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Abstract. In this paper, loop connections of two linear systems are studied. As the main

result, the possible eigenvalues of a matrix of a system obtained as a result of these connections are

determined.
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1. Introduction. Consider two linear systems S1 and S2, given by the following
equations:

Si

{
ẋi = Aixi + Biui

yi = Cixi
i = 1, 2,

where Ai ∈ Kni×ni is usually called the matrix of the system Si, Bi ∈ Kni×mi ,
Ci ∈ K

pi×ni , K ∈ {R,C}, i = 1, 2. Also, xi is the state, yi is the output and ui is the
input of the system Si, i = 1, 2; for details see [4].

By loop (or closed) connections of the linear systems S1 and S2 we mean connec-
tions where the input of S2 is a linear function of the output of S1, and the input of
S1 is a linear function of the output of S2, i.e.,

u2 = X̄1y1

u1 = X̄2y2

where X̄1 ∈ Km2×p1 and X̄2 ∈ Km1×p2 . As a result of this connection we obtain a
system S with the state

[
xT

1 xT
2

]T
, and the matrix[

A1 B1X̄2C2

B2X̄1C1 A2

]
. (1.1)

Analogously to [1], we shall only consider the systems S1 and S2 with the prop-
erties rankB1 = n1 and rankC2 = n2. Hence, studying the properties of the system
S gives the following matrix completion problem:
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Problem 1.1. Let F be a field. Determine possible eigenvalues of the matrix

[
A1 X2

B2X1C1 A2

]
(1.2)

when matrices X1 ∈ Fm2×p1 and X2 ∈ Fn1×n2 vary.

Similar completion problems have been studied in papers by G. N. de Oliveira
[6], [7], [8],[9], E. M. de Sá [10], R. C. Thompson [13] and F. C. Silva [11], [12]. In
the last two papers, F. C. Silva solved two special cases of Problem 1.1, both in the
case when eigenvalues of the matrix (1.2) belong to the field F. In [11], he solves the
Problem 1.1 in the case when rankB2 = n2 and rankC1 = m1. Moreover, in [12], he
solves the Problem 1.1 in the case when the matrix X1 is known.

This paper is a natural generalization of those results. As the main result (Theo-
rem 3.1), we give a complete solution of Problem 1.1 in the case when the eigenvalues
of the matrix (1.2) belong to F, and F is an infinite field. In particular, this gives
the complete solution of Problem 1.1 over algebraically closed fields. Moreover, in
Theorem 4.2, we study the possible eigenvalues of the matrix (1.1) in the case when
rankC1 = n1 and rankC2 = n2 while rankB1 = rankB2 = 1. In this special case, we
give necessary and sufficient conditions for the existence of matrices X̄1 and X̄2 such
that the matrix (1.1) has prescribed eigenvalues, over algebraically closed fields.

Since the proof of the main result strongly uses previous results from [11] and
[12], we cite here the main result of [12], written in its transposed form, as it will be
used later in the proof of Theorem 3.1:

Theorem 1.2. Let F be a field. Let c1, . . . , cm+n ∈ F, A11 ∈ Fm×m, A21 ∈ Fn×m,

and A22 ∈ Fn×n. Let f1(λ)| · · · |fm(λ) be the invariant factors of
[
λIm −A11

−A21

]
, and

let g1(λ)| · · · |gn(λ) be the invariant factors of
[
λIn −A22 −A21

]
.

There exists A12 ∈ Fn×m such that the matrix

[
A11 A12

A21 A22

]
(1.3)
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has eigenvalues c1, . . . , cm+n if and only if the following conditions hold:

(a) c1 + · · ·+ cn+m = trA11 + trA22

(b) f1(λ) · · · fm(λ)g1(λ) · · · gn(λ)|(λ − c1) · · · (λ− cn+m)

(c) One of the following conditions is satisfied:

(c1) For every ν ∈ F, A21A11 +A22A21 �= νA21

(c2) A21A11 +A22A21 = νA21

with ν ∈ F, and there exists a permutation

π : {1, . . . ,m+ n} → {1, . . . ,m+ n} such that

cπ(2i−1) + cπ(2i) = ν

for every i = 1, . . . , l, where l = rankA21, and

cπ(2l+1), . . . , cπ(m+n)

are the roots of f1(λ) · · · fm(λ)g1(λ) · · · gn(λ).

