
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 400-410, June 2020.

SKEW COMPRESSIONS OF POSITIVE DEFINITE OPERATORS AND MATRICES∗

MATTEO POLETTINI† AND ALBRECHT BÖTTCHER‡

Abstract. The paper is devoted to results connecting the eigenvalues and singular values of operators composed by P ∗GP

with those composed in the same way by QG−1Q∗. Here P and Q are skew complementary projections on a finite-dimensional

Hilbert space and G is a positive definite linear operator on this space. Also discussed are graph theoretic interpretations of

one of the results.
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1. Introduction and main results. Let H be a real or complex n-dimensional Hilbert space, let

G ∈ L(H) be a (selfadjoint and) positive definite operator, and let P 6= 0, I be a projection on H, that

is, an operator in L(H) satisfying P 2 = P . We denote by Q = I − P the complementary projection. The

metrics induced by G on the ranges ImP and ImQ are given by (GPx, Py) = (P ∗GPx, y) and (GQx,Qy) =

(Q∗GQx, y). Analogously, the metrics generated by G−1 on ImP ∗ and ImQ∗ lead to the operators PG−1P ∗

and QG−1Q∗. This paper is about some interesting connections between the metrics induced by G and G−1

on the oblique subspaces.

The four operators P ∗GP,PG−1P ∗, QG−1Q∗, Q∗GQ are not invertible, and hence, their determinants

are zero. Given an operator A ∈ L(H), we denote by det+A the product of the nonzero roots of the character-

istic polynomial det(λI−A) taken with their multiplicity. As the operators P ∗GP,PG−1P ∗, QG−1Q∗, Q∗GQ

are selfadjoint and positive semi-definite, their eigenvalues coincide with the zeros of their characteristic

polynomials and are nonnegative real numbers. Thus, det+ of these operators is simply the product of the

nonzero eigenvalues. Geometrically, if H is a real space, then det+(P ∗GP ) is the volume element in the

metric on ImP induced by G, that is, the volume of P (V ) ⊂ ImP where V ⊂ H is the cube spanned by any

orthonormal basis in H. Here is our first result.

Theorem 1.1. We have

detG =
det+(P ∗GP )

det+(QG−1Q∗)
=

det+(Q∗GQ)

det+(PG−1P ∗)
.

We remark that the first equality in the theorem remains true if the hypothesis that G be positive

definite is replaced by the sole requirement that G and P ∗GP : ImP → ImP ∗ be invertible; the invertibility

of QG−1Q∗ : ImQ∗ → ImQ then follows automatically.

Theorem 1.1 implies that det+(P ∗GP ) det+(PG−1P ∗) = det+(QG−1Q∗) det+(Q∗GQ). The map send-
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ing A to det+A is not multiplicative, not even on the special operators/matrices we are considering. Indeed,

if we take H = R2, P =
[

1 ω
0 0

]
, and G =

[
a 0
0 b

]
, then

det+(P ∗GP ) = a(1 + ω2), det+(PG−1P ∗) =
1

a
+

1

b
ω2,

det+(QG−1Q∗) =
1

b
(1 + ω2), det+(Q∗GQ) = b+ aω2,

implying that

det+(P ∗GP )det+(PG−1P ∗) = det+(QG−1Q∗)det+(Q∗GQ) =
(

1 +
a

b
ω2
)

(1 + ω2),

whereas

det+(P ∗GPG−1P ∗) = det+(QG−1Q∗GQ) = 1 +
a

b
ω2.

However, this example suggests that the equality det+(P ∗GPG−1P ∗) = det+(QG−1Q∗GQ) might be true

in general. Our second result shows that this is indeed the case. Moreover, it reveals that, except for the

eigenvalue 0 and the possible eigenvalue 1, the eigenvalues and their algebraic multiplicities of the operators

P ∗GPG−1P ∗ and QG−1Q∗GQ coincide.

