 2.4, 2.11, and 3.5 due to Dorsey et al. [9]. We assume that m ≥ n and n ≥ 2.

3.1. The nonnegative orthants case. We begin by proving that if L is an invertible linear preserver

of semipositive matrices that also maps every rank one semipositive matrix to a rank one (semipositive)

matrix, then L is in the standard form. It is obvious that if L(A) = XAY for some invertible row positive

matrix X and inverse nonnegative matrix Y , the map L has the property mentioned above.

3.1.1. A sufficient condition. For 0 6= x ∈ Rm and consider the set Ux := {xut : u ∈ Rn}, an

n-dimensional subspace of Mm,n consisting of matrices rank at most one.

Theorem 3.1. Let L : Mm,n →Mm,n be an invertible linear map. Assume that L satisfies the following

conditions:

1. L is an into preserver of S(Rn+,Rm+ ).

2. rank(L(A)) = 1, whenever rank(A) = 1 and A ∈ S(Rn+,Rm+ ).

Then L(A) = XAY for any A ∈Mm,n, where X ∈Mm is invertible and row positive and Y ∈Mn is inverse

nonnegative.
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Proof. The proof involves four steps.

Claim 1: For any x ∈ (Rm+ )◦ ∪ (−(Rm+ )◦), any 0 6= A ∈ L(Ux) has rank one.

Proof : Let x ∈ (Rm+ )◦. We discuss two cases here.

Case 1: Suppose u ∈ Rn \ (−Rn+). Then xut ∈ S(Rn+,Rm+ ) and so rank(L(xut)) = 1.

Case 2: 0 6= u ∈ −Rn+. In this case, x(−u)t ∈ S(Rn+,Rm+ ), and once again rank(L(x(−u)t)) = 1. A similar

conclusion holds for x ∈ (−Rm+ )◦.

Claim 2: For x ∈ (Rm+ )◦ ∪ (−(Rm+ )◦), L(Ux) = Uy for some y ∈ Rm.

Proof : Suppose the claim is not true. Without loss of generality, assume that there exist linearly independent

vectors u1, u2 ∈ Rn such that xut1, xut2 ∈ S(Rn+,Rm+ ), L(xut1) = z1q
t
1 and L(xut2) = z2q

t
2, where z1, z2 ∈ Rn+

are linearly independent and q1, q2 ∈ Rm. We then have L(x(u1 + u2)t) = L(xut1) + L(xut2) = z1q
t
1 + z2q

t
2.

Since rank(x(u1+u2)t) = 1, we have L(x(u1+u2)t) = z3q
t
3. Therefore, q1 and q2 must be linearly dependent.

We thus have a 2-dimensional subspace of Mm,n that is mapped to a 1-dimensional subspace of Mm,n. This

contradiction proves the claim.

Claim 3: For 0 6= z ∈ Rm, L(Uz) = Up for 0 6= p ∈ Rm.

Proof : If z ∈ (Rm+ )◦∪(−(Rm+ )◦), then we have L(Uz) = Up, for some p ∈ Rm (by Claim 2). If z belongs to the

complement of (Rm+ )◦∪(−(Rm+ )◦), then we can write z = z1−z2, for some linearly independent z1, z2 ∈ (Rm+ )◦.

Since z1 and z2 are linearly independent, there exist linearly independent p1 and p2 such that L(Uz1) = Up1
and L(Uz2) = Up2 . Suppose there exists q ∈ Rn such that L(z1q

t) = p1q
t
1 and L(z2q

t) = p2q
t
2, where q1 and

q2 are linearly independent. We then have L((z1+z2)qt) = p1q
t
1+p2q

t
2, a rank two matrix. This contradiction

(using Claim 1) proves that L(Uz) = Up, for some 0 6= p ∈ Rm.

We have thus proved that L preserves the set of rank 1 matrices in Mm,n. It now follows from Theorem 2

of [13] that L(A) = XAY or m = n and L(A) = XAtY , for all A ∈ Mm,n, for invertible matrices X and

Y . Since A 7→ At need not preserve semipositivity, there exist no invertible matrices X and Y such that

the map A 7→ XAtY preserves semipositivity. Therefore, the map A 7→ XAtY can be ruled out. Finally,

Theorem 2.4 of [9] yields the desired conclusion on X and Y .

Theorem 2 of [13] is actually a real version of the Marcus–Moyls result on rank one preservers (see

Theorem 1 and the Corollary following it in [15]). The idea behind Theorem 3.1 comes from [18]. It gives

us a sufficient condition to check for a map to preserve semipositivity. Note that Theorem 3.1 also holds

for m < n. We prove that if L is an invertible linear map on Mm,n that preserves semipositivity, then

any rank one semipositive matrix of the form Ai = xyti, where x = (x1, x2, . . . , xm)t ∈ Rm, and yi =

(0, . . . , yi, . . . , 0)t ∈ Rn, gets mapped to a rank one matrix. We exploit this to prove the result for n = 2.

3.1.2. The n = 2 case. Let us observe that a 2 × 2 matrix A is semipositive if and only if A has a

positive column or has one of the forms

A =

[
a −b
−c d

]
or A =

[
−b a

d −c

]
,

where a > 0, d > 0, b ≥ 0, c ≥ 0 and ad− bc > 0.
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Let us take the usual basis {Eij : i = 1, 2, j = 1, 2} of M2. For a linear map L on M2, let us write

down the matrix representation of L(Eij). It is then easy to write the matrix representation of any rank one

matrix A = xyt. We do this below.

Let L be a linear map on M2 and let A = xyt be a rank one matrix, where x = (x1, x2)t and y = (y1, y2)t.

We then have

L(A) =

[
(α1x1 + α3x2)y1 + (α2x1 + α4x2)y2 (β1x1 + β3x2)y1 + (β2x1 + β4x2)y2
(γ1x1 + γ3x2)y1 + (γ2x1 + γ4x2)y2 (δ1x1 + δ3x2)y1 + (δ2x1 + δ4x2)y2

]
,

where αi, βi, γi, δi, i = 1, . . . , 4 are fixed real numbers. In other words, we have

L(A) =

[
(α1x1 + α3x2) (β1x1 + β3x2)

(γ1x1 + γ3x2) (δ1x1 + δ3x2)

]
y1+

[
(α2x1 + α4x2) (β2x1 + β4x2)

(γ2x1 + γ4x2) (δ2x1 + δ4x2)

]
y2.

A similar form exists for n ≥ 3 that will be used later.

Theorem 3.2. Let L be an invertible linear map on M2 and L(S(R2
+)) ⊂ S(R2

+). If A1 = xyt1 ∈ S(R2
+)

and A2 = xyt2 ∈ S(R2
+), where x = (x1, x2)t,y1 = (y1, 0)t and y2 = (0, y2)t, then rank (L(A1)) = 1 and rank

(L(A2)) = 1. Moreover, L(A1) = uvty1 and L(A2) = pqty2, where u = ((α1x1 +α3x2), (γ1x1 + γ3x2))t, v =

(1,−α)t, p = ((β2x1 + β4x2), (δ2x1 + δ4x2))t, q = (−γ, 1)t,

[
α1 α3

γ1 γ3

]
≥ 0

[
β2 β4
δ2 δ4

]
≥ 0, α ≥ 0 & γ ≥ 0.

Proof. The proof involves several steps.

Claim 1: L(A1) and L(A2) are not minimally semipositive.

Suppose there exists a A1 = xyt1 ∈ S(R2
+) such that L(A1) is a minimally semipositive matrix. We know

that either L(A1) =

[
a −b
−c d

]
y1 or L(A1) =

[
−b a

d −c

]
y1, where a > 0, d > 0, b ≥ 0, c ≥ 0, and ad > bc.

Consider the matrix B =

[
−x1 x1y2
−x2 x2y2

]
, where y2 > 0. It is clear that B is semipositive. If the inverse

of L
([−x1 0

−x2 0

])
is negative, it is possible to choose a y2 > 0, sufficiently small, such that the inverse

of L(B) is nonpositive. It follows that L(B) /∈ S(R2
+). If the inverse of L

([−x1 0

−x2 0

])
is nonpositive, say

L
([−x1 0

−x2 0

])
=

[
−a b

0 −d

]
with a > 0, b > 0, d > 0, then L(B) =

[
−a b

0 −d

]
+

[
∗ ∗
f ∗

]
. If f ≥ 0,

then choose a sufficiently small y2 > 0 such that the inverse of L(B) is nonpositive, thereby making L(B)

not semipositive. If f < 0, then choose y2 > 0 such that the second row of L(B) is negative. This once

again makes L(B) not semipositive. This proves the claim. Thus, L(A1) must be a redundantly semipositive

matrix.

Claim 2: L(A1) cannot have a positive row.

