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ON SOLUTIONS TO THE QUATERNION MATRIX EQUATION
AXB+CYD =FE*

QING-WEN WANG', HUA-SHENG ZHANGT, AND SHAO-WEN YU'

Abstract. Expressions, as well as necessary and sufficient conditions are given for the existence
of the real and pure imaginary solutions to the consistent quaternion matrix equation AXB+CY D =
E. Formulas are established for the extreme ranks of real matrices X;,Y;,2 =1,--- ,4, in a solution
pair X = X1+ Xoi+ X3j+ X4k and Y = Y] 4+ Yai+ Y35+ Yak to this equation. Moreover, necessary
and sufficient conditions are derived for all solution pairs X and Y of this equation to be real or
pure imaginary, respectively. Some known results can be regarded as special cases of the results in
this paper.
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1. Introduction. Throughout this paper, we denote the real number field by
R, and the set of all m x n matrices over the quaternion algebra

H= {a0+a1i+a2j+a3k | i2 :j2 = k2 =1ijk = -1, ag,a1,a2,a3 € R}

by H™*". The symbols I, AT, R(A), N (A), dim R (A) stand for the identity matrix
of the appropriate size, the transpose, the column right space, the row left space of a
matrix A over H, and the dimension of R (A), respectively. By [6], for a quaternion
matrix A, dim R (A) = dim N (A), which is called the rank of A and denoted by r(A).
A generalized inverse of a matrix A which satisfies AA~A = A is denoted by A~.
Moreover, R4 and L4 stand for the two projectors Ly =1 — A"A, Ry =1 — AA™
induced by A. For an arbitrary quaternion matrix M = My + Msi + Msj + Myk, we
define a map ¢(-) from H™*" to R¥m*4" by

My M3 My M,y

—Ms My My —M,
My My —-Msg —Ms3
My —My Mz —DM,y

(L.1) P(M) =
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By (1.1), it is easy to verify that ¢(-) satisfies the following properties:

a) M =N << ¢(M) = ¢(N).

) (M + N) = (M) + ¢(N), g(MN) = ¢(M)p(N), p(kM) = k¢(M), k € R.
c) (M) = =T, 1p(M)T,, = =R, ¢(M)R,, = S, ¢(M)S,,, where t = m,n,

0 I, 0 0 0 0 0 —I

0 —Iy I, 0 0 0 0 0 I 0

! (@t 0 )’t o 0o o0 I, |'" 0 —I, 0 0
0 0 —I; O I 0 0 0

(d) 7 [¢(M)] = 4r(M).

Tian [17] in 2003 gave the maximal and minimal ranks of two real matrices Xy
and X7 in complex solution X = Xy + X to the classical linear matrix equation

(1.2) AXB =C.

Liu [11] in 2006 investigated the extreme ranks of solution pairs X and Y, and the
extreme ranks of four real matrices Xg, X1, Yy and Y7 in a pair of a complex solutions
X =Xy +iX; and Y =Yy + Y] to the generalized Sylvester matrix equation

(1.3) AX +YB=C,

which is widely studied (see, e.g., [4], [5], [7], [8], [11], [13], [22]-[24], [33], [34]). As an
extension of (1.2) and (1.3), the matrix equation