2. Notation and technical results. Let F be a field. All the polynomials in
this paper are considered to be monic. If f is a polynomial, d(f) denotes its degree. If
ψ1| · · · |ψn are invariant factors of a polynomial matrix A(λ) over F[λ], rankA(λ) = n,
then we assume ψi = 1, for any i ≤ 0, and ψi = 0, for any i ≥ n+ 1.

Definition 2.1. Let A,A′ ∈ F
n×n, B,B′ ∈ F

n×l. Two matrices

K =
[
A B

]
, K ′ =

[
A′ B′ ]

(2.1)

are said to be feedback equivalent if there exists a nonsingular matrix

P =
[
N 0
V T

]

where N ∈ Fn×n, V ∈ Fl×n, T ∈ Fl×l, such that K ′ = N−1KP.

It is easy to verify that two matrices of the form (2.1) are feedback equivalent if
and only if the corresponding matrix pencils

R =
[
λI −A −B ]

and R′ =
[
λI −A′ −B′ ]

(2.2)

are strictly equivalent, i.e., if there exist invertible matrices D ∈ Fn×n and T ∈
F(n+l)×(n+l) such that R = DR′T ; for details see [5].

By invariant polynomials of the matrix K from (2.1), we mean invariant factors
of the corresponding matrix pencil R from (2.2).
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Let A ∈ Fn×n and B ∈ Fn×m. Denote by S(A,B) the controllability matrix of
the pair (A,B), i.e.,

S(A,B) =
[
B AB A2B · · · An−1B

] ∈ F
n×nm.

If rankS(A,B) = n, then we say that the pair (A,B) is controllable.

Lemma 2.2. ([1, Lemma 3.4], [2]) Let (A,B) ∈ Fn×n × Fn×m be such that
rankS(A,B) = r. Then there exists a nonsingular matrix P ∈ Fn×n such that

PAP−1 =
[
A1 A2

0 A3

]
, PB =

[
B1

0

]
, (2.3)

where (A1, B1) ∈ F
r×r ×F

r×m is a controllable pair. The pair (PAP−1, PB) is called
the Kalman decomposition of the pair (A,B).

Moreover, the matrix A1 from (2.3), is called the restriction of the matrix A
to the controllable space of the pair (A,B). Also, recall that the nontrivial invariant
polynomials of the matrix A3 from (2.3), coincide with the nontrivial invariant factors
of the matrix pencil

[
λI −A −B ]

. By trivial polynomials we mean polynomials
equal to 1.

Analogously to [3], we introduce the following definition:

Definition 2.3. Two polynomial matrices A(λ) ∈ F[λ]n×m and B(λ) ∈ F[λ]n×m

are SP-equivalent if there exist an invertible matrix P ∈ Fn×n and an invertible
polynomial matrix Q(λ) ∈ F[λ]m×m such that

PA(λ)Q(λ) = B(λ).

Also, we give the following proposition which follows from Proposition 2 in [3]:

Proposition 2.4. Let F be an infinite field and let A(λ) ∈ F[λ]n×n with
detA(λ) �= 0. Then A(λ) is SP-equivalent to a lower triangular matrix S(λ) =
(sij(λ)) with the following properties:

1. sii(λ) = si(λ), i = 1, . . . , n, where s1(λ)| · · · |sn(λ)
are the invariant factors of A(λ)

2. sii(λ)|sji(λ) for all integers i, j with 1 ≤ i ≤ j ≤ n
3. if i < j and sji(λ) �= 0 then sji(λ) is monic and

d(sii(λ)) < d(sji(λ)) < d(sjj(λ)).