If L(A1) has positive row, then by choosing y2 > 0 sufficiently small and by taking B =

[
−x1 x1y2
−x2 x2y2

]
∈

S(R2
+), we can show that L(B) contains nonpositive row and consequently will not be semipositive.
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We can thus assume without loss of generality that L(A1) =

[
a −b
c −d

]
y1, where a > 0, c > 0, b ≥ 0, d ≥ 0.

Thus, L(A1) =

[
α1x1 + α3x2 β1x1 + β3x2
γ1x1 + γ3x2 δ1x1 + δ3x2

]
y1.

Claim 3: (α1, α3)t and (β1, β3)t are linearly dependent.

Suppose (α1, α3)t and (β1, β3)t are linearly independent. Consider the invertible matrix W =

[
α1 α3

β1 β3

]
and

let d = (−d1,−d2)t < 0. Take B =

[
p1 x1y2
p2 x2y2

]
∈ S(R2

+), where p = (p1, p2)t is such that Wp = d, x1 > 0,

x2 > 0 and y2 > 0 is sufficiently small enough. It is then possible to make the first row of L(B) is negative,

thereby making L(B) not semipositive. This contradiction proves the claim.

Since α1x1 + α3x2 = a and β1x1 + β3x2 = −b, there exists α ≥ 0 such that (β1, β3)t = −α(α1, α3)t.

Similarly, we can show that (δ1, δ3)t = −β(γ1, γ3)t, where β ≥ 0.

Claim 4: The matrix

[
α1 α3

γ1 γ3

]
≥ 0.

If (α1, α3)t contains both positive and negative entries, then there exists (z1, z2)t > 0 with (α1, α3)(z1, z2)t =

0. Then, by taking the semipositive matrix B =

[
z1 0

z2 0

]
, we see that L(B) contains a zero row. Thus,

L(B) /∈ S(R2
+), which implies that (α1, α3)t ≥ 0. Similarly, we can show that (γ1, γ3)t ≥ 0.

Claim 5: α = β.

Suppose α 6= β. We first consider the β > α case; the other case is similar.

Case 1: β − α > 0.

Since L is invertible, the matrix V =

[
α1 α3

γ1 γ3

]
is invertible. Let (q1, q2)t ∈ R2 such that V (q1, q2)t = (−1, 1)t.

Let B =

[
q1 x1y2
q2 x2y2

]
∈ S(R2

+), where x1 and x2 are positive and y2 > 0. As in Claim 1, we can choose y2 > 0

that is sufficiently small such that L(B) either has a nonpositive inverse or a nonpositive row, thereby making

it not semipositive. Thus, this case does not arise.

Case 2: β − α < 0. This can be dealt with similarly as in Case 1.

Hence, we have L(A1) = uvty1.

By the previous argument, we can show that either L(A2) = jkty2, where j = ((α2x1 + α4x2), (γ2x1 +

γ4x2))t and k = (1,−γ)t or L(A2) = pqty2.

Claim 6: L(A2) cannot be in the form jkty2.

Suppose L(A2) = jkty2. It can be easily seen that L(A1+A2) = uvty1+jkty2. As L is invertible,

[
1 1

−α −γ

]
is also invertible. Let us take (−d1 − d2)t < 0 and discuss two cases.
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Case 1: −γ + α > 0.

There exists (y1,−y2)t ∈ R2, where y1 and y2 are positive such that (α1x1+α3x2)(y1)+(α2x1+α4x2)(−y2) =

−d1 and (α1x1 + α3x2)(y1)(−α) + (α2x1 + α4x2)(−y2)(−γ) = −d2. Observe now that the first row of

L
([y1x1 −y2x1
y1x2 −y2x2

])
is negative.

Case 2: −γ + α < 0.

There exists (−y1, y2)t ∈ R2, where y1 and y2 are positive, such that (α1x1 + α3x2)(−y1) + (α2x1 +

α4x2)(y2) = −d1 and (α1x1 +α3x2)(−y1)(−α) + (α2x1 +α4x2)(y2)(−γ) = −d2. This makes the first row of

L
([−y1x1 y2x1
−y1x2 y2x2

])
is negative. Thus, L(A2) must be in the form pqty2.

Combining the above claims, the theorem follows.

We now prove our main theorem.

Theorem 3.3. Let L be an invertible linear map on M2. If L is an into preserver of S(R2
+), then

L(A) = XAY , for some invertible row positive X ∈M2 and an inverse nonnegative Y ∈M2.

Proof. By Theorem 3.2, we have L(A1) =

[
(α1x1 + α3x2) −α(α1x1 + α3x2)

(γ1x1 + γ3x2) −α(γ1x1 + γ3x2)

]
y1 and L(A2) =[

−γ(β2x1 + β4x2) (β2x1 + β4x2)

−γ(δ2x1 + δ4x2) (δ2x1 + δ4x2)

]
y2, where

[
α1 α3

γ1 γ3

]
and

[
β2 β4
δ2 δ4

]
are nonnegative matrices, α ≥ 0

and γ ≥ 0.

Claim 1: (α1, α3)t and (β2, β4)t are linearly dependent.

Suppose not. We consider two cases. Let B =

[
−α3 β4
α1 −β2

]
. If det(B) < 0, then B ∈ S(R2

+) and the first

row of L(B) is zero. If instead det(B) > 0, then −B ∈ S(R2
+) and the first row of L(−B) is zero. Thus,

(α1, α3)t and (β2, β4)t are linearly dependent. This proves the claim.

Similarly, we can show that (γ1, γ3)t and (δ2, δ4)t are linearly dependent. Notice that (β2, β4)t = θ(α1, α3)t

and (δ2, δ4)t = λ(γ1, γ3)t, where θ > 0 and λ > 0.

Claim 2: θ = λ.

Observe that L
([a b

c d

])
=

[
α1a+ α3c− γθ(α1b+ α3d) −α(α1a+ α3c) + θ(α1b+ α3d)

γ1a+ γ3c− γλ(γ1b+ γ3d) −α(γ1a+ γ3c) + λ(γ1b+ γ3d)

]
.

Suppose θ 6= λ. We contradict the λ > θ case; the other case is similar. Say λ > θ, and let d1, d2 > 0. We can

find (u1, u2)t ∈ R2 and (v1 v2)t ∈ R2 such that α1u1 + α3u2 = −d1, γ1u1 + γ3u2 = d2, α1v1 + α3v2 = d1
θ

and γ1v1 + γ3v2 = −d2λ . It can be easily verified that B =

[
u1 v1
u2 v2

]
is a minimally semipositive matrix.

However, L(B) =

[
(1 + γ)(−d1) (1 + α)d1

(1 + γ)d2 (1 + α)(−d2)

]
/∈ S(R2

+).
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Finally, we get L
([a b

c d

])
=

[
α1 α3

γ1 γ3

] [
a b

c d

] [
1 −α

−γθ θ

]
. Observe that X =

[
α1 α3

γ1 γ3

]
is an invert-

ible row positive matrix and Y =

[
1 −α

−γθ θ

]
is inverse nonnegative (see Theorem 2.4, [9]).

Remark 3.4. Before proceeding further, let us write down the matrix representation of L(Ai) in the

general case, where Ai = xyti, with x = (x1, x2, . . . , xm)t ∈ Rm and yi = (0, . . . , yi, . . . , 0)t ∈ Rn. Let L be a

linear map on Mm,n. We then have

L(Ai) =


s1 s2 · · · sn
sn+1 sn+2 · · · s2n

... · · · · · ·
...

s(m−1)n+1 s(m−1)n+2 · · · smn

 yi,
where sk = lk,ix1 + lk,n+ix2 + · · · + lk,(m−1)n+ixm and li,j , i = 1, . . . ,mn, j = 1, . . . ,mn are fixed real

numbers.

The above representation is obtained similar to the n = 2 case by taking the usual basis Eij of Mm,n.

Remark 3.5. Letting n = 2 in Remark 3.4, we observe that the arguments of Theorems 3.2 and 3.3

carry over for invertible maps on Mm,2,m ≥ 2 that preserve semipositivity. Recall that when m ≥ 2, an

m× 2 matrix is semipositive if and only if every 2× 2 submatrix is semipositive. We thus have the following

theorem.

Theorem 3.6. Let L be an invertible linear map on Mm,2, where m ≥ 2. Then,

1. rank (L(Ai)) = 1, where Ai is as above.

2. L(A) = XAY , for some invertible row positive X ∈Mm and an inverse nonnegative Y ∈M2.

3.1.3. The general case: m ≥ n. We assume that m ≥ n. As in the 2 × 2 case, the first step is

to prove that a rank one semipositive matrix of the form Ai (as described in REMARK 3.4) does not get

mapped to a minimally semipositive matrix. For simplicity, we present a proof in the 3 × 3 case, which

extends to any n× n matrix. The reduction to m× n case follows as an m× n matrix is semipositive if and

only if every n × n submatrix is semipositive. Recall that a square matrix A is said to be reducible if it is

permutation similar to a matrix of the form [
A11 A12

0 A22

]
,

where A11 and A22 are square and nonzero matrices. A is said to be irreducible if it is not reducible. Two

matrices A and B are said to be permutation equivalent if there exist permutation matrices P and Q such

that A = PBQ. A square matrix A is said to be partially decomposable if it is permutation equivalent to

a matrix of the form given above. Otherwise A is said to be fully indecomposable. One can show that A

is fully indecomposable if and only if PA is irreducible for every permutation matrix P . If A is partially

decomposable, then A is permutation equivalent to
A11 A12 · · · A1k

0 A22 · · · A2k

... · · ·
. . .