(1.4) AXB+CYD=E

has been well-studied in matrix theory (see, e.g., [2], [9], [10], [12], [14], [18]-[21],
[35]). For instance, Baksalary and Kala [2] gave necessary and sufficient conditions
for the existence and an representation of the general solution to (1.4). (jzgiiler
[12] investigated (1.4) over a principal ideal domain. Huang and Zeng [9] considered
(1.4) over a simple Artinian ring. Wang [20]—[21] investigated (1.4) over an arbitrary
division ring and on any regular ring with identity in 1996 and 2004, respectively.
Tian [19] in 2006 established formulas for extremal ranks of the solution of (1.4) over
the complex number field. Note that, to our knowledge, the real and pure imaginary
solutions to (1.4) over the quaternion algebra H have not been investigated so far in
the literature. Motivated by the work mentioned above, and keeping the applications
and interests of quaternion matrices in view (e.g., [1], [3], [25]-[32], [36]-[37]), in this
paper we consider the real and pure imaginary solutions to (1.4) over H. We first
derive the formulas for extremal ranks of real matrices X;,Y;,7 = 1,--- ,4, in a solution
pair X = X3 4+ Xoi + X35+ Xuk and Y = Y7 + Yai + Y35 + Yik to (1.4), then use the
results to derive necessary and sufficient conditions for (1.4) over H to have a real
solution and a pure imaginary solution, respectively. Finally, we establish necessary
and sufficient conditions for all solutions (X,Y") to (1.4) over H to be real or pure
imaginary.
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2. Main results. In this section, we consider (1.4) over H, where A = A; +
Agi+Azj+ Ayk, B = B1+Bsi+ Bsj+ Byk, C = C14+C%i+C3j+Cyuk, D = D1+ Dyi+
Dsj+ Dyk, E = F1 + Esit + FEsj + Euk are known and X = X7 4+ Xoi + X375 + X4k €
H™ Y =Y + Yoi 4 Y35 + Yyk € H>F unknown; here A;, B;, C;, D;, E;, X; and
Y;,i=1,--- 4, are real matrices with suitable sizes.

The following lemmas are due to Tian (see [15], [16] and [18]) that can be gener-
alized to H.

LEMMA 2.1. Let Ac H™* B e H>" C e H™ ' D e H*" E e H™ " and
p(X,Y,Z)=E—-AXB—-CY — ZD. Then

E C
. E A C
(2.1) g}s’)ér[p(X,Y,Z)]:mm m, n,r<D 0 0 >,7“ B 0 ;
D 0
E C E A C
(2.2) )gl}l{lzr[p(X,Y,Z)]:T B 0 |-r| B 0 0
D 0 D 0 O
E A C
— —r(D).
+7“< D o0 o ) r(C) —r(D)

LEMMA 2.2. Let A€ H™ " B e H™F* and C € H*". Then
B A C C 0
r(B,ALC)r(O C)—T(C),T<RBA>7"(A B)—?“(B).

LEMMA 2.3. Suppose that matriz equation (1.4) is consistent over H. Then its
general solutions can be expressed as

(2.3) X = X+ S1LaURyT, + LaVi + VaRp,
(2.4) Y = Y 4 S3LaURyTs + LWy + WaRp

where Xo and Yy are a pair of special solutions of (1.4), S = (Ip,0), Sy = 0,1),
T = (I, O)T , T = (O,It)T, G=(A,0),H = (BT, —DT)T, the quaternion matrices
U, V1, Vo, Wy and Wy are arbitrary with suitable sizes.

In the following theorems and corollaries, Xy, Yy, S1,S2,T1,1%,G and H are de-
fined as in Lemma 2.3.

THEOREM 2.4. Matriz equation (1.4) is consistent over H if and only if the
matriz equation

(2.5) ¢(A) (Xij)4><4 ¢(B) + ¢(C) (Yij)4><4 ¢(D) = ¢(E)v 1,7 =1,2,3,4,
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is consistent over R. In that case, the general solution of (1.4) over H can be written
as

(2.6) X = X1+ Xoi + X35 + Xuk
1 1 .
= Z(Xu + Xoo — X33 — Xua) + Z(Xm — Xo1 + Xz — X34)i
1 o1
+ Z(Xl?’ + X1 — Xos — Xu2)j + 1(X41 + X4 + X9 + Xo3)k,
(2.7) Y =Y, +Yoi+ Y35+ Yik
1

1 .
= Z(YH + Yo — Y33 — Yiu) + Z(Yw —Ya1 + Yiag — Yau)i

1 o1
+ 1(Y31 +Yi3 — You — Yao)j + Z(qu + Y4 + Y32 + Ya3)k.

Written in an explicit form, X; and Y;,i=1,--- 4, in (2.6) are as follows.