Theorem 1.2. The spectra of the operators P ∗GPG−1P ∗ and QG−1Q∗GQ are contained in {0}∪[1,∞),

and a number λ > 1 is an eigenvalue of algebraic multiplicity α of the first operator if and only if it is an

eigenvalue of the same algebraic multiplicity of the second operator. In particular, det+(P ∗GPG−1P ∗) =

det+(QG−1Q∗GQ).

We will show below that the singular values of P ∗GPG−1P ∗ and QG−1Q∗GQ lying in (1,∞) need not

coincide. However, we will prove that this happens if G = I, that is, except for the multiplicities of the

singular values 0 and 1, the operators P ∗PP ∗ and QQ∗Q have the same singular values with the same

multiplicities. This can be generalized to the operators f(P, P ∗) and f(Q∗, Q) where f(x, y) is a polynomial

in two non-commuting variables x and y. Before doing this, we consider an example. Let

f(x, y) = a+ bx+ cxy + dx2y + eyxy

with coefficients from the scalar field K ∈ {R,C}, take H = K3 with the usual scalar product, and let

(1.1) P =

 1 s 0

0 0 0

0 0 0

 , P ∗ =

 1 0 0

s 0 0

0 0 0

 , Q =

 0 −s 0

0 1 0

0 0 1

 , Q∗ =

 0 0 0

−s 1 0

0 0 1


with a real number s. We get

f(P, P ∗) = aI + bP + cPP ∗ + dP 2P ∗ + eP ∗PP ∗ = aI + bP + (c+ d)PP ∗ + eP ∗PP ∗

=

 a+ b+ (c+ d+ e)(1 + s2) bs 0

es(1 + s2) a 0

0 0 a

 ,
f(Q∗, Q) = aI + bQ∗ + cQ∗Q+ d(Q∗)2Q+ eQQ∗Q = aI + bQ∗ + (c+ d)Q∗Q+ eQQ∗Q

=

 a −es(1 + s2) 0

−bs a+ b+ (c+ d+ e)(1 + s2) 0

0 0 a+ b+ c+ d+ e

 .
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Let λ1, λ2 be the roots of the characteristic polynomial of the upper-left 2 × 2 block of f(P, P ∗). The

lower-right entries of f(P, P ∗) and f(Q∗, Q) are f(0, 0) and f(1, 1), respectively. Thus, the roots of the

characteristic polynomials of f(P, P ∗) and f(Q∗, Q) are

λ1, λ2, f(0, 0) and λ1, λ2, f(1, 1),

respectively. It follows that, up to f(0, 0) and f(1, 1), the operators f(P, P ∗) and f(Q∗, Q) have the same

eigenvalues with the same algebraic multiplicities. Computing f(P, P ∗)[f(P, P ∗)]∗ and f(Q∗, Q)[f(Q∗, Q)]∗

one will see that, this time up to |f(0, 0)| and |f(1, 1)|, the operators f(P, P ∗) and f(Q∗, Q) have the same

singular values with the same multiplicities. Herewith our third result. Recall that K ∈ {R,C} stands for

the scalar field of H.

Theorem 1.3. Let f(x, y) be a polynomial in two non-commuting variables x, y with coefficients from

the scalar field K. A number λ ∈ K\{f(0, 0), f(1, 1)} is an eigenvalue of algebraic multiplicity α of f(P, P ∗)

if and only if it is an eigenvalue of the same algebraic multiplicity of f(Q∗, Q), and a nonnegative number

s /∈ {|f(0, 0)|, |f(1, 1)|} is a singular value of multiplicity α of f(P, P ∗) if and only if it is a singular value

of the same multiplicity of f(Q∗, Q). If f(x, y) is a monomial, then the singular values of f(P, P ∗) and

f(Q∗, Q) belong to {0} ∪ [1,∞) and ‖f(P, P ∗)‖ = ‖f(Q∗, Q)‖.