...

0 · · · 0 Akk

 ,
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where the Aii are either 1× 1 zero matrices or are fully indecomposable. We shall use the following notions

and results from [11].

• (Corollary 1, [11]) If an n× n sign pattern matrix B is fully indecomposable, then the following are

equivalent.

1. B is inverse nonnegative.

2. B is inverse positive.

• (Theorem 2, [11]) Suppose B is an n × n decomposable sign pattern matrix in the following block

form B =


B11 B12 . . . B1k

0 B22 . . . B2k

0 . . . B3k

...
...

...

0 . . . Bkk

, where each Bii is square and either fully indecomposable or a

1× 1 zero matrix. Then B is inverse nonnegative if and only if

1. each (fully indecomposable) sign pattern matrix Bii, i = 1, . . . , k is inverse nonnegative.

2. no submatrix of the form
[
Bi,i+1 . . . Bij

]
or

 Bij
...

Bj−1,j

 is nonnegative and nonzero, 1 ≤ i <

j ≤ k.

Theorem 3.7. Let L be an invertible linear map on M3 that preserves semipositive matrices. Consider

the rank one matrix A1. If A1 is semipositive, then L(A1) cannot be a minimally semipositive matrix.

Proof. Suppose A1 =

x1x2
x3

 [y1 0 0
]

is a rank one semipositive matrix, so that xi > 0 for i = 1, 2, 3

and y1 > 0. If L(A1) is minimally semipositive, then it is inverse nonnegative. We then have the following

cases.

Case 1: Suppose L(A1) is fully indecomposable.

In this case, it follows from Corollary 1, [11] that L(A1) will have a positive inverse. Consider the semipositive

matrix B =

x1x2
x3

 [−1 y2 0
]
, where y2 > 0. Then L(B) = L

(x1x2
x3

 [−1 0 0
] )

+L
(x1x2

x3

 [0 y2 0
] )

.

The inverse of the first term is negative, whereas the second term is semipositive. It is now possible to choose

a y2, sufficiently small, so that the inverse of L(B) is nonpositive. This forces L(B) /∈ S(R3
+).

Case 2: Suppose L(A1) is partly decomposable and has the form

L(A1) =

 a −b −f1
−c d −f2

0 0 e

, where a, b, c, and d are positive, f1 and f2 are nonnegative and ad− bc > 0.

Consider the matrix B as in Case 1. Choose y2 > 0 and sufficiently small so that L(B) =

−a1 b1 f∗1
c1 −d1 f∗2
∗ ∗ −e1

,

where a1, b1, c1, d1 and, e1 are positive and f∗1 and f∗2 are nonnegative. In this case, it is easy to check that

L(B) cannot be minimally semipositive. L(B) cannot be a redundantly semipositive matrix as well, as no

3× 2 submatrix is semipositive.
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Case 3: Suppose L(A) is partly decomposable and has the form L(A) =

a −f1 −f2
0 d −f3
0 0 e

, where a, d, and e

are positive and f1, f2, and f3 are nonnegative. This case can be dealt with similar to Case 2.

Combining everything, we see that L(A1) cannot be a minimally semipositive matrix.

Remark 3.8. It follows from the above proof that L(A2) and L(A3) cannot be mapped to minimally

semipositive matrices as well. Moreover, the above proof works for any n ≥ 4 with appropriate modifications

as well as for the rectangular case.

We have thus proved that no rank one semipositive matrix of the form Ai can be mapped to a minimally

semipositive matrix. We are now ready to prove our main results for maps on Mm,n, when m ≥ n ≥ 3.

Theorem 3.9. Let A1 be the rank one matrix described earlier. If A1 is semipositive and if L is an

invertible linear map on Mm,n that preserves semipositivity, then the matrix

C1 =


l1,1 l1,(n+1) . . . l1,(m−1)n+1

l2,1 l2,(n+1) . . . l2,(m−1)n+1

...
... . . .

...

ln,1 ln,(n+1) . . . ln,(m−1)n+1

 ,
has rank one.

Proof. Suppose C1 has rank n. For z = −(z1, . . . , zn)t < 0, choose a vector q = (q1, . . . , qm)t such that

C1q = z. Consider the matrix B =


q1 x1y2 0 . . . 0

q2 x2y2 0 . . . 0
...

...
... . . .

...

qm xmy2 0 . . . 0

, where y2 > 0. Then, B is semipositive as it

contains a positive column (recall that A1 is semipositive). We then have L(B) =


−z1 −z2 . . . −zn
∗ ∗ . . . ∗
...

...
...

...

∗ ∗ . . . ∗

 +

y2L
(

0 x1 0 . . . 0

0 x2 0 . . . 0
...

...
... . . .

...

0 xm 0 . . . 0

). The second term in the above expression is semipositive as L preserves semi-

positivity. Choosing y2 sufficiently small, it is possible to make L(B) not semipositive. Thus, C1 cannot have

rank n.

Consider the matrix Ck =


l1,k l1,(n+k) . . . l1,(m−1)n+k

l2,k l2,(n+k) . . . l2,(m−1)n+k

...
... . . .

...

ln,k ln,(n+k) . . . ln,(m−1)n+k

. Let us consider the n ×mn matrix C =

[C1|C2|. . . |Cn]. Since L is an invertible map, C has rank n. Suppose C1 has rank n− 1. Assume without loss

of generality that [C1|C2] has rank n. For z = −(z1, . . . , zn)t < 0, choose a p ∈ R2m such that [C1|C2]p = z.
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Consider the semipositive matrix B =


p1 pm+1 x1y3 0 . . . 0

p2 pm+2 x2y3 0 . . . 0
...

...
...

... . . .
...

pm p2m xmy3 0 . . . 0

, where y3 > 0. By choosing y3

sufficiently small, it is possible to make L(B) not semipositive (the argument is similar to the one used in

the previous step). Thus, C1 cannot have rank n − 1. Proceeding analogously, we see that C1 cannot have

rank n− 2 and so on, thereby proving that the rank of C1 is 1.

We now prove that if L is an invertible map on Mm,n that preserves semipositivity, then L(Ai) has rank

one for each i = 1, . . . , n.

Theorem 3.10. Let L be an invertible map on Mm,n that preserves semipositivity. Suppose for each

i = 1, . . . , n, Ai is semipositive. Then, L(Ai) has rank one for each i = 1, . . . , n.

Proof. We will prove the result for A1. A similar argument works for i = 2, . . . , n. We indicate the

steps below, where each successive step assumes the previous one. We have already proved that the theorem

when n = 2. Recall that L(A1) is a redundantly semipositive matrix. The argument presented below has

been verified for n = 3; since the calculations are very lengthy, we are not including them here and a brief

explanation is included as an Appendix when n = 3. Before proceeding further, let us denote by P1, . . . , Pm
the following numbers:

• P1 := l1,1x1 + l1,n+1x2 + · · ·+ l1,(m−1)n+1xm
• P2 := ln+1,1x1 + ln+1,n+1x2 + · · ·+ ln+1,(m−1)n+1xm
• . . .

• . . .

• Pm := l(m−1)n+1,1x1 + l(m−1)n+1,n+1x2 + · · ·+ l(m−1)n+1,(m−1)n+1xm.

1. Step 1: The first step is Theorem 3.9.

2. Step 2: Deduce that L(A1) contains a positive column. This involves several steps and the calcula-

tions are involved and lengthy even in the n = 3 case. See the Appendix for a brief explanation.

3. Step 3: Using the expressions P1, . . . , Pm, Steps 1 and 2 and assuming that the first column of L(A1)

is positive, we write L(A1) as

L(A1) =


P1 α1,1P1 . . . α1,n−2P1 α1,n−1P1

P2 α2,1P2 . . . α2,n−2P2 α2,n−1P2

...
... . . .

...
...

Pm αm,1Pm . . . αm,n−2Pm αm,n−1Pm

, where αi,j ∈ R.

4. Step 4: Consider the matrix E :=


α1,1 . . . α1,n−2 α1,n−1

α2,1 . . . α2,n−2 α2,n−1

...
... . . .

...

αm,1 . . . αm,n−2 αm,n−1

. If the matrix E is semipositive,

then L(A1) has rank one. Therefore, L(A1) =


P1

P2

...

