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Abstract. This paper presents a construction of nonnegative matrices with nonzero spectrum

τ = (3 + t, 3− t,−2,−2,−2) for t > 0. The result presented gives a constructive proof of a result of

Boyle and Handelman in this special case. This example exhibits a surprisingly fast convergence of

the spectral gap of τ to zero as a function of the number of zeros that are added to the spectrum.
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1. Introduction. The nonnegative inverse eigenvalue problem (NIEP) asks for
necessary and sufficient conditions for a given list of complex numbers

σ = (λ1, λ2, λ3, . . . , λn)

to be the spectrum of some entrywise nonnegative matrix. If for a given list σ a
nonnegative matrix A with the spectrum σ exists, we will say that σ is realizable and
that the matrix A realizes σ.

A classical result of Perron and Frobenius tells us that the spectrum of a non-
negative matrix has to contain a positive real number that is greater than or equal
to the absolute value of any other number in the list. This number is called the Per-
ron eigenvalue. Since for any nonnegative matrix A the trace of Ak, k = 1, 2, . . . , is
nonnegative, the following condition must hold:

sk(σ) = λk
1 + λk

2 + . . .+ λk
n ≥ 0.

Some other necessary conditions for the NIEP are known, some of which we will
mention later. However, known necessary conditions are far from being sufficient.

The problem of characterizing spectra of nonnegative matrices was posed by
Suleimanova in [14]. Suleimanova considered a special case when σ contains only
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real numbers, λ1 > 0 and λi ≤ 0, i = 1, 2, . . . , n. In this case it turns out that the
condition s1(σ) = λ1+λ2+ . . .+λn ≥ 0 is sufficient for realizability of σ. An elegant
proof of this result was given in [2], where it is shown that in this special case the
companion matrix of the polynomial f(x) = (x− λ1) . . . (x− λn) is nonnegative.

A major breakthrough on the nonnegative inverse eigenvalue problem was achieved
by Boyle and Handelman in [1]. They considered the problem of characterizing the
nonzero spectra of nonnegative matrices. We say that a list of complex numbers σ is
the nonzero spectrum of a nonnegative matrix, if there exists a nonnegative integer N
such that σ together with N zeros added to it, is the spectrum of some nonnegative
matrix. A primitive matrix is a square nonnegative matrix for which some power is
strictly positive. Boyle and Handelman proved the following result.

Theorem 1.1. ([1]) A list of complex numbers σ is the nonzero spectrum of some
primitive matrix if and only if the following conditions hold:

1. σ contains a positive number strictly greater than the modulus of any other
entry in σ.

2. σ is closed under complex conjugation.
3. For all positive integers n and k,

sn(σ) ≥ 0,

and sn(σ) > 0 implies snk(σ) > 0.

A question that stems from the above theorem is: how many zeros do we need
to add to a given list of complex numbers σ, with sk(σ) > 0 for k = 1, 2, . . . , in order
to achieve realizability. Furthermore, the proof of Theorem 1.1 presented in [1] is not
constructive. The problem of finding a constructive proof of this result is still open.

An advance on this questions was made in [8] where a complete and constructive
proof of the nonnegative inverse eigenvalue problem was given for a list of complex
numbers where all but the Perron eigenvalue have negative real parts.

Theorem 1.2. ([8]) Let λ2, λ3, . . . , λn be nonzero complex numbers with real
parts less than or equal to zero and let λ1 be a positive real number. Then the list
σ = (λ1, λ2, . . . , λn) is the nonzero spectrum of a nonnegative matrix if the following
assumptions are satisfied:

1. The list σ is closed under the complex conjugation.
2. s1(σ) ≥ 0.
3. s2(σ) > 0.

The minimal number of zeros that need to be added to σ to make it realizable is the
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smallest nonnegative integer N for which the following inequality is satisfied:

s21(σ) ≤ (n+N)s2(σ). (1.1)

Furthermore, the list (λ1, λ2, . . . , λn, 0, . . . , 0) can be realized by a nonnegative
matrix of the form C + αI, where C is a companion matrix with trace zero, α is a
nonnegative scalar and I is the identity matrix of the appropriate size.