The matrix S(λ) is called the SP-canonical form of the matrix A(λ).
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3. Main result. In the following theorem we give a solution to Problem 1.1,
over infinite fields.

Theorem 3.1. Let F be an infinite field. Let A1 ∈ Fn1×n1 , A2 ∈ Fn2×n2 , B2 ∈
Fn2×m2 and C1 ∈ Fp1×n1 . Let ρ1 = rankB2 and ρ2 = rankC1. Let c1, . . . , cn1+n2 ∈ F.
Let φ(λ) = (λ − c1) · · · (λ− cn1+n2). Let α1| · · · |αn1 be the invariant factors of

[
λI −A1

−C1

]
∈ F[λ](n1+p1)×n1 ,

and β1| · · · |βn2 be the invariant factors of

[
λI −A2 −B2

] ∈ F[λ]n2×(n2+m2).

Let γ1| · · · |γx, x = n2−d(
∏n2

i=1 βi), be the invariant polynomials of the restriction
of the matrix A2 to the controllable space of the pair (A2, B2). Let δ1| · · · |δy, y =
n1 − d(∏n1

i=1 αi), be the invariant polynomials of the restriction of the matrix A1 to
the controllable space of the pair (AT

1 , C
T
1 ).

There exist matrices X1 ∈ Fm2×p1 and X2 ∈ Fn1×n2 such that the matrix

[
A1 X2

B2X1C1 A2

]
(3.1)

has c1, . . . , cn1+n2 as eigenvalues if and only if the following conditions are valid:

(i) trA1 + trA2 =
n1+n2∑

i=1

ci,

(ii) α1 · · ·αn1β1 · · ·βn2γ1 · · ·γx−ρ2δ1 · · · δy−ρ1 |φ(λ),
(iii) If ρ1 = x, ρ2 = y, γi = λ− b, i = 1, . . . , x, and δi = λ− a,

i = 1, . . . , y, for some a, b ∈ F, then there exists a permutation

π : {1, . . . , n1 + n2} → {1, . . . , n1 + n2} such that

cπ(2i−1) + cπ(2i) = a+ b

for every i = 1, . . . ,min{ρ1, ρ2} and

cπ(2min{ρ1,ρ2}+1), . . . , cπ(n1+n2)

are the roots of α1 · · ·αn1β1 · · ·βn2γ1 · · ·γx−ρ2δ1 · · · δy−ρ1 .

Remark 3.2. Before proceeding, we shall give the equivalent form of Theorem
3.1 that we will actually prove.

Note that by Lemma 2.2, there exist invertible matrices Pi ∈ Fni×ni , i = 1, 2,
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Q ∈ Fm2×m2 and R ∈ Fp1×p1 such that

[
P−1

1 A1P1

RC1P1

]
=




T ′ P ′ S′

0 H ′ N ′

0 E′ M ′

0 0 Iρ2

0 0 0


 , (3.2)

and

[
P2B2Q P2A2P

−1
2

]
=


 0 Iρ1 M N S

0 0 E H P

0 0 0 0 T


 , (3.3)

where T ′ ∈ F(n1−y)×(n1−y), H ′ ∈ F(y−ρ2)×(y−ρ2), M ′ ∈ Fρ2×ρ2 , T ∈ F(n2−x)×(n2−x),
H ∈ F(x−ρ1)×(x−ρ1), M ∈ Fρ1×ρ1 , and the pairs (H ′T , E′T ) and (H,E) are control-
lable.

Thus, the nontrivial among the polynomials α1, . . . , αn1 , and β1, . . . , βn2 , coincide
with the nontrivial invariant polynomials of the matrices T ′ and T , respectively.