Pm

 [1 α1,1 . . . α1,n−1

]
.
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5. Step 5: If the matrix −E is semipositive, whereas E is not, then again L(A1) has rank one and

L(A1) =


P1

P2

...

Pm

 [1 α1,1 . . . α1,n−1

]
.

6. Step 6: Verify that L(A2) has a positive column. If both E and −E are not semipositive, then

L(A1) has rank one. The proof of this goes as follows. Assuming that the second column of L(A2)

is positive, we have L(A2) =


β1,1Q1 Q1 . . . β1,n−1Q1

β2,1Q2 Q2 . . . β2,n−1Q2

...
... . . .

...

βm,1Qm Qm . . . βm,n−1Qm

. Choose a vector p ∈ Rm such

that L
(

p1 0 . . . 0

p2 0 . . . 0
...

... . . .
...

pm 0 . . . 0

) =


1 α1,1 α1,2 . . . α1,n−1

1 α2,1 α2,2 . . . α2,n−1

...
...

... . . .
...

1 αm,1 αm,2 . . . αm,n−1

. If A2 is semipositive, then the ma-

trix


−p1 0 . . . 0

−p2 0 . . . 0
...

... . . .
...

−pm 0 . . . 0

 + A2 is semipositive and so is its image under L. Note that it is pos-

sible to choose a y2 > 0, so that the first column of the image of the above matrix under L

is negative. Let q ∈ Rm be such that L
(

p1 0 . . . 0

p2 0 . . . 0
...

... . . .
...

pm 0 . . . 0

 − y2


0 q1 0 . . . 0

0 q2 0 . . . 0
...

...
... . . . 0

0 qm
... . . . 0


)

equals


1− β1,1y2 α1,1 − y2 . . . α1,n−1 − β1,n−1y2
1− β2,1y2 α2,1 − y2 . . . α2,n−1 − β2,n−1y2

...
... . . .

...

1− βm,1y2 αm,1 − y2 . . . αm,n−1 − βm,n−1y2

. It is now possible to choose a sufficiently small

y2 > 0 so that the first column of the above matrix is positive and the matrix

−


α1,1 − y2 . . . α1,n−1 − β1,n−1y2
α2,1 − y2 . . . α2,n−1 − β2,n−1y2

... . . .
...

αm,1 − y2 . . . αm,n−1 − βm,n−1y2

 is semipositive. From the previous case, it follows that

α1,1 − y2 = α2,1 − y2 = · · · = αm,1 − y2, which in turn yields α1,1 = α2,1 = · · · = αm,1 = 0.

Similarly, we can show that α1,i = α2,i = · · · = αm,i = 0 for i = 2, . . . , n − 1. We finally have

L(A1) =


P1

P2

...

Pm

 [1 0 . . . 0
]
.

This proves the theorem.

We now prove our main result concerning the structure of an into preserver of semipositivity.
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Theorem 3.11. For m ≥ n, let L be an invertible linear map on Mm,n such that L(S(Rn+,Rm+ )) ⊂
S(Rn+,Rm+ ). Then, L(A) = XAY for all A ∈Mm,n, where X ∈Mm is an invertible row positive matrix and

Y ∈Mn is an inverse nonnegative matrix.

Proof. We know from Theorem 3.10 that L(Ai) has rank one for each i = 1, . . . , n. Suppose the first and

second columns of L(A1) and L(A2), respectively, are positive. Let L(A1) =


P1

P2

...

Pm

 [1 α1,1 . . . α1,n−1

]

and L(A2) =


Q1

Q2

...

Qm

 [α2,1 1 . . . α2,n−1

]
.

Claim 1: The vectors (l1,1, l1,n+1, . . . , l1,(m−1)n+1)t and (l2,2, l2,n+2, . . . , l2,(m−1)n+2)t are linearly depen-

dent. If not, then there will exist two vectors u = (u1, . . . , um)t and v = (v1, . . . , vm)t in Rm such that

[
l2,2 l2,n+2 . . . l2,(m−1)n+2

l1,1 l1,n+1 . . . l1,(m−1)n+1

]
u1 v1
u2 v2
...

...

um vm

 =

[
1 0

0 1

]
. Since

[
l2,2 l2,n+2 . . . l2,(m−1)n+2

l1,1 l1,n+1 . . . l1,(m−1)n+1

]
is a rank two

nonnegative matrix, we see that the matrix B =


u1 v1 0 . . . 0

u2 v2 0 . . . 0
...

...
... . . .

...

um vm 0 . . . 0

 is an m × n semipositive matrix.

However, L(B) =


0 0 . . . 0

∗ ∗ . . . ∗
...

... . . . ∗
∗ ∗ . . . ∗

 is not semipositive. Therefore, there exists a positive real number λ1,1 such

that (l2,2, l2,n+2, . . . , l2,(m−1)n+2)t = λ1,1(l1,1, l1,n+1, . . . , l1,(m−1)n+1)t. Proceeding in a similar way, it can be

shown that L(A2) =


λ1,1P1

λ2,1P2

...

λm,1Pm

 [α2,1 1 . . . α2,n−1

]
, where λj,1 > 0 for j = 1, . . . ,m. More generally, it

can be shown that L(Ai) =


λ1,i−1P1

λ2,i−1P2

...

λm,i−1Pm

 [αi,1 αi,2 . . . αi,n
]
, where some αi,k > 0, i = 3, 4, . . . , n.

Claim 2: λ1,i−1 = λ2,i−1 = · · · = λm,i−1, i = 2, . . . , n.

We prove that λ1,1 = λ2,1 and skip the remaining arguments, as the idea is the same. Assume

that λ1,1 > λ2,1. Choose positive numbers d1, d2 and form the matrix B defined as
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l1,1 l1,n+1 . . . l1,(m−1)n+1

ln+1,1 ln+1,n+1 . . . ln+1,(m−1)n+1

...
... . . .

...

l(m−1)n+1,1 l(m−1)n+1,n+1 . . . l(m−1)n+1,(m−1)n+1


−1



d1
−d1
λ1,1

0 0 . . . 0

−d2 d2
λ2,1

0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

0 0 0 0 . . . 1


. It is clear that B is

a semipositive matrix. But L(B) =



(1− α2,1)d1 (α1,1 − α2,1)d1 . . . (α1,n−1 − α2,n−1)d1
−(1− α2,1)d2 −(α1,1 − α2,1)d2 . . . −(α1,n−1 − α2,n−1)d2

∗ ∗ . . . ∗
∗ ∗ . . . ∗
...

... . . .
...

∗ ∗ . . . ∗


, which

is not semipositive (notice that each 2 × 2 submatrix of the matrix formed from the first rows of

L(B) is not semipositive). Therefore, λ1,1 ≤ λ2,1. Similarly, it can be proved that λ1,1 ≥ λ2,1.

Consequently, λ1,1 = λ2,1. Proceeding this way, it can be seen that λ1,i−1 = λ2,i−1 = · · · = λm,i−1, i =

2, . . . , n. We finally have L(A) = XAY for any A ∈ Mm,n, where X and Y are the matrices

X =


l1,1 l1,n+1 . . . l1,(m−1)n+1

ln+1,1 ln+1,n+1 . . . ln+1,(m−1)n+1

...
... . . .

...

l(m−1)n+1,1 l(m−1)n+1,n+1 . . . l(m−1)n+1,(m−1)n+1

, a row positive matrix and

Y =


1 α1,1 . . . α1,n−1

λ1,1α2,1 λ1,1 . . . λ1,1α2,n−1

λ1,2α3,1 λ1,2α3,2 . . . λ1,2α3,n

...
... . . .

...

λ1,n−1αn,1 λ1,n−1αn,2 . . . λ1,n−1αn,n

. Since L preserves semipositivity, it follows from Theo-

rem 2.4 of [9] that Y is inverse nonnegative.

Summarizing everything, we have proved the following theorem.

Theorem 3.12. Let L be an invertible linear map on Mm,n such that L(S(Rn+,Rm+ )) ⊂ S(Rn+,Rm+ )

(m ≥ n ≥ 2). Then, L(A) = XAY for all A ∈ Mm,n, where X ∈ Mm is an invertible row positive matrix

and Y ∈ Mn is an inverse nonnegative matrix if and only if each Ai that is semipositive gets mapped to a

rank one matrix.

3.2. The proper cones case. We begin this section with useful results needed in subsequent sections.

These include the preserver properties of S(K1,K2) and MS(K1,K2) under a specific map and the existence

of a basis for Mm,n from either of the above sets. Recall that all the cones are assumed to be proper.

3.2.1. Useful results. We begin with the following result known as a Theorem of the Alternative.

Theorem 3.13 ([5, Theorem 2.8]). For proper cones K1 and K2 in Rn and Rm, respectively, and an

m× n matrix A, one and only one of the following alternatives holds.

(a) There exists x ∈ K1 such that Ax ∈ K◦
2 .