Note that the construction in the above theorem yields a primitive matrix. In
the special case considered, the necessary condition that governs the number of zeros
needed for realizability, is the inequality:

s1(σ)2 ≤ (n+N)s2(σ). (1.2)

This inequality is one of the so called JLL inequalities that were proved to be necessary
for realizability in [11] and independently in [3]. A more general statement of the JLL
inequalities is that a realizable list of n complex numbers σ satisfies

nk−1skm(σ) ≥ skm(σ) (1.3)

for all positive integers k and m.

The example that is frequently referred to in papers on the NIEP is the question
of realizability of the list of the form

τ(t) = (3 + t, 3− t,−2,−2,−2)

or its slight modification

τ ′(t) = (3 + t, 3,−2,−2,−2).

Neither τ(0) nor τ ′(0) are realizable. Neither of them can even be the nonzero
spectrum of a nonnegative matrix. The smallest t for which τ(t) is realizable is
t =

√
16

√
6− 39, [7]. The question of finding the smallest t for which τ ′(t) is realiz-

able is still open. Currently is known that this t lies in the interval

0.396711738...≤ t ≤ 0.51931098....

These bounds were found in [13].

Note that for any t > 0, τ(t) has a Perron eigenvalue 3 + t, sk(τ(t)) > 0 for
k = 1, 2, . . . , and all the JLL inequalities hold. Theorem 1.1 tells us that τ(t) is the
nonzero spectrum of some nonnegative matrix for all t > 0. When we add zeros to
the list τ(t), the smallest t that makes the extended list realizable must tend to zero
as the number of zeros added tends to infinity.
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Starting from an (n+N)× (n+N) nonnegative matrix BN with spectrum τ(t)
with N zeros attached, one can construct, using results in [15], a nonnegative matrix
B′

N with spectrum τ ′(2t) with N zeros attached.

Examples τ(t) and τ ′(t) were studied also in the context of the symmetric inverse
eigenvalue problem (SNIEP) ( [10, 12, 9]), which asks when is the list of real numbers
the spectrum of an n×n symmetric nonnegative matrix. Hartwig and Loewy showed
in an unpublished work that the smallest t for which τ ′(t) is realizable by a symmetric
nonnegative matrix is t = 1. The smallest t for which τ(t) is the spectrum of a
symmetric nonnegative matrix is t = 1. This was first shown by Loewy and a different
proof can be found in [12]. The case when we add one zero to τ(t) was considered in
[9], where it was shown that τ(1/3) with one zero added is realizable by a symmetric
nonnegative matrix. This shows that adding zeros to the list improves realizability
also in the symmetric case. While in the general case arbitrarily large numbers of
zeros may need to be added to the nonzero spectrum to obtain realization, in the
symmetric case the number of zeros needed is bounded in terms of the number of
nonzero elements in the list [4].

In this paper we present a method that gives a constructive proof of Theorem
1.1 for the list τ(t) = (3 + t, 3 − t,−2,−2,−2). This proof also gives a bound on the
number of zeros needed for realizability for any given t > 0. This example was used
as a test sequence by many authors with references going back at least to 1977 [2].
Our method uses block companion type matrices presented in [6] and is an explicit
variation of the power series method developed by Kim, Ormes and Roush [5]. It
enables us to explicitly present bounds on the number of zeros needed and to discuss
the convergence rate with which t tends to zero as the number of zeros added to the
spectrum is increased. The methods presented in this paper can be applied to a much
more general setting, and this will be developed in a forthcoming paper.

2. Main Result. Let

σN (t) = (3 + t, 3− t,−2,−2,−2, 0, . . . , 0︸ ︷︷ ︸
N

).

We are looking for a nonnegative matrix AN (t) with characteristic polynomial

wN (x) = (x− 3− t)(x− 3 + t)(x + 2)3xN .

Let g(x) = (x− 3)(x2 + 3x+ 3) = x3 − 6x− 9 and h(x) = x2 − 3. Then we write
wN (x) = g(x)qN (x) + rN (x)

and

qN (x) = (x2 − 3)vN (x) + pN (x),
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where rN (x) = aNx2 + bNx + cN and pN (x) = eNx + fN are polynomials of degree
(at most) 2 and 1, respectively. For the polynomial

vN (x) = xN + α1x
N−1 + α2x

N−2 + . . .+ αN

let C(vN ) denote the companion matrix of vN :

C(vN ) =




0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . 0 1 0
0 0 . . . 0 0 1

−αN −αN−1 −αN−2 −αN−3 . . . −α1




.