(28)  Xa= Pio(Xo)Qy 41 Pad(X )@y~ Psb(X0)Qy— 1 Pao( X )@,

L@
1 L1Q>
— (P P —P. —P
+4( 111, PoRy, —P3 Ry, WR)U 1,05
LiQ4
Ry(3y@1
~ R
+ (P1Lg(ay, PaLg(ay, —PsLg(ay, —PyLy(ay) V+U om@ |
—Ry(3)Qs
—Ry(8)Qu

(29) X2 = Pio(X0)Qz — TPe0(Xo)@1 + 1 Pid(X0)Qs — TPsb(Xo)Qs

LiQ>
1 L@y
— (P, —P. —P; P
+4( 1R, —PR1,—P3Ry, P,R) U 1,Q4
Li1Qs
—Ry(3)Q2
~ R
+ (=PaLy(ay, PrLg(ay, PiLo(ay, —PsLya)) V +U S
Ry(5)Qa

—Ry(3)Q3
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(2.10) X3 = 3P1¢(X0)Q3 - £P2¢(X0)Q4 + £P3¢(X0)Q1 - 3P4¢(X0)Q2

L1Qs3
1 LiQy
— (P —P P. —P
+4( \R1,—PyR1, PsR,—P,R1) U IO
L1Q2
Ry(3)Q3
| -r
+ (PsLg(a), —PaLg(ay, PLLg(ay, —PaLga)) V + U o502
Ry(3)Q1
—Ry(B)Q4

(211)  Xi= Pio(Xo)@s + 3 Pab(Xo)@s + {Ps(X0)Qz + {Pad(X0) Qs

Li1Qq
1 L1Qs
- (P, P P P
+4( 1R, PRy, PsR1, PAR:) U 1105
L@
Ry(B)Qa
| r .
+ (PaLg(ay, PsLg(ay, PaLgay, PrLga)) V +U o
Ry(5)Q2
Ry(py@1

(2.12) Y, = iS1¢(Yo)T1 + iSQ(ﬁ(Yo)TQ — ngd)(Yo)Tg — 254¢(Y0)T4

LT,
1 LoTy
+3 (S1R2,S2R2, —S3R2, —SaR2) U LT
LoTy

Ryp)Th

7 Ry(p)Ta

+ (S1Lg(ay, S2L(ay, —S3Lg(ay, —SaLga)) U +W v
—Ryp)13

—Ryp)Ts
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(213) Vs = {510(%0)Ts — 1 S20(%0)Ti — 3 S50(¥0)Ti + 1 S:6(¥5)Ts

LQTQ
1 L2T1
= (S1Ry, —SsRy, — SRy, SyRy) U
+4(12, 2Ro, —S3R, S4R3) LT,
LT3
Ry T
> Ry(p)Th
+ (=S2Lg(a), S1Lo(ays SaLg(ay, —SaLga)) U +W
Ry(p)Ty
—Ryp)T3

(214) Y5 = 1Si6(0)Ts — 1S26(Yo)Ts + 1S36(Yo)Ts — 1Sa6(Yo)Ts

LoTs
1 L2T4
= (S1Ry, —SoRy, S3Ry, —SyRe) U
+4(12, 9Rs, S3Ra, —SaRs) LT,
LoT
Ry )13
SsL —S,Lyay, S, L ~S,L Taw | HemT
+ (S3Lo(a), =SaLo(ay S1lo(ay, =SaLo) U+W | 2% 7
o(B)T1
—Ryp) T2
1 1 1 1
(2.15) Y, = ZSI¢(YO)T4 + ZSQ(ZS(YO)T?, + ZS3¢(Y0)T2 + ZS4¢(Y0)T1
L2T4
1 L2T3
+3 (S1R2, 52R2, S3Ra, SaR2) U LT
LT,
Rym)Ti
7 Ry(p)T3
+ (SaLg(ay, S3Lo(ay, S2Lg(ay S1Lyay)) U +W ,
Ry Ta
Ry(p)Th

where
P, = (1,,0,0,0), P, =(0,1,0,0), Ps=(0,0,1,,0), P, =(0,0,0,1,),
Sy = (I;n,0,0,0), Sy = (0,1,,,0,0), S35 =(0,0,1,,0), S4=(0,0,0,1,),
Q1 = (1,,0,0,0)", Q2= (0,1,,,0,00", Q3 =(0,0,1,,,0)", Qs =(0,0,0,1,)",
T, = (1,,0,0,0)", Ty = (0,1,,0,0)", T3 = (0,0,1,,0)", Ty = (0,0,0,1,)",
R, = ¢(Z9V1)L¢(G), L= R¢(H)¢(ﬁ)a Ry = ¢(:9V2)L¢(G), Ly = R¢(H)¢@;)a
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and U, U , U , V. and W are arbitrary real matrices with compatible sizes.