(b) There exists 0 6= y ∈ K∗
2 such that −Aty ∈ K∗

1 .
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It is a fairly well-known result that the closure of the interior of a convex subset K of Rn equals the

closure of K. We shall use this in the proofs later on. For completeness, we present a proof.

Lemma 3.14. Let F be a convex set in Rn with a nonempty interior. Then, F ◦ = F .

Proof. We only need to prove that F ⊂ F ◦. If a ∈ F, b ∈ F , then the set {(1/n)a+ (1− 1/n)b : n ∈ N}
is contained in the interior of F . Moreover, elements of the above set converge to b. Thus, b ∈ F ◦.

The following is a well-known fact concerning nonnegative matrices.

Lemma 3.15 ([10, Corollary 3.3]). Let K1 and K2 be proper cones in Rn and Rm, respectively, and

S : Rn → Rm be a linear map such that S(K1) ⊆ K2. Then St(K∗
2 ) ⊆ K∗

1 .

We now prove that given any element v of a proper cone K, there is a subcone K1 of K which is simplicial

and containing the point v.

Lemma 3.16. Let K be a proper cone in Rn and v ∈ K. Then there exists an invertible T ∈ π(Rn+,K)

such that Tx = v for some x ∈ Rn+.

Proof. If n = 2, then K is a simplicial cone. Therefore, T (R2
+) = K for some invertible T ∈ M2(R). In

such a case, the result is obvious.

Let n ≥ 3 and v ∈ K. Since K is a proper cone, there exits v2 ∈ K which is linearly independent of v.

Suppose for every z ∈ K, z = αv2 + βv for some α, β ∈ R. Then K ( span{v, v2}, a proper subspace of Rn.

Since such a subspace has empty interior and K◦ 6= ∅, we get a contradiction. Thus, there exists v3 ∈ K
such that {v, v2, v3} is linearly independent. Proceeding by induction, we get a basis {v, v2, . . . , vn} for Rn

such that v, v2, . . . , vn ∈ K. Take T = [v v2 · · · vn]. Then, Tx = v, where x = [1 0 · · · 0]t ∈ Rn+. Since K is a

convex cone, T ∈ π(Rn+,K). This completes the proof.

Let us recall the following result from [1].

Theorem 3.17 ([1, Theorem 2.4]). For proper cones K1,K2 in Rn, let S ∈ π(K1,K2) be an invertible

linear map on Rn. If a matrix A is K1-semipositive, then the matrix B = SAS−1 is K2-semipositive.

Conversely, if the cones are self-dual and if C is K2-semipositive, then there exists a K1-semipositive matrix

A such that C = (St)−1ASt.

The following will be used subsequently. We state it without proof.

Lemma 3.18. Let K1 and K2 be proper cones in Rn and Rm, respectively. Then the following hold:

1. Let Q1 ∈ π(K2,Rm+ ) with Q1((K2)◦) ⊆ (Rm+ )◦ and an invertible Q2 ∈ π(K1,Rn+). If A ∈ S(K1,K2),

then Q1AQ
−1
2 ∈ S(Rn+,Rm+ ).

2. Let S1 ∈ π(Rm+ ,K2) with S1((Rm+ )◦) ⊆ (K2)◦ and an invertible S2 ∈ π(Rn+,K1). If B ∈ S(Rn+,Rm+ ),

then S1BS
−1
2 ∈ S(K1,K2).

The following two results are similar to that of Theorem 3.17 for MS(K1,K2).

Lemma 3.19. For m > n, let K1 and K2 be proper cones in Rn and Rm, respectively, with K2 simplicial.

1. If S and T are invertible maps on Rn and Rm such that S ∈ π(Rn+,K1) and T (Rm+ ) = K2, then

TAS−1 ∈MS(K1,K2) whenever A ∈Mm,n is minimally semipositive.

2. If S and T are invertible maps on Rn and Rm such that S ∈ π(Rn+,K∗
1 ) and T (Rm+ ) = K2, then

T−1B(St)−1 is minimally semipositive whenever B ∈MS(K1,K2).
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Proof. We prove only the first statement as the proof of the second statement is similar. Observe that

TA ∈ S(Rn+,K2). Let B ∈ Mn,m be a nonnegative left inverse of A. Then SBT−1 ∈ π(K2,K1) is a left

inverse of TAS−1. Therefore, it is enough to prove that TAS−1 ∈ S(K1,K2). Suppose TAS−1 /∈ S(K1,K2).

By the Theorem of the Alternative (Theorem 3.13), there exists 0 6= x ∈ K∗
2 such that −(St)−1AtT tx ∈ K∗

1 .

We then have −AtT tx ∈ Rn+ which implies that TA /∈ S(Rn+,K2), a contradiction.

Observe that we need not assume that the cone K2 is simplicial if m = n, where we have the following

result: For proper cones K1 and K2 in Rn, let S ∈ π(Rn+,K1) and T ∈ π(Rn+,K∗
2 ) be invertible matrices.

Then, (T t)−1AS−1 ∈ MS(K1,K2) whenever A is minimally semipositive. Similarly, if S ∈ π(Rn+,K∗
1 )

and T ∈ π(Rn+,K2) are invertible matrices, then T−1B(St)−1 is minimally semipositive whenever B ∈
MS(K1,K2). We skip the proof as it is similar to the above lemma.

Before proceeding further, let us mention the following useful results that follow from Lemmas 3.18 and

3.19.

Observation 3.20. For A ∈ Mm,n and proper cones K1 and K2 in Rn and Rm, respectively, the

following hold:

1. There exists B,C ∈ S(K1,K2) such that A = B + C.

2. There exists C1, C2 ∈ MS(K1,K2) such that A = C1 − C2, if in addition the cone K2 is simplicial

when m > n.

We end this subsection by proving that Mm,n contains a basis from S(K1,K2) and MS(K1,K2). The

following result was proved recently by P. N. Choudhury et al. [6].

Theorem 3.21 ([6, Theorem 3.1]). There is a basis of minimally semipositive matrices for Mm,n,

m ≥ n.

Below is the proof that Mm,n contains a basis from both S(K1,K2) and MS(K1,K2).

Theorem 3.22. Given proper cones K1 and K2 in Rn and Rm, respectively, the following hold:

1. S(K1,K2) contains a basis for Mm,n.

2. MS(K1,K2) contains a basis for Mm,n, if in addition the cone K2 is simplicial, when m > n.

Proof. (1) From [9], we know that S(Rn+,Rm+ ) contains a basis for Mm,n. Let {Aij} ⊂ S(Rn+,Rm+ ) be a

basis for Mm,n. Then by Lemma 3.18(2), {Bij = TAijS
−1} ⊂ S(K1,K2) will be a basis for Mm,n, where

S ∈ π(Rn+,K1) and T ∈ π(Rm+ ,K2) are invertible matrices with T ((Rm+ )◦) ⊆ (K2)◦.

(2) By Theorem 3.21, let {Ãij} be a collection of minimally semipositive matrices that form a basis for

Mm,n. Then by Lemma 3.19, {B̃ij = TÃijS
−1} ⊂ MS(K1,K2) is a basis for Mm,n, where S ∈ π(Rn+,K1)

and T (Rm+ ) = K2 are invertible matrices.

We are now in a position to tackle preservers of S(K1,K2). Recall the following.

Definition 3.23. A linear map L on Mm,n is an onto preserver of S if L(S) = S.

We shall use the following lemma in our proofs (see [8] for details).

Lemma 3.24. If S contains a basis for Mm,n, then L is an onto preserver of S if and only if L and L−1

are into preservers of S.
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3.2.2. Preservers of S(K1,K2). We begin this section with results that will be used in the proof of

Theorem 3.29.

Lemma 3.25. Let X ∈Mn. If SXT ∈ π(Rn+) for all invertible matrices T ∈ π(Rn+,K) and S ∈ π(K,Rn+),

then X ∈ π(K).

Proof. Let v ∈ K. By Lemma 3.16, there exists T ∈ π(Rn+,K) such that Tx = v for some x ∈ Rn+.

We have SXTx = SXv ∈ Rn+ for all invertible S ∈ π(K,Rn+). Therefore, 〈SXv, u〉 = 〈Xv, Stu〉 ≥ 0 for all

u ∈ Rn+ and all invertible S ∈ π(K,Rn+). Let us take p ∈ K∗. By Lemma 3.16, there exists an invertible

T1 ∈ π(Rn+,K∗) such that T1y = p for some y ∈ Rn+. In particular, 〈Xv, T1y〉 = 〈Xv, p〉 ≥ 0. Therefore, we

get Xv ∈ K.

Recall that a square matrix A is said to be row positive if A is nonnegative with a nonzero entry in each

row.

Lemma 3.26. Let X ∈ Mn. If SXT is row positive for all T ∈ π(Rn+,K) and S ∈ π(K,Rn+) with

T ((Rn+)◦) ⊆ K◦ and S(K◦) ⊆ (Rn+)◦, then X(K◦) ⊆ K◦.