If f(x, y) = x, we get the classical equality ‖P‖ = ‖Q∗‖, which implies that actually ‖P‖ = ‖P ∗‖ =

‖Q‖ = ‖Q∗‖; see [1] and especially [9] for the history and for several proofs of this equality. For higher-degree

monomials f(x, y), we may restrict ourselves to the cases where f(x, y) = xyx · · · or f(x, y) = yxy · · · with

m ≥ 2 factors. (Note that, for example, P 2(P ∗)3P 6 = PP ∗P .) Thus, if P = USV is the singular value

decomposition of P , then f(P, P ∗) = PP ∗P · · · = USmV or f(P, P ∗) = P ∗PP ∗ · · · = V ∗SmU∗. It follows

that the singular values of f(P, P ∗) are just the mth powers of the singular values of P . In particular,

‖f(P, P ∗)‖ = ‖P‖m, and as we already know that ‖P‖ = ‖Q‖, we arrive at the conclusion that

(1.2) ‖PP ∗P · · ·︸ ︷︷ ︸
m

‖ = ‖P ∗PP ∗ · · ·︸ ︷︷ ︸
m

‖ = ‖QQ∗Q · · ·︸ ︷︷ ︸
m

‖ = ‖Q∗QQ∗ · · ·︸ ︷︷ ︸
m

‖ = ‖P‖m = ‖Q‖m.

What about the norm equality if f(x, y) is not a monomial? Feldman, Krupnik, and Markus [3] showed

that if dimH = 2, then ‖f(P, P ∗)‖ = ψ(‖P‖) with some function ψ(x). Thus, in this case, ‖f(P, P ∗)‖
depends solely on ‖P‖ and we conclude that ‖f(P, P ∗)‖ = ‖f(Q∗, Q)‖ for every polynomial f(x, y). A

theorem by Spigel [8] says that if P,R are two nontrivial projections in L(H), then the equality ‖f(P, P ∗)‖ =

‖f(R,R∗)‖ is true for all polynomials f(x, y) if and only if

(1.3) σ(PP ∗P ) \ {0, 1} = σ(RR∗R) \ {0, 1}

and

(1.4) σ(P + 2P ∗) ∩ {0, 1, 2, 3} = σ(R+ 2R∗) ∩ {0, 1, 2, 3},

where σ(A) stands for the spectrum of A (= set of the zeros of det(λI − A) ). Now let P be an arbitrary

nontrivial projection and take R = Q∗ with Q = I − P . Then equality (1.3) is always satisfied due to

Theorem 1.2. However, if we take P as in (1.1) with s = 1, then the eigenvalues of

P + 2P ∗ =

 3 1 0

2 0 0

0 0 0

 and R+ 2R∗ = Q∗ + 2Q =

 0 −2 0

−1 3 0

0 0 3


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are 0, (3 ±
√

17)/2 and 3, (3 ±
√

17)/2, respectively, so that (1.4) is not satisfied. Thus, the equality

‖f(P, P ∗)‖ = ‖f(Q∗, Q)‖ cannot be true for all polynomials f(x, y). We will show that, in the general

case, ‖f(P, P ∗)‖ = ‖f(Q∗, Q)‖ for all polynomials f(x, y) if and only if

(1.5) σ(P + 2P ∗) ∩ {0} = σ(Q∗ + 2Q) ∩ {0}.

We remark that Theorems 1.1 and 1.2 were established in [6]. We here give proofs that are significantly

shorter than those in [6]. Theorem 1.3 is in the vein of Feldman, Krupnik, Markus [3] and Spigel [8], but in

the form stated and proved here it cannot be found in these two papers. Our proof makes use of the Doković

canonical form of skew projections, for which see [2] or [1, Corollary 2.3]. Finally, following [5] and [6],

we embark on the connection of Theorem 1.1 with graph theory. We will not provide new graph theoretic

results, we rather want to point out that this theorem admits nice graph theoretic interpretations and that

it has been implicit in the graph theoretic literature for a long time.

2. Proofs. Choose orthonormal bases in ImP and ImQ∗ = (ImP )⊥. The union of these two bases is

an orthonormal basis in H. The matrix representations of P, P ∗, Q,Q∗ in this basis are

(2.6) P =

[
I ω

0 0

]
, P ∗ =

[
I 0

ω∗ 0

]
, Q =

[
0 −ω
0 I

]
, Q∗ =

[
0 0

−ω∗ I

]
.