Then the matrix

AN (t) =




0 1 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 . . . 0
9 6 0 1 0 0 0 . . . 0
0 0 0 0 1 0 0 . . . 0
0 0 0 3 0 1 0 . . . 0
0 0 0 0 0
...

...
...

...
... C(vN )

0 0 0 0 0
−cN −bN −aN −fN −eN




(2.1)

has characteristic polynomial wN (x) [6]. Clearly, aN , bN , cN , eN , fN and vN (x) de-
pend on t and N. We will show that for every t > 0 there exists a positive integer N,

so that aN , bN , cN , eN , fN will be greater than or equal to zero and the companion
matrix of vN will be nonnegative. In other words, we claim that for each t > 0 there
exists N so that AN (t) ≥ 0.

To begin let us consider the case where N = 0. We compute

a0 = −1− 6t2 (2.2)

b0 = 6− 18t2 (2.3)

c0 = −9− 17t2 (2.4)

e0 = 0 (2.5)

f0 = −6− t2 (2.6)

v0(x) = 1. (2.7)
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The form of A0(t) is different than form of AN (t) for N ≥ 1 :

A0(t) =




0 1 0 0 0
0 0 1 0 0
9 6 0 1 0
0 0 0 0 1

9 + 17t2 −6 + 18t2 1 + 6t2 9 + t2 0


 .

This implies that for t0 = 1√
3
we have A0(t0) ≥ 0.

Now we will find recursive relations for the expressions we are interested in. From
wN+1(x) = g(x)qN+1(x) + rN+1(x) and

wN+1(x) = xwN (x) (2.8)

= xg(x)qN (x) + xrN (x) (2.9)

= g(x)(xqN (x) + aN ) + bNx2 + (6aN + cN )x+ 9aN , (2.10)

we get

qN+1(x) = xqN (x) + aN (2.11)

aN+1 = bN (2.12)

bN+1 = 6aN + cN (2.13)

cN+1 = 9aN . (2.14)

Moreover, we have

qN+1(x) = xqN (x) + aN (2.15)

= x(x2 − 3)vN (x) + xpN (x) + aN (2.16)

= (x2 − 3)(xvN (x) + eN ) + xfN + 3eN + aN . (2.17)

This gives us

vN+1(x) = xvN (x) + eN (2.18)

eN+1 = fN (2.19)

fN+1 = 3eN + aN (2.20)

Initial condition v0(x) = 1 and equation (2.18) imply that to prove that C(vN ) is
nonnegative, it is sufficient to prove that eN ≤ 0 for all positive integers N and t > 0.
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The recursive equations

aN+1 = bN (2.21)

bN+1 = 6aN + cN (2.22)

cN+1 = 9aN (2.23)

eN+1 = fN (2.24)

fN+1 = 3eN + aN (2.25)

together with initial conditions

a0 = −1− 6t2 (2.26)

b0 = 6− 18t2 (2.27)

c0 = −9− 17t2 (2.28)

e0 = 0 (2.29)

f0 = −6− t2. (2.30)

give us the following solutions:

aN =
3N/2

21
(−3N/2125t2 − (21 + t2) cos(5Nπ

6 )− 3
√
3(−21 + t2) sin(5Nπ

6 ))

bN =
3N/2

7
(−3N/2125t2 − (−42 + t2) cos(5Nπ

6 ) +
√
3
3
(−84 + 5t2) sin(5Nπ

6 ))

cN =
3N/2

7
(−3N/2125t2 + (−63 + 6t2) cos(5Nπ

6 ) +
√
3(−105 + 4t2) sin(5Nπ

6 )).