Since the matrix [
M N

E H

]
∈ F

x×x

is the restriction of the matrix A2 to the controllable space of the pair (A2, B2), its
invariant polynomials are γ1| · · · |γx. And, analogously, δ1| · · · |δy are the invariant
polynomials of the matrix [

H ′ N ′

E′ M ′

]
∈ F

y×y.

Finally, in this way we have concluded that the matrix (3.1) is similar to the following
one 



T ′ P ′

0 H ′

0 E′

S′

N ′

M ′
Z2

0 Z1 M N S

0 0
E H P

0 0 T



, (3.4)

where Z2 = P−1
1 X2P

−1
2 and[

0 Z1

0 0

]
=

[
0 Iρ1

0 0

]
Q−1X1R

−1

[
0 Iρ2

0 0

]
, Z1 ∈ F

ρ1×ρ2 .
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In this notation, the theorem becomes:

There exist matrices Z1 ∈ Fρ1×ρ2 and Z2 ∈ Fn1×n2 such that the matrix (3.4) has
c1, . . . , cn1+n2 ∈ F as eigenvalues, if and only if the following conditions are valid:

(i)′ trT ′ + trH ′ + trM ′ + trT + trH + trM =
n1+n2∑

i=1

ci,

(ii)′ α1 · · ·αn1β1 · · ·βn2γ1 · · · γx−ρ2δ1 · · · δy−ρ1 |φ(λ),
(iii)′ One of the following statements is true:

(a) at least one of the matrices M or M ′ is not of the form νI, ν ∈ F,

or at least one of the matrices E or E′ is nonzero.

(b) M ′ = aIρ2 , M = bIρ1 , E = 0, E′ = 0, with a, b ∈ F, and there exists

a permutation π : {1, . . . , n1 + n2} → {1, . . . , n1 + n2} such that

cπ(2i−1) + cπ(2i) = a+ b, for every i = 1, . . . , y, and

cπ(2y+1), . . . , cπ(n1+n2) are the roots of α1 · · ·αn1β1 · · ·βn2γ1 · · · γx−y.

(Note that E = 0 implies x = ρ1 and E′ = 0 implies y = ρ2).

Proof.

Necessity:

Without loss of generality, we assume that ρ1 ≥ ρ2 > 0. Thus, condition (ii)′

becomes

α1 · · ·αn1β1 · · ·βn2γ1 · · ·γx−ρ2 |φ(λ).

Suppose that there exist matrices Z1 and Z2 such that the matrix (3.4) has
prescribed eigenvalues from the field F. Then condition (i)′ is trivially satisfied.

Let

Z2 =
[
Z11 Z12

Z21 Z22

]
∈ F

n1×n2 , where Z21 ∈ F
y×x.

Denote by ξ(λ), the product of the invariant polynomials of the matrix


H ′ N ′

E′ M ′ Z21

0 Z1

0 0
M N

E H


 ∈ F

(x+y)×(x+y). (3.5)

Then we have

α1 · · ·αn1β1 · · ·βn2ξ(λ) = φ(λ). (3.6)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 316-332, July 2008



ELA

Eigenvalues of Partially Prescribed Matrices 323

Let µ1| · · · |µx be the invariant factors of[
0 Z1 λI −M N

0 0 E λI −H
]
.

Using the classical Sá-Thompson result (see [10, 13]) we obtain

µi | γi | µi+ρ2 , i = 1, . . . , x, and
x∏

i=1

µi|ξ(λ).

Thus, γ1 · · · γx−ρ2 |ξ(λ), which together with (3.6) gives the condition (ii)′.

In order to prove the necessity of condition (iii)′, we shall use the result from
Theorem 1 in [11].