Let k be the dimension of ImP . Then 1 ≤ k ≤ n−1, and ` = n−k is the dimension of ImQ∗. By symmetry,

we may without loss of generality suppose that k ≤ `. Clearly, ω is a k × ` matrix.

The representations (2.6) were first employed by Feldman, Krupnik, and Markus in [3] and were inde-

pendently used in [9, page 312], where they are cited as a private communication by Gustavo Corach. They

are also as Corollary 1.7 in [1]; this corollary is stated for complex spaces, but it holds verbatim also for real

spaces.

Proof of Theorem 1.1. By symmetry, it is enough to prove the first equality. Let G =
[
A B
C D

]
be the

matrix representation of G in our orthonormal basis and let G−1 =
[
a b
c d

]
. We obtain

P ∗GP =

[
A Aω

ω∗A ω∗Aω

]
, QG−1Q∗ =

[
ωdω∗ −ωd
−dω∗ d

]
.

The identities [
A Aω

ω∗A ω∗Aω

]
=

[
I −ω
ω∗ I

] [
A(I + ωω∗) 0

0 0

] [
I −ω
ω∗ I

]−1

and [
ωdω∗ −ωd
−dω∗ d

]
=

[
I −ω
ω∗ I

] [
0 0

0 d(I + ω∗ω)

] [
I −ω
ω∗ I

]−1

can be verified straightforwardly. They tell us that P ∗GP and QG−1Q∗ have the same eigenvalues as the

block-diagonal matrices on the right. Consequently,

det+(P ∗GP ) = detA det(I + ωω∗), det+(QG−1Q∗) = det ddet(I + ω∗ω).

It follows that
det+(P ∗GP )

det+(QG−1Q∗)
=

detA det(I + ωω∗)

det ddet(I + ω∗ω)
,
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and Jacobi’s determinant identity det d = (1/ detG) detA and the easily verified identity det(I + ωω∗) =

det(I + ω∗ω) complete the proof.

Our proof of Theorem 1.2 makes use of the following known facts. First, let X1 and X2 be linear

spaces, A : X1 → X2 be a linear and invertible operator, and P1 : X1 → X1 and P2 : X2 → X2 be linear

projections. Put Q1 = I − P1 and Q2 = I − P2. Then P2AP1 : ImP1 → ImP2 is invertible if and only if

Q1A
−1Q2 : ImQ2 → ImQ1 is invertible. In that case,

(2.7) P1(P2AP1)−1P2 = P1A
−1P2 − P1A

−1Q2(Q1A
−1Q2)−1Q1A

−1P2.

Second, denote by σ(C) the spectrum of C ∈ L(H) as a multiset, that is, each point is repeated according

to its algebraic multiplicity. It is well known that if A is a k× ` matrix and B is an `× k matrix with k ≤ `,
then the characteristic polynomials of AB and BA are related by the equality

det(λI −BA) = λ`−k det(λI −AB).

Thus, the well known equality

(2.8) σ(AB) \ {0, 0, . . .} = σ(BA) \ {0, 0, . . .}

is true as an equality for multisets. Third, if R =
[
I ω
0 0

]
is a projection and A =

[
B C
D E

]
an equally partitioned

matrix, then

I −RAR =

[
I −B − ωD ∗

0 I

]
, R−RAR =

[
I −B − ωD ∗

0 0

]
,

which shows that

(2.9) σ(R−RAR) \ {0, 0, . . . , 1, 1, . . .} = σ(I −RAR) \ {0, 0, . . . , 1, 1, . . .},

again as an equality for multisets. Finally, we also have σ(I − A) = 1 − σ(A) as an equality for multisets.

We write S ∼= T for two multisubsets of C if S \ {0, 0, . . . , 1, 1, . . .} = T \ {0, 0, . . . , 1, 1, . . .} as multisets.