The solutions for eN and fN split into two cases: the case when N is even and the
case when N is odd. Moreover, since eN+1 = fN it is sufficient to study eN .

e2N1 = 3
N1

(1
3
(−5 + 5 cos(5N1π

3 )−
√
3 sin(5N1π

3 ))

+
1
126

t2(−3N1125 + 133− 8 cos(5N1π
3 ) + 4

√
3 sin(5N1π

3 ))
)

e2N1+1 = 3N1
( − 3 + 5√

3
cos(5(2N1+1)π

6 )− sin(5(2N1+1)π
6 )

+
3
126

t2(−3N1125− 8
√
3
3

cos(5(2N1+1)π
6 ) + 77 + 4 sin(5(2N1+1)π

6 ))
)

Let us consider expressions for aN , bN and cN as a function of N for some fixed
t > 0. Observe that the term −3N/2125t2 appears in aN , bN and cN . Since other
terms are multiplied by either cos(5Nπ

6 ) or sin(5Nπ
6 ) and are otherwise independent

of N, we see that the term −3N/2125t2 will dominate the expressions for sufficiently
large N. Hence, we can always find sufficiently large N that will, for a given t, make
expressions for aN , bN and cN less than or equal to zero.
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It is left to prove that eN is less than or equal to zero for all t > 0 and all positive
integers N. Let us look at the expressions for 1

3N1 e2N1 and
1

3N1 e2N1+1 as polynomials
of degree two in t. The constant terms in those expressions are periodic functions in
N1 that for all positive integers N1 take values that are less than or equal to zero. The
coefficient of t is zero in both cases and it is not difficult to see that the coefficients
of t2 are less that or equal to zero for all positive integers N1. This shows that eN is
less than or equal to zero for all t > 0 and all positive integers N, which also implies
that fN is less than or equal to zero and that companion matrix of vN is nonnegative
for all t > 0 and all positive integers N. We now state our main result.

Theorem 2.1. Let

σN (t) = (3 + t, 3− t,−2,−2,−2, 0, . . . , 0︸ ︷︷ ︸
N

).

Then if t ≥ 3−N/4
√
2, σN (t) can be realized by a matrix AN (t) of the form (2.1).

To complete the proof, we need to show that AN (t) is nonnegative for t ≥
3−N/4

√
2. This is done in the next section.

Corollary 2.2. The list

σ′
N (t) = (3 + t, 3,−2,−2,−2, 0, . . . , 0︸ ︷︷ ︸

N

)

is realizable for t ≥ 3−N/42
√
2.

3. Proof of the bound and comments on spectral gap. From the last
section, it follows that AN (t) is nonnegative as long as aN , bN and cN are less than
or equal to zero. Let for a given positive integer N, tN denote the smallest t > 0 for
which aN , bN and cN are less than or equal to zero.

From the formulae for aN , bN and cN it is possible to explicitly compute tN for
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any given N. Below we have computed some examples.

t0 =
1√
3
= 0.57735 (3.1)

t1 =
1√
3
= 0.57735 (3.2)

t2 =
1√
3
= 0.57735 (3.3)

t3 =
1√
6
= 0.408248 (3.4)

t4 =
1√
6
= 0.408248 (3.5)

t5 =

√
3
161

= 0.136505 (3.6)

t10 =

√
3

1085
= 0.052583 (3.7)

t20 =

√
15

1054447
= 0.00377167 (3.8)

Since −3N/2125t2 is the dominating term in expressions for aN , bN and cN , we see
that tN will converge to zero surprisingly rapidly, with the rate of 3−N/4.

In fact, using rough estimates one can check that

tN ≤ 3−N/4
√
2.

Let 3−N/22 ≤ t2 ≤ 1, then

21 · 3−N/2aN ≤ −125 · 2 + (21 + t2) + 3
√
3(21− t2) ≤ −250 + 22 + 63

√
3 ≤ 0,

7 · 3−N/2bN ≤ −125 · 2 + (42− t2) +
1√
3
(84− 5t2) ≤ −250 + 42 + 84√

3
≤ 0

7 · 3−N/2cN ≤ −125 · 2 + (63− 6t2) +
√
3(105− 4t2) ≤ −250 + 63 + 105

√
3 ≤ 0

This yields the bound presented in Theorem 2.1

The difference between the largest and the modulus of the second largest eigen-
value of a nonnegative matrix, is often called the spectral gap. The spectral gap
for the realizable list σN (tN ) is equal to 2tN . The example considered in this paper
exhibits surprisingly fast convergence of the spectral gap to zero as we add zeros to
the spectrum.
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