In fact, if both matrices E and E′ are zero, and if M ′ = aIρ2 and M = bIρ1 ,
a, b ∈ F, then the matrices (3.2) and (3.3) are of the forms


T ′ S′

0 M ′

0 Iρ2

0 0


 (3.7)

and [
0 Iρ1 M S

0 0 0 T

]
, (3.8)

respectively. Thus, in this case, the matrix (3.4) becomes

T ′ S′ Z11 Z12

0 M ′ Z21 Z22

0 Z1 M S

0 0 0 T


 . (3.9)

Since α1 · · ·αn1β1 · · ·βn2 |φ(λ), and d(
∏n1

i=1 αi) = n1 − y, d(∏n2
i=1 βi) = n2 − x,

then n1 + n2 − y− x of the eigenvalues c1, . . . , cn1+n2 are the roots of the polynomial
α1 · · ·αn1β1 · · ·βn2 . We shall assume, without loss of generality, that those eigenvalues
are cx+y+1, . . . , cn1+n2 .

Let

φ̄(λ) := (λ − c1) · · · (λ− cx+y).

Furthermore, from the existence of matrices Z1 and Z2 such that the matrix (3.9)
has prescribed eigenvalues c1, . . . , cn1+n2 , there exist matrices Z1 and Z21 such that
the matrix [

M ′ Z21

Z1 M

]
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has prescribed eigenvalues c1, . . . , cx+y. Finally, since M ′ = aI and M = bI, for
some a, b ∈ F, by applying Theorem 1 from [11], there exists a permutation π :
{1, . . . , x+ y} → {1, . . . , x+ y} such that

cπ(2i−1) + cπ(2i) = a+ b

for every i = 1, . . . , y, and cπ(j) = b, for 2y < j ≤ x+ y. Putting everything together
gives condition (iii)′, as wanted.

Sufficiency:

Consider the matrix (3.4). Suppose that conditions (i)′, (ii)′ and (iii)′ are valid.

Let

Z2 =
[
Z11 Z12

Z21 Z22

]
∈ F

n1×n2 , where Z21 ∈ F
y×x.

Our aim is to define matrices Z1 and Z2 (i.e. Z11, Z12, Z21 and Z22) such that the
matrix (3.4) has c1, . . . , cn1+n2 as eigenvalues.

Since the pair (H,E) is controllable, the matrix[
Z1 λI −M −N
0 −E λI −H

]
,

is equivalent to [
Z1 K(λ) S(λ)
0 0 Ix−ρ1

]
, (3.10)

for some matrices K(λ) ∈ F[λ]ρ1×ρ1 and S(λ) ∈ F[λ]ρ1×(x−ρ1).

By Proposition 2.4, there exist invertible matrices Q ∈ F
ρ1×ρ1 and Q(λ) ∈

F[λ]ρ1×ρ1 such that the matrix QK(λ)Q(λ) is the SP-canonical form of the matrix
K(λ), with polynomials γx, . . . , γx−ρ2 , . . . , γx−ρ1+1 on the main diagonal:

K̄(λ) = QK(λ)Q(λ) =




γx−ρ1+1

∗ . . .
∗ ∗ γx−ρ2

∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ γx



,

where nonmarked entries are equal to zero and ∗ denote unimportant entries. This last
statement is true since there are at least x− ρ1 trivial polynomials among γ1| · · · |γx,
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and the nontrivial polynomials among γ1| · · · |γx coincide with the nontrivial invariant
factors of K(λ).

Let

Z1 = Q−1

[
0
Iρ2

]
= Q−1L. (3.11)

Now, the matrix (3.5) becomes


H ′ N ′

E′ M ′ Z21

0 Q−1L

0 0
M N

E H


 . (3.12)

Since the product of the invariant polynomials of the matrices T and T ′ divides
φ(λ), put Z11 = 0, Z12 = 0 and Z22 = 0. Also, as in the necessity part of the proof,
we shall assume, without loss of generality, that cx+y+1, . . . , cn1+n2 , are the zeros of
the polynomial α1 · · ·αn1β1 · · ·βn2 . Now, the problem reduces to defining the matrix
Z21 such that the matrix (3.12) has c1, . . . , cx+y as eigenvalues.