Proof of Theorem 1.2. Replacing Q∗ in QG−1Q∗GQ by I − P ∗, we get Q−QG−1P ∗GQ. Making such

a replacement twice and taking into account (2.8) and (2.9) we obtain

σ(QG−1Q∗GQ) = σ(Q−QG−1P ∗GQ) ∼= σ(I −QG−1P ∗GQ)

= 1− σ(QG−1P ∗GQ) ∼= 1− σ(P ∗GQG−1P ∗) = 1− σ(P ∗ − P ∗GPG−1P ∗)

∼= 1− σ(I − P ∗GPG−1P ∗) = 1− (1− σ(P ∗GPG−1P ∗)) = σ(P ∗GPG−1P ∗),

as asserted.

We are left with showing that σ(PG−1P ∗GP ) ⊂ {0} ∪ [1,∞). We know from the proof of Theorem 1.1

that PG−1P ∗ : ImP ∗ → ImP is invertible, and from (2.7) we get

P ∗GP = (PG−1P ∗)−1P + P ∗GQ(Q∗GQ)−1Q∗GP.

Multiplying this equality by PG−1P ∗ from the left we obtain

PG−1P ∗GP = P + PG−1P ∗GQ(Q∗GQ)−1Q∗GP =: P +M.

By (2.9), σ(PG−1P ∗GP ) ∼= 1 + σ(M). The operator

L := (PG−1P ∗)1/2P ∗GQ(Q∗GQ)−1Q∗GP (PG−1P ∗)1/2
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is selfadjoint and positive, whence σ(L) ⊂ [0,∞), and from (2.8) we deduce that σ(M) ∼= σ(L). In summary

σ(PG−1P ∗GP ) ∼= 1 + σ(L) ⊂ [1,∞).

Counterexample. Theorem 1.2 cannot be transferred from eigenvalues to singular values. A coun-

terexample is as follows. Let H = R4, take P,Q as in (2.6) with ω =
[

1 1
1 1

]
, and choose G = diag[1, 2, 1, 1].

Straightforward computation gives

PG := P ∗GPG−1P ∗ =


3 2 0 0

4 5 0 0

7 7 0 0

7 7 0 0

 , QG := QG−1Q∗GQ =


0 0 −7 −7

0 0 −7 −7

0 0 4 3

0 0 3 4

 .
Both matrices have the same eigenvalues 0, 0, 1, 7, which is in accordance with Theorem 1.2. Again by direct

calculation,

P ∗GPG =


123 124 0 0

124 127 0 0

0 0 0 0

0 0 0 0

 , Q∗GQG =


0 0 0 0

0 0 0 0

0 0 123 122

0 0 122 123

 .
The singular values of P ∗GPG−1P ∗ and QG−1Q∗GQ are the square roots of the eigenvalues of P ∗GPG and

Q∗GQG. But the latter two matrices cannot have the same eigenvalues because the traces of their nonzero

2 × 2 blocks are 250 6= 246. In fact, solving two quadratic equations we see that the singular values of

PG = P ∗GPG−1P ∗ are 0, 0, 0.9919, 15.7802 and that those of QG = QG−1Q∗GQ are 0, 0, 1, 15.6525. �

Proof of Theorem 1.3. Doković [2] showed that if the scalar field is C, then there is an orthonormal

basis in which P has a matrix of the form

Ir ⊕Ot ⊕ diag

{[
1 sj
0 0

]}m
j=1

with real numbers sj > 0. The proof of [1, Corollary 2.3] reveals that this representation can also be achieved

for the scalar field R. Thus, in either case, there is a unitary operator V such that V ∗f(P, P ∗)V is given on

Kn by

(2.10) f(1, 1)Ir ⊕ f(0, 0)It ⊕ diag

{
f

([
1 sj
0 0

]
,

[
1 0

sj 0

])}m
j=1

=: f(1, 1)Ir ⊕ f(0, 0)It ⊕DP .