Proof. Let v ∈ K◦. Take T = [ 1nv · · ·
1
nv]. We see that T ∈ π(Rn+,K) with T ((Rn+)◦) ⊆ K◦ and Tx = v,

where x = [1 · · · 1]t ∈ (Rn+)◦. We have SXTx = SXv ∈ (Rn+)◦ for all S ∈ π(K,Rn+) with S(K◦) ⊆ (Rn+)◦.

Then, 〈SXv, u〉 = 〈Xv, Stu〉 > 0 for all 0 6= u ∈ Rn+ and S ∈ π(K,Rn+) with S(K◦) ⊆ (Rn+)◦. Let us

take 0 6= p ∈ K∗ and T1 = [p q · · · q], where q ∈ (K∗)◦. It is easy to verify that T1 ∈ π(Rn+,K∗) with

T ((Rn+)◦) ⊆ K◦ and T1y = p, where y = [1 0 · · · 0]t ∈ Rn+. In particular, 〈Xv, T1y〉 = 〈Xv, p〉 > 0. Therefore,

we get Xv ∈ K◦.

The main theorems of this section are proved below.

Theorem 3.27. Let S2 ∈ π(Rn+,K1) and Q2 ∈ π(K1,Rn+) be invertible matrices and S1 ∈ π(Rm+ ,K2)

and Q1 ∈ π(K2,Rm+ ) with S1((Rm+ )◦) ⊆ K◦
2 and Q1(K◦

2 ) ⊆ (Rm+ )◦, respectively. Let T1(A) = Q1AQ
−1
2 and

T2(A) = S1AS
−1
2 . If L: Mm,n → Mm,n is an into preserver of S(K1,K2), then L1 = T1LT2 is an into

preserver of S(Rn+,Rm+ ).

Proof. Let A ∈ S(Rn+,Rm+ ). By Lemma 3.18, T2(A) ∈ S(K1,K2). Then LT2(A) ∈ S(K1,K2), since

L(S(K1,K2)) ⊂ S(K1,K2). By Lemma 3.18, we finally have T1LT2(A) ∈ S(Rn+,Rm+ ).

Remark 3.28. Suppose the map L as well as the matrices S1 and Q1 are invertible (so that the maps

T1 and T2 are invertible), then the map L1 is an invertible linear preserver of semipositivity. It then follows

from Theorem 3.11 that L1(A) = XAY for every A ∈ Mm,n for some invertible row positive matrix X and

an inverse nonnegative matrix Y . This also yields that L(A) = X̃AỸ for every A ∈Mm,n for some matrices

X̃ and Ỹ of appropriate sizes. This gives us a motivation to study preserver properties of the map A 7→ XAY

for appropriate X and Y . We however wish to emphasize that no invertibility assumption is made in the

following result.

Theorem 3.29. Let L(A) = XAY be a linear map on Mm,n, where X ∈ Mm and Y ∈ Mn are fixed.

L is an into preserver of S(K1,K2) if and only if either X(K◦
2 ) ⊆ K◦

2 and Y is K1-inverse nonnegative or

−X(K◦
2 ) ⊆ K◦

2 and −Y is K1-inverse nonnegative.

Proof. Suppose X(K◦
2 ) ⊆ K◦

2 and Y is K1-inverse nonnegative, then XAY ∈ S(K1,K2) whenever

A ∈ S(K1,K2). If −X(K◦
2 ) ⊆ K◦

2 and −Y is K1-inverse nonnegative, then L(A) = (−X)A(−Y ) = XAY ∈
S(K1,K2) whenever A ∈ S(K1,K2).
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Conversely, by Theorem 3.27, the map L1(A) = T1LT2(A) = Q1XS1AS
−1
2 Y Q−1

2 is an into preserver of

S(Rn+,Rm+ ), for all Q1, Q2, S1, S2 (all of them satisfying the assumptions of Theorem 3.27). By Theorem 2.4

of [9], either Q1XS1 is row positive and S−1
2 Y Q−1

2 is inverse nonnegative or −Q1XS1 is row positive and

−S−1
2 Y Q−1

2 is inverse nonnegative. By using Lemmas 3.25 and 3.26, we finally have either X(K◦
2 ) ⊆ K◦

2 and

Y is K1-inverse nonnegative or −X(K◦
2 ) ⊆ K◦

2 and −Y is K1-inverse nonnegative.

The following corollary follows from Theorems 3.22, 3.29, and Lemma 3.24.

Corollary 3.30. The linear map L(A) = XAY is an onto preserver of S(K1,K2) if and only if

X(K2) = K2 and Y (K1) = K1, or −X(K2) = K2 and −Y (K1) = K1.

Proof. We know that there is a basis for Mm,n from S(K1,K2). Since L is an onto preserver of S(K1,K2),

both L and its inverse are into preservers of S(K1,K2). Therefore, by the previous theorem, X(K◦
2 ) ⊆ K◦

2

and Y (K◦
1 ) ⊆ K◦

1 (or −X(K◦
2 ) ⊆ K◦

2 and −Y (K◦
1 ) ⊆ K◦

1 ). Moreover, X and Y (or −X and −Y ) are

K2-inverse nonnegative and K1-inverse nonnegative, respectively. Since K◦ is dense in K by Lemma 3.14,

this shows one implication.

Conversely, if X(K2) = K2 and Y (K1) = K1, then L(A) = XAY is an into preserver of S(K1,K2) and

so is L−1(A) = X−1AY −1. Thus, L is an onto preserver of S(K1,K2).

3.2.3. Preservers of MS(K1,K2). We now turn our attention to linear maps L that preserve the set

MS(K1,K2). We start with the following result on nonnegativity.

Lemma 3.31. Let X ∈ Mn. If S−1X(T t)−1 ∈ π(Rn+), for all invertible S ∈ π(Rn+,K) and T ∈
π(Rn+,K∗), then X ∈ π(K).

Proof. Let x ∈ K. As K ⊂ (T t)−1(Rn+), (T t)−1x = v for some x ∈ Rn+. We get 〈S−1Xv, u〉 =

〈Xv, (St)−1u〉 ≥ 0 for all u ∈ Rn+. Since K∗ ⊂ (St)−1(Rn+), it follows that Xv ∈ K.

Our main result is the following.

Theorem 3.32. Let S1 ∈ π(Rn+,K∗
1 ), S2 ∈ π(Rm+ ,K2), Q1 ∈ π(Rn+,K1) and Q2 ∈ π(Rm+ ,K2) be

invertible matrices. Assume further that Q2(Rm+ ) = K2 and S2(Rm+ ) = K2. Let P1(A) = S−1
2 A(St1)−1 and

P2(A) = Q2AQ
−1
1 . If L: Mm,n → Mm,n is an into preserver of MS(K1,K2), then L2 = P1LP2 is an into

preserver of minimally semipositive matrices.

Proof. Notice that L and consequently L2 are invertible maps. Let A be minimally semipositive. By

Lemma 3.19, P2(A) ∈ MS(K1,K2). Then LP2(A) ∈ MS(K1,K2), since L(MS(K1,K2)) ⊂ MS(K1,K2).

Again, by Lemma 3.19, we have P1LP2(A) is minimally semipositive.

Similar to the previous section, we now focus our attention to the map L(A) = XAY . We have a

complete answer in this case too. We discuss the cases n < m and n = m separately.

Theorem 3.33. Let L(A) = XAY be a linear map on Mm,n with n < m (where n ≥ 2) for fixed

X ∈ Mm and Y ∈ Mn. Then L is an into preserver of MS(K1,K2) if and only if X(K2) = K2 and Y is

K1-inverse nonnegative, or −X(K2) = K2 and −Y is K1-inverse nonnegative.

Proof. If A ∈ MS(K1,K2), then A has a (K2,K1)-nonnegative left inverse. Let B be a (K2,K1)-

nonnegative left inverse for A. If X(K2) = K2 and Y is K1-inverse nonnegative, Y −1BX−1 is (K2,K1)-

nonnegative and a left inverse for XAY . Since XAY ∈ S(K1,K2), it follows that XAY ∈MS(K1,K2).
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Conversely, suppose that L(A) is an into preserver of MS(K1,K2). By Theorem 3.32, L2(A) = P1LP2(A)

= (S2)−1XQ2AQ
−1
1 Y (St1)−1 is minimally semipositive whenever A is minimally semipositive, where S1, S2,

Q1, and Q2 satisfy the assumptions of Theorem 3.32. By Theorem 2.11 of [9], either (S2)−1XQ2 is mono-

mial and Q−1
1 Y (St1)−1 is inverse nonnegative or −(S2)−1XQ2 is monomial and −Q−1

1 Y (St1)−1 is inverse

nonnegative. The result now follows from Lemmas 3.25 and 3.31.

As in the case of onto preservers of MS(K1,K2), we have the following corollary. We assume again that

n < m and that the cone K2 is simplicial.