Proof. Suppose that (1.4) has a solution pair X,Y over H. Applying properties
(a) and (b) of ¢(-) above to (1.4) yields
P(A)P(X)p(B) + ¢(C)o(Y)o(D) = ¢(E),

which implies that ¢(X), ¢(Y) is a solution pair to (2.5). Conversely, suppose that
(2.5) has a solution pair

X = Xij)iear V= Vig)ysa» 15 = 1,2,3,4.
ie.
H(A)X¢(B) + ¢(C)Y ¢(D) = 4(E).
Then, applying property (c) of ¢(-) above, it yields
T ST XT,  (B)T, + T, d(C)TY T, (D)T, = =Ty, (BT,
Ry 6(A) Ry X R 6(B) Ry + Ry 0(C)RyY Ry $(D) R = =Ry §(E) R,
S 9(A)8p X8 6(B)Sn + 8,1 0(C) S, Y S, 1 6(D) S = 81,1 6(E) Sy
Hence,
AT, XTI 6(B) + o(O)TnY T 6(D) = 6(E),
S(A)R, X R, $(B) + ¢(C) R Y R, ' ¢(D) = §(E),
0(4)8, X5, 6(B) + ¢(C)Sm¥ S;16(D) = 6(E),
which implies that T,X T, *, T, YT, !, R, X R\, R, Y Ry and S, XS 1, S, V'St are
also solutions of (2.5). Thus,

1, , , , 1, . 5 5
(X - T,XT, ' — R,XR,* +5,XS; 1), it ToYT;' = RnYR' + SnY S, ")
is a solution pair of (2.5), where
X —T,XT;' — R,XR; '+ S,X8;" = (5(7) i =1,2,3,4
4x4

and

g = X1 + Xop — X33 — X447):(ZQ = X192 — Xo1 + X3 — X34,
X1z = X3 + Xs1 — Xog — Xap, X1 = Xy + Xig + X9 + Xpg,
Xo1 = Xo1 — Xio + Xza — Xy, Xop = Xy + Xop — X33 — Xy,
X3 = Xa1 + X4 + Xso + Xog, Xog = Xog + Xap — X3 — Xz,
Xz = X3 + Xs1 — Xog — Xap, X3o = Xy + Xig + X9 + Xng,
X33 = X33 + Xaa — X1y — Xoo, X3a = Xoy — Xip + X34 — X3,
X1 = Xa1 + Xia + Xao + Xog, Xap = Xog + Xap — X3 — Xz,
Xuz = X12 — Xo1 + Xy3 — X34, X4 = X33 + Xgg — X171 — Xoo.
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Y — Tmf/Tq_l - Rmf/Rq_l + SmYSq_l has a form similar to (3(7)4)(4. We omit it

here for simplicity.

Let
Sl 1 ,
X = Z(Xu + Xoo — X33 — Xua) + Z(Xm — Xo1 + Xuz — X34)i
1 1
+ Z(X13 + X1 — Xog — Xu2)j + Z(X41 + X4 + X390 + Xo3)k,
-1 1 ,
Y = Z(YH + Yo — Y33 —Yiy) + Z(Yw —Yo1 + Yag — Ya4)i
1

1
+ Z(Ym + Y3 — You — Yao)j + Z(Y41 + Y14 + Yso + Yoz )k.