The product of the invariant factors of the matrix

λI −H ′ −N ′

−E′ λI −M ′

0 −Q−1L

0 0


 (3.13)

is equal to the product of the invariant factors of the matrix
 λI −H ′ −N ′

−E′ λI −M ′

0 −Iρ2


 ∈ F

(y+ρ2)×y,

which is equal to 1. Also, the product of the invariant factors of the matrix[
λI −M −N
−E λI −H

0 −Q−1L

0 0

]
(3.14)

is equal to the product of γ1, . . . , γx−ρ2 . Therefore, from condition (ii)′, we have
that the product of the invariant factors of the matrices (3.13) and (3.14), divide
φ̄(λ) := (λ − c1) · · · (λ − cx+y). So, in order to apply Theorem 1.2, and thus to
conclude the existence of the matrix Z21 with the wanted properties, we need to
prove that condition (c) from Theorem 1.2 is valid. In our case, condition (c) from
Theorem 1.2 becomes:
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(c) If[
0 Q−1L

0 0

] [
H ′ N ′

E′ M ′

]
+

[
M N

E H

][
0 Q−1L

0 0

]
=

[
0 νQ−1L

0 0

]
,

(3.15)
for some ν ∈ F, then there exists a permutation π : {1, . . . , x+ y} → {1, . . . , x+ y}
such that

cπ(2i−1) + cπ(2i) = ν

for every i = 1, . . . , ρ2, where cπ(2y+1), . . . , cπ(x+y) are the roots of γ1 · · ·γx−ρ2 .

From conditions (i)′, (ii)′ and (iii)′, in order to prove condition (c), it is enough
to prove that (3.15) implies M ′ = aIρ2 , M = bIρ1 , E = 0 and E′ = 0, for some
a, b ∈ F.

The equation (3.15) is equivalent to[
Q−1LE′ Q−1LM ′ +MQ−1L

0 EQ−1L

]
=

[
0 νQ−1L

0 0

]
. (3.16)

Now, let

Y :=
[
Q 0
0 I

][
M N

E H

] [
Q−1 0
0 I

]
=


 A B C

D G F

S W H


 ∈ F

x×x, (3.17)

where A ∈ F(ρ1−ρ2)×(ρ1−ρ2), G ∈ Fρ2×ρ2 .
With this notation, the equation (3.16) is equivalent to the following ones:

E′ = 0, (3.18)

M ′ +G = νI, (3.19)

W = 0, (3.20)

B = 0. (3.21)

From (3.10), and by definition of K̄(λ), the matrix λI − Y is equivalent to[
K̄(λ) QS(λ)
0 Ix−ρ1

]
. (3.22)

Thus, the submatrix of λI − Y formed by the rows 1, . . . , ρ1 − ρ2, ρ1 + 1, . . . , x, has
the same invariant factors as the submatrix of (3.22) formed by the same rows. In
fact, by using the form (3.17), we obtain that the matrix

λI − Z :=
[
λI −A −C
−S λI −H

]
, (3.23)
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has the same invariant factors as the submatrix of (3.22) formed by the rows 1, . . . , ρ1−
ρ2, ρ1 + 1, . . . , x. In particular, the degree of the product of the invariant factors of
this submatrix is equal to the degree of the product of the invariant factors of (3.23).

The dimension of the matrix (3.23) is equal to the product of its invariant factors,
i.e.,

dimZ = d(γ1 · · · γx−ρ2).

Now, we have two cases:

dimZ > 0, (3.24)

dimZ = 0. (3.25)

In the first case, we have that d(γx−ρ2) ≥ 1. From dimZ = d(γ1 · · ·γx−ρ2), and
since γ1| · · · |γx are the invariant polynomials of Y , we have

ρ2 = d(γx−ρ2+1 · · · γx).