It follows that V ∗f(Q∗, Q)V equals

(2.11) f(0, 0)Ir ⊕ f(1, 1)It ⊕ diag

{
f

([
0 0

−sj 1

]
,

[
0 −sj
0 1

])}m
j=1

=: f(0, 0)Ir ⊕ f(1, 1)It ⊕DQ.

Thus, up to the possible eigenvalues f(0, 0) and f(1, 1), the roots of the characteristic polynomials of f(P, P ∗)

and f(Q∗, Q) are the roots of the characteristic polynomials of Dp and DQ, respectively. With the unitary

matrix U =
[

0 1
−1 0

]
, we have[

0 0

−sj 1

]
= U

[
1 sj
0 0

]
U∗,

[
0 −sj
0 1

]
= U

[
1 0

sj 0

]
U∗,

which shows that DP and DQ are unitarily similar and hence have the same charcteristic polnomials. This

completes the proof of the theorem for the eigenvalues.
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The squared singular values are the eigenvalues of f(P, P ∗)[f(P, P ∗)]∗ and f(Q∗, Q)[f(Q∗, Q)]∗. By

straightforward computation we obtain that

f(P, P ∗)[f(P, P ∗)]∗ = g(P, P ∗), f(Q∗, Q)[f(Q∗, Q)]∗ = g(Q∗, Q)

with a polynomial g(x, y) such that g(0, 0) = |f(0, 0)|2 and g(1, 1) = |f(1, 1)|2. (Example: If f(x, y) =

a+ bx+ cxy, then g(x, y) = (a+ bx+ cxy)(a+ by + cxy).) The assertion for the eigenvalues already proved

therefore implies the assertion for the singular values.

We are left with the case where f(x, y) is a monomial. By what was said after the statement of

Theorem 1.3, it suffices to consider f(x, y) = x only. However, the reasoning is equally simple in the general

case. Namely, for the monomials f(x, y) = x, xy, xyx, xyxy, xyxyx, . . ., we have f(0, 0) = 0 and f(1, 1) = 1,

and if P =
[

0 s
0 0

]
, then f(P, P ∗) takes the values[

1 s

0 0

]
,

[
1 + s2 0

0 0

]
,

[
1 + s2 s(1 + s2)

0 0

]
,

[
(1 + s2)2 0

0 0

]
,

[
(1 + s2)2 s(1 + s2)2

0 0

]
, . . . .

It is readily seen that the singular values of these matrices are 0 and (1 + s2)ν/2 if the degree of f(x, y) is ν.

Consequently, from the Doković representation and from what was already proved we infer that all singular

values belong to {0}∪ [1,∞) and that the maximal singular value of f(P, P ∗), which is equal to the maximal

singular value of f(Q∗, Q), is strictly greater than 1.

Proof of (1.5). This is easy with the Doković representation. We use Spigel’s theorem cited in Section 1.

(Note that there σ(A) is understood as a true set and not as a multiset.) We know from Theorem 1.3 that (1.3)

is satisfied for P and R = Q∗. So we are left with showing that for P and R = Q∗ the equalities (1.4) and (1.5)

are equivalent. From (2.10) and (2.11) with f(x, y) = x+ 2y we infer that

P + 2P ∗ = 3Ir ⊕ 0t ⊕ diag

{[
3 sj

2sj 0

]}m
j=1

, Q∗ + 2Q = 0r ⊕ 3It ⊕ diag

{[
0 −2sj
−sj 3

]}m
j=1

.

The spectra of the diagonal blocks are the solutions of the equation λ2 − 3λ − 2s2
j = 0. This equation is

never satisfied for λ ∈ {0, 1, 2, 3}. Consequently, (1.4) holds if and only if either r = t = 0 or rt > 0. But

the requirement r = t = 0 is equivalent to the equalities σ(P + 2P ∗) ∩ {0} = σ(Q∗ + 2Q) ∩ {0} = ∅, while

the inequality rt > 0 is the same as saying that σ(P + 2P ∗) ∩ {0} = σ(Q∗ + 2Q) ∩ {0} = {0}.