Then, by (1.1),
1, 5 A N A
P(X) = Z(X - TpXTn_1 - R;DXR;1 + SpXS,:l),
[ L o e 5 q—
o) = 1 (V = TnY Ty = RV Ry + 80V 87
is a solution pair of (2.5). Hence, by property (a) of ¢(-), we know that )?,}7 is a
solution pair of (1.4). The above discussion shows that the two matrix equations

(1.4) and (2.5) have the same solvability condition and their solutions satisfy (2.6)
and (2.7). Observe that X;; and Y;;, 4,5 = 1,2,3,4 in (2.5) can be written as

X, = PXQ;, Yij = SiYT;.
From Lemma 2.3, the general solution to (2.5) can be written as
X = 6(Xo) + &(S1)Lo(cy U Ro(enyd(T1) + 4Lo(a)V +4U" Ry,
Y = 6(Y0) + 8(82) L) U R &(T2) + ALy U + AW Ry,
Hence,

X = Pid(X0)Q; + Pid(S1) Loy U Ry $(T1)Q; + AP,Ly( ) Vi + 4Ui Ry 3)Q;
Yij = Sio(Yo)Tj + Sip(S2) LycyU Ry d(12)T; + 45iL¢(C)0J‘ +4W; Ry pyTj,

where U, Uy, -+ Uy € RP*Y, Vi, -0 Vi€ RPX0,0 - Uy € R, W, - Wiy €
RPX44 are arbitrary, and

V:(‘/l7‘/25‘/éav4)7[7T: (U1T7U2TaU?T7UZ)7
[7: ([717U2;[73;U4> 7WT = (WF7W55W57WE) .

Putting them into (2.6), (2.7) yields the eight real matrices X;,--- , X4 and Y7, -+ , Yy,
in (2.8)-(2.15). O



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 17, pp. 343-358, August 2008
On Solutions to the Quaternion Matrix Equation AXB +CYD = E 351
Now we consider the extreme ranks of real matrices X1,---, X4 and Yq,---,Y)

in the solution (X,Y’) to (1.4) over H.

THEOREM 2.5. Suppose that (1.4) over H is consistent, and fori,j =1,2,3,4,

J;i = {Xl € R™*® |A(X1 + Xoi + X375 + X4k)B +C (Y1 + Yoi 4+ Y35 + Y4]€)D = E} ,

K; ={Y; € RPF|A(X1 + Xoi + X3j + Xuk)B+C (Y1 + Yoi + Y3j + Yak) D= E }.

Then we have the following:
(a) The mazimal and minimal ranks of X; in the solution X = X1+ Xoi+ X35 + X4k
to (1.4) are given by

. 0 0 B;
;gj}g?;f(Xi) = min {p,q,p+q+r< A o(C) o(F) ) —4(r(B) —r(4,0)),
0 B B
p+q+r| 0 ¢(D) —4r(A)—4r< D) ,
A o(E)
min 7(X;) r< o 0 B )—i—r 8 ¢(Bé) r 8 8 ¢(Bé)
X;ed; E A\z C E ~ B ~
o0 #(E) A #(E) A () o(E)
where
A2 A3 —A4 _Al AB _A4
P I T R e I Ay —Ay A
N (R P P P I R Py Y PO I
A3 —A2 —A1 A4 _AQ _Al
A7 Ay Ay -A; A As
P O B e A
B B P A I CRE PR P
A4 A3 —A1 A4 AB _AQ
-By, —-By —-Bs —Bj —B;1 B Bs —By
Bi=| -Bs —By —-B1 B ,Ba=| —Bs3 —Bys —-B1 B> ;
B, Bs -By, —-B B, Bs -By, —-B
—B1 B Bs —By —B;1 B Bs —By
By=| -Bo -B1 —-By4 —Bs | ,Ba=| —By —-B1 —-Bs —Bs
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(b) The mazimal and minimal ranks of Y; in the solution Y =Y, + Yai+ Y35 + Yk
to (1.4) are given by