Corollary 3.34. The linear map L(A) = XAY is an onto preserver of MS(K1,K2) if and only if

X(K2) = K2 and Y (K1) = K1, or −X(K2) = K2 and −Y (K1) = K1.

Proof. Suppose the map L is an onto preserver of MS(K1,K2). Then L must be invertible and both L

and L−1 are into preservers of MS(K1,K2). By the previous theorem, one implication follows.

Conversely, if X(K2) = K2 and Y (K1) = K1, then obviously L is an onto preserver of MS(K1,K2),

since for every B ∈ MS(K1,K2), we can set A = X−1BY −1 ∈ MS(K1,K2), so that L(A) = B (see also

Theorem 2.11 of [9]).

The n = m case is presented below, the into and onto separately. The proof is omitted as it is similar to

that of Theorem 3.33 and follows from Theorem 3.32, Lemmas 3.25 and 3.31, and Theorem 2.10 of [7]. Note

that we need not assume simpliciality of the cone K2 in this case.

Theorem 3.35. Let L(A) = XAY be a linear map on Mn for fixed X,Y ∈ Mn. Then L is an into

preserver of MS(K1,K2) if and only if X is K2-inverse nonnegative and Y is K1-inverse nonnegative or

−X is K2-inverse nonnegative and −Y is K1-inverse nonnegative.

Corollary 3.36. Let L(A) = XAY be a linear map on Mn for fixed X,Y ∈ Mn. The map L is

an onto preserver of MS(K1,K2) if and only if X(K2) = K2 and Y (K1) = K1, or −X(K2) = K2 and

−Y (K1) = K1.

3.2.4. General onto preservers of S(K1,K2). We now turn our attention to general onto preservers

of S(K1,K2). Our main result is the following.

Theorem 3.37. Let L be a linear map on Mm,n. If L is an onto preserver of S(K1,K2), then L(A) =

X̃AỸ for all A ∈Mm,n, where X̃(K2) = K2 and Ỹ (K1) = K1.

Proof. By Theorem 3.27, we know that for invertible maps T1 and T2, the map L1 = T1LT2 is an

invertible into linear preserver of S(Rn+,Rm+ ). From Theorem 3.11, we infer that L1(A) = XAY for an

invertible row positive matrix X and an inverse nonnegative matrix Y . It follows that L(A) = X̃AỸ for

some X̃ ∈Mm and Ỹ ∈Mn. Finally, Corollary 3.30 yields the desired conclusion.

The following result was proved by A. Chandrashekaran et al.

Theorem 3.38 ([2, Theorem 2.3]). Let A ∈ Mm,n and let K1, K2 be proper cones in Rn and Rm,

respectively. If A+B ∈ S(K1,K2) for every B ∈ S(K1,K2), then A ∈ π(K1,K2).

We present below connections between onto preservers of S(K1,K2) and other preserver properties of

maps related to L. We begin with the following result.
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Lemma 3.39. Suppose that L is an onto linear preserver of S(K1,K2). Then L is an automorphism of

the cone π(K1,K2).

Proof. The proof can be found in Theorem 2.6 of [2], by making suitable modifications.

We now prove that if L is an onto preserver of S(K1,K2), then a map that is equivalent to L will be a

preserver of π(Rn+,Rm+ ).

Theorem 3.40. Let S1 ∈ π(Rn+,K1), S2 ∈ π(Rn+,K∗
1 ), T1 ∈ π(Rm+ ,K∗

2 ), and T2 ∈ π(Rm+ ,K2) be in-

vertible matrices. Let T̃1(A) = T t1AS1 and T̃2(A) = T2AS
t
2. If L: Mm,n → Mm,n is an onto preserver of

S(K1,K2), then L̃1 = T̃1LT̃2 is an into preserver of π(Rn+,Rm+ ).

Proof. Let A ∈ π(Rn+,Rm+ ). Then T̃2(A) ∈ π(K1,K2). By Lemma 3.39, we know that L is an onto

preserver of π(K1,K2), so that LT̃2(A) ∈ π(K1,K2). Hence, L̃1 = T̃1LT̃2(A) ∈ π(Rn+,Rm+ ).

Remark 3.41. It follows from the above result that when L is an onto preserver of S(K1,K2), the map

L̃ is also of the form A 7→ X̃AỸ , for some invertible matrices X̃ and Ỹ . It can be easily seen that X̃ = T t1XT2
and Ỹ = St2Y S1, which are nonnegative with respect to Rm+ and Rn+, respectively.

3.2.5. Preservers of left semipositivity. We end with the notion of left semipositivity and a pre-

server result concerning the same.

Definition 3.42. Let A ∈ Mm,n. We say A is left (K1,K2)-semipositive if there exists x ∈ K∗
2 such

that Atx ∈ (K∗
1 )◦.

The set of all left (K1,K2)-semipositive matrices will be denoted by LS(K1,K2).

Lemma 3.43. Let K1 and K2 be proper cones in Rn and Rm, respectively. Then the following hold:

1. Let Q1 ∈ π(K2,Rm+ ) and Q2 ∈ π(K1,Rn+) be invertible. If A ∈ LS(Rn+,Rm+ ), then Q−1
1 AQ2 ∈

LS(K1,K2)).

2. Let S1 ∈ π(Rm+ ,K2) and S2 ∈ π(Rn+,K1) be invertible. If B ∈ LS(K1,K2)), then S−1
1 BS2 ∈

LS(Rn+,Rm+ ).

The following theorem can be proved and the proof follows similar to Lemma 3.2 of [9].

Theorem 3.44. If L: Mm,n →Mm,n is an onto preserver of S(K1,K2), then L is also an onto preserver

of LS(K1,K2).

Theorem 3.45. Let S2 ∈ π(Rn+,K1), Q2 ∈ π(K1,Rn+), S1 ∈ π(Rm+ ,K2), and Q1 ∈ π(K2,Rm+ ) be

invertible matrices. Let T1(A) = Q1AQ
−1
2 and T2(A) = S1AS

−1
2 . If L: Mm,n →Mm,n is an onto preserver of

S(K1,K2), then L1 = T1LT2 is an into preserver of S(Rn+,Rm+ ) and L−1
1 is an into preserver of LS(Rn+,Rm+ ).

Proof. By Theorem 3.27, L1 is an into preserver of S(Rn+,Rm+ ). It can be easily seen that L−1
1 is an into

preserver of LS(Rn+,Rm+ ).

4. Appendix.

Proof of Theorem 3.10 - the 3× 3 case

Let L be an invertible linear map on M3 and let A = xyt be a rank one matrix. Then, the matrix

representation of L(A) can be expressed as follows: Write A = xyt, where x = (x1, x2, x3)t and y =

(y1, y2, y3)t. We then have



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 88-112, January 2021.

S. Jayaraman and V.N. Mer 108

L(A) =

l11x1 + l14x2 + l17x3 l21x1 + l24x2 + l27x3 l31x1 + l34x2 + l37x3
l41x1 + l44x2 + l47x3 l51x1 + l54x2 + l57x3 l61x1 + l64x2 + l67x3
l71x1 + l74x2 + l77x3 l81x1 + l84x2 + l87x3 l91x1 + l94x2 + l97x3

 y1+

l12x1 + l15x2 + l18x3 l22x1 + l25x2 + l28x3 l32x1 + l35x2 + l38x3
l42x1 + l45x2 + l48x3 l52x1 + l55x2 + l58x3 l62x1 + l65x2 + l68x3
l72x1 + l75x2 + l78x3 l82x1 + l85x2 + l88x3 l92x1 + l95x2 + l98x3

 y2+

l13x1 + l16x2 + l19x3 l23x1 + l26x2 + l29x3 l33x1 + l36x2 + l39x3
l43x1 + l46x2 + l49x3 l53x1 + l56x2 + l59x3 l63x1 + l66x2 + l69x3
l73x1 + l76x2 + l79x3 l83x1 + l86x2 + l89x3 l93x1 + l96x2 + l99x3

 y3,
where lij , i = 1, . . . , 9, j = 1, . . . , 9 are fixed real numbers.

Our aim is to prove that when A1 is semipositive, L(A1) is mapped to a rank one (semipositive) matrix.

The proof involves several steps. Here A1 represents a rank one matrix of the form A1 = xyt1, where

x = (x1, x2, x3)t and y1 = (y1, 0, 0)t. We only indicate the main steps and include the proofs only when

necessary. We shall have an occasion to use the following Theorem of the Alternative.

Theorem 4.1 ([5, Theorem 2.8]). For an m×n matrix A, one and only one of the following alternatives

holds.

(a) There exists x ≥ 0 such that Ax > 0.

(b) There exists 0 6= y ≥ 0 such that −Aty ≥ 0.

The first step is the following.

Lemma 4.2. Suppose A1 is semipositive and L is an invertible linear preserver of semipositivity. Then,

the matrix C1 =

l11 l14 l17
l21 l24 l27
l31 l34 l37

 has rank one.