Thus, the degrees of all γ1| · · · |γx are equal to one, i.e., the matrices[
M N

E H

]
and Y

are of the form kI, for some k ∈ F.
Hence, the equation (3.15) implies that E = 0, E′ = 0, M = aI, M ′ = bI,

a, b ∈ F, i.e., condition (c) from Theorem 1.2 is satisfied. Thus, there exists a matrix
Z2 with the wanted properties.

The case (3.25) can occur only if ρ1 = ρ2 = x = y. In this particular case the
matrix (3.5) becomes:

[
M ′ Z21

Z1 M

]
∈ F

2x×2x.

Furthermore, in this case, condition (iii)′ becomes:

If M ′ = aIx and M = bIx, with a, b ∈ F, then there exists a permutation
π : {1, . . . , 2x} → {1, . . . , 2x}, such that

cπ(2i−1) + cπ(2i) = a+ b for every i = 1, . . . , x.

Now, we can apply the result of Theorem 1 from [11], and thus we finish the
proof.
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4. Special case. Consider the matrix (1.1). Let rankB2 = rankB1 = 1 and
let rankC1 = n1 and rankC2 = n2. Then we have the following matrix completion
problem:

Problem 4.1. Let F be a field. Let rankB2 = rankB1 = 1. Determine the
possible eigenvalues of the matrix[

A1 B1X2

B2X1 A2

]
(4.1)

when the matrices X1 ∈ Fm2×n1 and X2 ∈ Fm1×n2 vary.

In the following theorem we give a complete solution to Problem 4.1, in the case
when F is an algebraically closed field:

Theorem 4.2. Let F be an algebraically closed field. Let A1 ∈ Fn1×n1 , A2 ∈
Fn2×n2 , B1 ∈ Fn1×m1 and B2 ∈ Fn2×m2 be such that rankB1 = rankB2 = 1. Let
c1, . . . , cn1+n2 ∈ F. There exist matrices X1 ∈ Fm2×n1 and X2 ∈ Fm1×n2 such that the
matrix (4.1) has c1, . . . , cn1+n2 as eigenvalues if and only if the following conditions
are valid:

(i) trA1 + trA2 =
n1+n2∑

i=1

ci,

(ii)α1 · · ·αn1β1 · · ·βn2 |φ(λ).

Here φ(λ) = (λ− c1) · · · (λ− cn1+n2), while α1| · · · |αn1 are the invariant factors of

[
λI −A1 −B1

]
,

and β1| · · · |βn2 are the invariant factors of

[
λI −A2 −B2

]
.

Remark 4.3. As in Theorem 3.1, before proceeding, we give the matrix similar
to the matrix (4.1) that will be used in the proof.

Let
∑n1

i=1 d(αi) = x and
∑n2

i=1 d(βi) = y. Since rankB1 = rankB2 = 1, by
Lemma 2.2 there exist invertible matrices Pi ∈ Fni×ni , i = 1, 2, Q ∈ Fm2×m2 and
R ∈ Fm1×m1 such that

[
P1A1P

−1
1 P1B1R

]
=


 m′ n′ s′ 1 0
E′ H ′ P ′ 0 0
0 0 T ′ 0 0


 , (4.2)
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and

[
P2B2Q P2A2P

−1
2

]
=


 0 1 m n s

0 0 E H P

0 0 0 0 T


 , (4.3)

where m,m′ ∈ F, H ∈ F(n2−y−1)×(n2−y−1), H ′ ∈ F(n1−x−1)×(n1−x−1), T ∈ Fy×y,
T ′ ∈ F

x×x, and (H,E) and (H ′, E′) are controllable pairs of matrices.
Hence, the matrix (4.1) is similar to the following one




m′ n′ s′ z21 · · · z2n2

E′ H ′ P ′ 0 0 0
0 0 T ′ 0 0 0
z11 · · · z1n1

m n s

0 0 0 E H P

0 0 0 0 0 T



, (4.4)

where 
 z21 · · · z2n2

0 0 0
0 0 0


 =

[
1 0
0 0

]
R−1X2P

−1
2 ,

and 
 z11 · · · z1n1

0 0 0
0 0 0


 =

[
0 1
0 0

]
Q−1X1P

−1
2 .