0 0 D;
max r(Y;) =min< s, t,s+t+r | ~ J —4r(B) —4r (C, A)
s { (cj 4(4) ¢<E>> )~
0 D, B
s+t+r| 0 ¢(B) —47“(0)—47“( D) ,
Cj o(E)
min 7(Yj) r( 0 0 ﬁj )—l—r 8 ¢(Dé) -r 8 8 qb(Dé)
viekx; © 0 C. A E ~ e
A B NG ) C; o4) o(B)
where
Co Cs —Cy -C1 C3 —Cy
A _ | G —Cis —=Cs A _ | —C —Ci —Cs
“=la o o || ¢ -a o)l
03 _C2 —C1 C4 _C2 _Cl
-C1 Cy —C4 -Cy Oy Cs
a_| ¢ -a o) | & -a -a
N I e o e T N R I o i
04 Cg —Cl C4 CB _02
-Dy —-Dy —-Dy —Ds —-Dy Dy Ds —Dy
Di=| -Ds Dy —-Dv Dy |,De=| —D3 Dy —-Di Dy |,
Dy Ds -Dy, —D, D, Ds —-Dy —Di
e ) Ds; —Dy e Ds —Dy
Ds=| -Dy -Di -Dy —-D3 |,Dy=| —-D2 —-D1 —-Dy —-Ds
Dy Ds -Dy, —D, —Ds Dy -Dy D,

Proof. We only derive the maximal and minimal ranks of the matrix Xi; the
other r (X;),7(Y;) can be established similarly. Applying (2.1) and (2.2) to (2.8), we
get the following

)gr}g}(lr(Xl) = min {p, q,r(M1),r(M2)},

Xr?é{ljlr(Xl) =7r(Mp) +r(Mz) —r(Ms) — 7 (P) —7(Q),
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where

_ . X, P Xo P P

Xo P P
Ml_( - 0>,M2— Q o |.M=|q 0 0|,

Q 0 Q 0 0

o 1 1 1 1
Xo = 1P1¢(X0)Q1 + ZP2¢(XO)Q2 - ZP3¢(X0)Q3 - ZP4¢(X0)Q4’

P = (P1Ly(ay, PaLo(ay, —PsLo(ay, —PiLg(a)) »
P= <P1¢(§I)L¢(G);P2¢(§I)L¢(G); _P3¢(§{)L¢(G)v _P4¢(§I)L¢(G)) :

Ry()@Q1 R¢(H)¢(E)Q1
0- Ry(p)Q2 0= Ry 9(11)Q2
—Ry(5)@3 , R¢(H)¢(E)Q3
—Ry(5)Qua Rymyo(T1)Qa

By Lemma 2.2, block Gaussian elimination and AXoB + CYyD = E, we have that
r(La)=p—r(A),r(Rp)=q—r(B),

X, P P 0
e o 0 ¥(B) | _ . o
O = G o o | Ar(eM) - are(B) - 4 (4(G)
0 0 V(G 0
L0 0 By C4r(B) — 4
=T sy a0 em) | TP B m(G)
where
P = (P, Po, =Py, —P1). P = (Pig(1), Po(51). ~Ps6(S1). ~P19(S1) )
Q1 #(Z) 0 0 0
o Q2 B 0 #Z) 0 0 B
Q= 0 , V(2) = 0 0 &2z o ,Z = A,B,G.
0 0 0 ¢(2)

—Q4

0 1
() =r | 0 (D) | +ptq—4r(A) - ar (i),
Ar o(E)
0o 0 B
r(Ms)=r 0 0 &D) | +p+q—4r(G)—4r(H).
A ¢(C) ¢(E)
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Thus, we have the results for the extreme ranks of the matrix X; in (a). Similarly,
applying (2.1) and (2.2) to (2.9), (2.10), (2.11), (2.12), (2.13), (2.14), (2.15) yields the
other results in (a), (b). O

~

In the following corollaries, A\i, Ei, C; and ﬁj (i, =1,2,3,4) are defined as in
Theorem 2.5.