3. The connection with graph theory. Theorem 1.1 has a graph theoretic interpretation. We

confine ourselves to illustrate this connection by an example. The picture

•
g1 // •

g4

��
•

g5

OO

g2

??

•
g3
oo

shows an oriented graph with positive weights g1, . . . , g5 on the edges. This graph is connected and without

loops. There exists a standard procedure (see, e.g., the Appendix of [5]) to associate two linear spaces with

the graph, the linear space of oriented cycles and that of oriented cocycles, and to construct bases in them.
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A cycle is a sequence of edges such that each vertex has as many incoming edges as outgoing ones. A cocycle

is a minimal set of edges whose removal disconnects the graph into two subgraphs. In our example, both

spaces are subspaces of R5.

To construct bases, one first chooses an arbitrary spanning tree, that is, a minimal subset of the edges

that connects all vertices. We take

• •

• •

as a spanning tree and denote it by T . Removing an edge from T disconnects the vertex set of the graph

into two subsets. One of these two subsets contains the outgoing vertex of the removed edge and the other

subset contains the the incoming vertex of the edge we removed. The vertices of the former subset are called

sources (circles) and the vertices of the latter are referred to as sinks (disks). Then there is a unique cocycle

out of the source toward the sink. In our example, removal of g1, g2, g3 from T produces the following three

linearly independent cocycles:

◦ //

��

•

• •

•OO •

◦

??

◦

OO • •

• ◦oo

OO

Adding an edge to the spanning tree yields a cycle. This cycle is oriented according to the orientation of the

added edge. In our example, we may add the two edges g4 and g5, and the two resulting cycles

• •

��
•

??

•oo

• //
OO •

•
��

•

are linearly independent. With the graphs obtained, one then associates columns. Given one of the graphs,

the jth entry of the column is 0 if the edge gj is missing in the graph, is 1 if the edge gj is in the graph

with the original orientation, and is −1 if the edge gj belongs to the graph with reverse orientation. The

five columns we get in our example are

c1 =


1

0

0

0

−1

 , c2 =


0

1

0

−1

1

 , c3 =


0

0

1

−1

0

 , c4 =


0

1

1

1

0

 , c5 =


1

−1

0

0

1

 .

The cocycle space is the span of c1, c2, c3 and the cycle space is the span of c4, c4.
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Let P ∈ L(R5) be the 5× 5 matrix whose first three rows are c>1 , c
>
2 , c
>
3 and whose remaining two rows

are zero, and let Q ∈ L(R5) stand for the 5 × 5 matrix whose first three columns are zero and whose last

two columns are c4, c5,

P =


1 0 0 0 −1

0 1 0 −1 1

0 0 1 −1 0

0 0 0 0 0

0 0 0 0 0

 , Q =


0 0 0 0 1

0 0 0 1 −1

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

 .
Obviously, P and Q are complementary projections. In the notation of Section 2, these matrices are given

by (2.6) with

ω =

 0 −1

−1 −1

−1 0

 .
Let G = diag[g1, . . . , g5]. Straightforward computation gives that

det+(Q∗GQ) = det

[
g2 + g3 + g4 −g2

−g2 g1 + g2 + g5

]
,

det+(PG−1P ∗) = det

 g−1
1 + g−1

5 −g−1
5 0

−g−1
5 g−1

2 + g−1
4 + g−1

5 g−1
4

0 g−1
4 g−1

3 + g−1
4

 .
In [4], the matrices on the right are called Kirchhoff-Symanzik matrices. Expanding the determinants we

arrive at the following diagrammatic representation:

det+(Q∗GQ) = g4g5 + g1g3 + g5g3 + g1g4 + g2g3 + g5g2 + g1g2 + g4g2

=
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

=
∑
T

∏
e/∈T

ge

det+(PG−1P ∗) =
1

g1g2g3
+

1

g2g4g5
+

1

g1g2g4
+

1

g2g3g5
+

1

g1g4g5
+

1

g1g3g4
+

1

g3g4g5
+

1

g1g3g5

=
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

+
• •

• •

=
∑
T

∏
e∈T

1

ge
.