Also, the nontrivial polynomials among α1, . . . , αn1 and β1, . . . , βn2 , coincide with
the nontrivial invariant polynomials of the matrices T ′ and T , respectively.

Proof.

Necessity:

The first condition is trivially satisfied. Furthermore, since the nontrivial invari-
ant polynomials of the matrix T ′ coincide with the nontrivial polynomials among
α1, . . . , αn1 , and the nontrivial invariant polynomials of the matrix T coincide with
the nontrivial polynomials among β1, . . . , βn2 , from the form of the matrix (4.4), we
have

α1 · · ·αn1β1 · · ·βn2 |φ(λ),

as wanted.
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Sufficiency:

Since E ∈ F(n2−y−1)×1 and E′ ∈ F(n1−x−1)×1, the matrices
[
E H

]
and[

E′ H ′ ]
from (4.4) can be considered in the following feedback equivalent forms:

M =




1 0 · · · 0 0
0 1 0 0
...

. . .
0 0 1 0


 ∈ F

(n2−y−1)×(n2−y)

and

M ′ =




1 0 · · · 0 0
0 1 0 0
...

. . .
0 0 1 0


 ∈ F

(n1−x−1)×(n1−x),

respectively.

Thus, the matrix (4.4) is similar to the following one


w′ s′ x̄ x′

M ′ K ′ 0 0
0 T ′ 0 0
ȳ y′ w s

0 0 M K

0 0 0 T



, (4.5)

for corresponding matrices w ∈ F1×(n2−y), w′ ∈ F1×(n1−x), K ∈ F(n2−y−1)×y, K ′ ∈
F(n1−x−1)×x.

By applying the second condition, our problem reduces to proving the existence
of row matrices

x̄ =
[
x1 · · · xn2−y

] ∈ F
1×(n2−y)

and

ȳ =
[
y1 · · · yn1−x

] ∈ F
1×(n1−x),

such that the product of the invariant polynomials of the matrix

w′ x̄

M ′ 0
ȳ w

0 M


 :=

[
C D

E F

]
∈ F

(n1+n2−x−y)×(n1+n2−x−y), (4.6)
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with C ∈ F(n1−x)×(n1−x), is equal to ∆ = φ(λ)/(α1 . . . αn1β1 . . . βn2).

Let ∆1 and ∆2 be the determinants of the matrices λI−C and λI−F , respectively.
Let

w′ =
[
a1 · · · an1−x

] ∈ F
1×(n1−x) and w =

[
b1 · · · bn2−y

] ∈ F
1×(n2−y).

Then we have

∆1 = λn1−x − a1λn1−x−1 − · · · − an1−x

and

∆2 = λn2−y − b1λn2−y−1 − · · · − bn2−y.

From condition (i), the polynomial ∆1∆2−∆ has degree at most n1+n2−x−y−2.
Since F is an algebraically closed field, there exist polynomials

x(λ) = −x1λ
n2−y−1 − · · · − xn2−y−1λ− xn2−y

and

y(λ) = −y1λn1−x−1 − · · · − yn1−x−1λ− yn1−x,

of degrees at most n2 − y − 1 and n1 − x− 1, respectively, such that

x(λ)y(λ) = ∆1∆2 −∆. (4.7)

Now, define

x̄ :=
[
x1 · · · xn2−y

] ∈ F
1×(n2−y)

and

ȳ :=
[
y1 · · · yn1−x

] ∈ F
1×(n1−x).

Then the matrix [
λI − C −D
−E λI − F

]

is equivalent to the following one
 I 0

0
∆1 x(λ)
y(λ) ∆2


 . (4.8)
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Obviously the determinant of the matrix (4.8) is equal to

∆1∆2 − x(λ)y(λ) = ∆,

as wanted.
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