COROLLARY 2.6. Suppose that (1.4) over H is consistent. Then
(a) (1.4) has a real solution for X if and only if

( o o B ) 0 B 0 0 B
rl -~ ‘)l +r] 0 #D) |=r[ 0 0 D) |,i=234
4 9(C) #E) A o(E) A 6(C) o)

In that case, the real solution X can be expressed as X = X1 in (2.8).
(b) All the solutions of (1.4) for X are real if and only if

0 0 gz‘ _
p+q+r<A\i (b(C) ¢(E))4T(B)+4T(A,C)
or
0 B B
p+qg+r 9 é(D) :47“(A)+47“< D ),i:2,3,4.
Ai o(E)

In that case, the real solutions X can be expressed as X = X1 in (2.8).
(¢) (1.4) has a pure imaginary solution for X if and only if

( . . 5 ) 0 1 0 0 1
rl 2 o+ 0 ) |=r| 0 0 (D)
A1 9(C) ¢(E) jl o(F) 21 o(C) o(E)

In that case, the pure imaginary solution can be expressed as X = Xoi + X3j + X4k
where Xo, X3 and X4 are expressed as (2.9), (2.10) and (2.11), respectively.
(d) All the solutions of (1.4) for X are pure imaginary if and only if

0
p+q+7”<21 ¢(C) ¢(E)>—4T(B)+4T(A,C)

or
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In that case, the pure imaginary solutions can be expressed as X = Xoit + X3j + X4k,
where Xo, X3 and X4 are expressed as (2.9), (2.10) and (2.11), respectively.

Using the same method, we can get the corresponding results on Y.

We now consider all solution pairs X and Y to (1.4) over H to be real or pure
imaginary, respectively.

THEOREM 2.7. Suppose that (1.4) over H is consistent, ¢ (X1,Y1) = E—AX1B—
CY1D, and J1, K1 as in Theorem 2.2 are two independent sets. Then
(2.16)

max rlg (X1,Y)] :min{r(A)—i—r(C)—r(A,C),r(B)+r(D)—r( g )}

Y1 €K1

In particular:
(a) The solutions (X1,Y1) of (1.4) over H are independent, that is, for any X1 € Jq
and Y7 € K the solutions X1 and Yy satisfy (1.4) over H if and only if

(2.17) r(A,C) =1 (A) + 1 (C) orr<g>—r(3)+r(D).

(b) Under (2.17), the general solution of (1.4) over H can be written as the two
independent forms

(2.18) X = Xo+ S1LeUi Ry Ty + LaVi + VaRg,
(2.19) Y =Yy + S2LGUs Ry Tz + LeWi + WaRp,

where (Xo,Yp) is a particular real solution of (1.4), Ur,Us, Vi, Vo, W1 and Wo are
arbitrary.

Proof. Writing (2.3) and (2.4) as two independent matrix expressions, that is,
replacing U in (2.3) and (2.4) by U; and U; respectively, then taking them into
E — AXlB — CYlD ylelds

¢(X1,Y1) = E — AXoB — CYyD — AS, LUy RyTi B — CSy LUy Ry ToD
= AS\L¢ (~Uy + Uz) RyTh B,

where Uy and U, are arbitrary. Then by (2.1), it follows that

))glgér ¢ (X1, Y1)] = maxr (ASlLG (=UL 4+ ) RHTlB>

— min {r (A’SELG) r (RHiB)}
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where
r(ASiLe) =r < Agvl ) 1 (G) = (A) 47 (C) =1 (G),
r (RH?IB) = (T’lB,H) —r(H) =7 (B)+r (D) —r(H).
Therefore, we have (2.16). The result in (2.17) follows directly from (2.16) and the
solutions in (2.18) and (2.19) follow from (2.3) and (2.4). O

COROLLARY 2.8. Suppose that (1.4) over H is consistent, and (2.17) holds. Then
(a) All solution pairs X and Y to (1.4) over H are real if and only if

0 0 B; . .
p+q+r< A\z ¢(C) #(E) ) =4 (B)+4 (4,0)

or

0 B
p+qg+r 0 o(D) —4r(A)+4r<D>
A ¢(E
and
0 0 D
s+t+r< @ o(A) ¢(é) ) =4r(B) 4+ 4r (4,C)
or

0 0 B:
~ = B A
PRI & so) ep | OO
or
0 B:
ptg+r| O »(D) —4r(A)+4r<D>
A1 H(E)
and
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or
0 Dy
s+t+r| 0 ¢(B) =47“(C)+47“<D>
C1 ¢(E)

REMARK 2.9. The main results of [11], [17] and [19] can be regarded as special

cases of results in this paper.
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