In the second lines of the expressions we give a representation of the determinant expansion in terms of

spanning trees (weights are intended to be multiplied over the solid edges of the diagram), which we compactly

resume in the third lines in terms of the spanning-tree polynomials. Replacing in the obvious identity(∏
gj

)∑
T

∏
e∈T

1

ge
=
∑
T

∏
e/∈T

ge

the product and the sums by detG,det+(PG−1P ∗),det+(Q∗GQ), we get

(3.12) detGdet+(PG−1P ∗) = det+(Q∗GQ),
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which is just the second equality in Theorem 1.1. Nakanishi [4, Theorem 3.10] actually proved the equalities

(3.13) det+(Q∗GQ) =
∑
T

∏
e/∈T

ge, det+(PG−1P ∗) =
∑
T

∏
e∈T

1

ge

in the general case. Thus, Theorem 1.1 for diagonal matrices G and for projections P arising from the above

graph theoretic construction is implicitly in the literature at least since 1971. The question whether every

skew projection P with entries in {0,±1} can be obtained as above, that is, whether it can be represented

via a basis of the cocycle space of a graph is more delicate and we do not know the answer. Our contribution

here is a simple linear algebra proof of Theorem 1.1, without the journey through graph theory, for arbitrary

positive definite G, and independently of whether the projection P comes from a cocycle space or not.

The polynomial TΓ(v) :=
∑
T
∏
e∈T ve is referred to as the Tutte polynomial of the graph Γ. From (3.13)

we infer that

TΓ(1/g) =
∑
T

∏
e∈T

1

ge
= det+(PG−1P ∗).

If Γ is a planar graph, there is a well known construction that gives the dual graph Γ∗. Equation (4.11)

of [7] says that

TΓ∗(g) = detG TΓ(1/g).

Consequently, TΓ∗(g) = detG det+(PG−1P ∗), and Theorem 1.1 or (3.12) in combination with (3.13) are

equivalent to the equalities

TΓ∗(g) = det+(Q∗GQ) =
∑
T

∏
e/∈T

ge, TΓ∗(1/g) = det+(Q∗G−1Q) =
∑
T

∏
e/∈T

1

ge
,

the sums over the set T of all spanning trees of the original graph Γ.

We conclude with a beautiful identity that was found in [6] for skew projections emerging in graph

theory. This identity reads

PP ∗ +Q∗Q = I − Ω2 = (I + Ω∗)(I + Ω) for Ω = P − P ∗.

Note that the second equality is obvious because Ω is skew-symmetric, Ω∗ = −Ω. Here are two proofs which

show that the identity actually holds for arbitrary complementary projections P,Q.

First proof. Using (2.6), we get

PP ∗ +Q∗Q =

(
I + ωω∗ 0

0 I + ω∗ω

)
, Ω = P − P ∗ =

(
0 ω

−ω∗ 0

)
, Ω2 =

(
−ωω∗ 0

0 −ω∗ω

)
,

whence PP ∗ +Q∗Q = I − Ω2.

Second proof. Since P +Q = I = P ∗ +Q∗, we get P − P ∗ = Q∗ −Q = Ω, it follows that

(P − P ∗)2 = P + P ∗ − PP ∗ − P ∗P = Ω2,

(Q∗ −Q)2 = Q+Q∗ −Q∗Q−QQ∗ = Ω2,

and adding these two equalities, we arrive at

(PP ∗ +Q∗Q) + (P ∗P +QQ∗) = 2(I − Ω2).
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It remains to show that PP ∗ +Q∗Q = P ∗P +QQ∗. But this true because

PP ∗ +Q∗Q = PP ∗ + (I − P ∗)(I − P ) = PP ∗ + I − P ∗ − P + P ∗P,

P ∗P +QQ∗ = P ∗P + (I − P )(I − P ∗) = P ∗P + I − P − P ∗ + PP ∗,

which completes the proof.
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