The proof is very similar to the one given in Theorem 3.9. One can also prove that the matricesl41 l44 l47
l51 l54 l57
l61 l64 l67

 and

l71 l74 l77
l81 l84 l87
l91 l94 l97

 have rank one.

The second step is in proving that L(A1) contains a positive column when A1 is semipositive. This is an

important step in the proof. Let us denote by P1, P2, and P3 the following numbers: P1 := l11x1 + l14x2 +

l17x3, P2 := l41x1 + l44x2 + l47x3, and P3 := l71x1 + l74x2 + l77x3.

Lemma 4.3. If L is an invertible linear map on M3 that preserves S(R3
+), then L(A1) contains a positive

column, when A1 is semipositive.

Proof. Since L(A1) is redundantly semipositive, assume without loss of generality that the submatrix

formed from the first two columns of L(A1) is semipositive. Suppose L(A1) =

 P1a −P1b P1f1
−P2c P2d P2f2
P3e −P3f P3f3

, where

a > 0, d > 0, e > 0, b ≥ 0, c ≥ 0, f ≥ 0 and f1, f2, f3 ∈ R. The proof involves the following steps.

Suppose f3 > 0: If f1 > 0, f2 > 0, then L(A1) has a positive column. The next steps involve verifying that

the following subcases fail. In each such subcase, the idea is to find a semipositive matrix B such that L(B)

is not semipositive.
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1. f1 > 0 and f2 ≤ 0.

2. f1 ≤ 0 and f2 > 0.

3. f1 ≤ 0 and f2 ≤ 0.

Suppose f3 ≤ 0: We discuss various subcases here too and check each such subcase fails. The argument is

once again to find a semipositive matrix B such that L(B) is not semipositive.

1. f1 > 0 and f2 > 0.

2. f1 > 0 and f2 ≤ 0.

3. f1 ≤ 0 and f2 > 0.

4. f1 ≤ 0 and f2 ≤ 0.

This last step involves further subcases as follows: (i) f3 < 0, (ii) f3 = 0 and f1 < 0, and finally (iii)

f3 = 0, f1 = 0, and f2 < 0. For completeness, we illustrate the proof of the following case: f3 > 0, f1 ≤ 0,

and f2 ≤ 0. We have

L(A1) =

 P1a −P1b −P1f1
−P2c P2d −P2f2
P3e −P3f P3f3

, where a > 0, d > 0, e > 0, b ≥ 0, c ≥ 0, f ≥ 0, f1 ≥ 0, f2 ≥ 0, f3 > 0.

If either b 6= 0 or f1 6= 0, choose a vector q such that V q = (1,−1,−1)t, where V =

l11 l14 l17
l41 l44 l47
l71 l74 l77

.

Form the semipositive matrix B as follows: B =

q1 0 0

q2 0 0

q3 0 0

 + y2

0 x1 0

0 x2 0

0 x3 0

, where y2 > 0. Then,

L(B) =

 a −b −f1
c −d f2
−e f −f3

 + y2L
(0 x1 0

0 x2 0

0 x3 0

). Choose a y2 small enough so that B is semipositive,

whereas L(B) is not semipositive. Suppose both b and f1 are zero. If there is no y2 > 0 such that L(B) is not

semipositive, then form the matrix B1 =

q1 0 0

q2 0 0

q3 0 0

 + (−y2)

0 x1 0

0 x2 0

0 x3 0

 + y3

0 0 x1
0 0 x2
0 0 x3

, where y2 > 0

is small enough and y3 > 0. Notice that B1 is a semipositive matrix. Now choose y3 sufficiently small to

make L(B1) not semipositive. Combining all the steps mentioned above, we prove that L(A1) has a positive

column, when L preserves semipositivity.

A similar argument will ensure that L(A2) and L(A3) also have positive columns when L preserves semipos-

itive matrices and the matrices A2 and A3 are semipositive.

We thus have L(A1) =

P1 α1P1 β1P1

P2 α2P2 β2P2

P3 α3P3 β3P3

 for some αi and βi ∈ R for i = 1, 2, 3.

Before proceeding further, let us denote by E the matrix

α1 β1
α2 β2
α3 β3

.

The next step is the following result.
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Lemma 4.4. Let L be an invertible linear map on M3 that preserves semipositive matrices. Assume that

A1 is semipositive, the first column of L(A1) is positive, and the matrix E is semipositive. Then, L(A1) has

rank one.

Proof. The first step is in proving that the matrix E cannot contain any 2×2 submatrix that is minimally

semipositive. The second step is in proving that both the columns of E cannot be positive. Consider the

following flowchart.

α1 > α2 > α3 and

β1 6= β2 6= β3

α1 = α2 6= α3 and

β1 6= β2 6= β3

α1 = α2 6= α3 and

β1 = β2 6= β3

α1 = α2 = α3 and

β1 = β2 6= β3

α1 = α2 6= α3 and

β1 = β2 = β3 6= 0

α1 > α2 > α3 and

β1 = β2 6= β3

α1 = α2 6= α3 and

β1 = β2 6= β3

α1 > α2 > α3 and

β1 = β2 = β3 6= 0

α1 = α2 6= α3 and

β1 = β2 = β3 6= 0

α1 6= α2 = α3 and

β1 = β2 = β3 6= 0

The remaining argument of Lemma 4.4 is in proving that each of the steps in the above flowchart fails. As

in the previous lemma, the proof involves finding a semipositive matrix B such that L(B) is not semipositive.

We include the proof of the following two cases alone.

Suppose α1 > α2 > α3 and β1 6= β2 6= β3.

Suppose the vectors (α1, α2, α3)t and (−β1,−β2,−β3)t are linearly dependent. Let δ > 0 be such that

(−β1,−β2,−β3)t = −δ(α1, α2, α3)t. Choose a vector q so that V q = (1,−1, 1)t and form a semipositive

matrix B as before. Observe that L(B) =

 1 α1 −δα1

−1 −α2 δα2

1 α3 −δα3

 + y2L
(0 x1 0

0 x2 0

0 x3 0

). If there exists a

y2 > 0 small enough so that L(B) is not semipositive, then we get a contradiction to our assumption. Else,

choose a vector q such that V q = (1, 1,−1)t and proceed as above. Notice that in this case, it is possible to

choose a y2 small enough that makes L(B) not semipositive in at least one of the cases.

Suppose the vectors (α1, α2, α3)t and (−β1,−β2,−β3)t are linearly independent. Consider the invertible ma-

trix D =

−1 −α1 β1
1 α2 −β2
−1 −α3 β3

. Suppose detD < 0. Notice that D−1 = ( 1
detD )

 ∗ ∗ ∗
∗ ∗ ∗

α2 − α3 α1 − α3 α1 − α2

.

Notice that the last row entries of the matrix are positive. Therefore, u = ( 1
detD )(α2 − α3, α1 − α3, α1 −

α2)t < 0. Now Dtu = −Dt(−u) = (0, 0, 1)t ≥ 0. Thus, D is not semipositive (by the Theorem of the

Alternative 4.1). Now choose a vector q so that V q = (−1, 1,−1)t and form the semipositive matrix
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B as in the previous steps. Then, L(B) =

−1 −α1 β1
1 α2 −β2
−1 −α3 β3

 + y2L
(0 x1 0

0 x2 0

0 x3 0

). It is possible to

choose a y2 small enough so that L(B) is not semipositive. If detD > 0, then it is easy to check that

(−D)−1 = ( 1
− detD )

 ∗ ∗ ∗
∗ ∗ ∗

α2 − α3 α1 − α3 α1 − α2

. The vector u = ( 1
− detD )(α2−α3, α1−α3, α1−α2)t < 0

and −(−Dt)(−u) = (0, 0, 1)t ≥ 0. Once again, by the Theorem of the Alternative 4.1, we have −D /∈ S(R3
+).

Now choose a vector q so that V q = (1,−1, 1)t and proceed as in the case when detD < 0.

Combining all the steps in the above flowchart, we see that

L(A1) =

P1 αP1 −βP1

P2 αP2 −βP2

P3 αP3 −βP3

 , where α > 0 and β ≥ 0.

The remaining steps involve the following lemmas.

Lemma 4.5. Let L be an invertible linear map on M3 that preserves semipositive matrices. Then, the

following hold.

1. Suppose the first column of L(A1) is positive, −E is semipositive, whereas E is not. Then, L(A1)

has rank one.

2. Suppose the first column of L(A1) is positive and both E and −E are not semipositive. Then, L(A1)

has rank one.

A similar argument shows that L(A2) and L(A3) have rank one. We now have the result on the structure

of a preserver in this case. The proof is similar to that of Theorem 3.11.

Theorem 4.6. Let L be an invertible linear map on M3 that preserves S(R3
+). Then L(A) = XAY for

all A ∈M3, where X is a row positive matrix and Y is an inverse nonnegative matrix.
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