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ON THE DENSE SUBSETS OF MATRICES WITH DISTINCT EIGENVALUES AND

DISTINCT SINGULAR VALUES∗

HIMADRI LAL DAS† AND M. RAJESH KANNAN†

Abstract. It is well known that the set of all n×n matrices with distinct eigenvalues is a dense subset of the set of all real

or complex n×n matrices. In [D.J. Hartfiel. Dense sets of diagonalizable matrices. Proceedings of the American Mathematical

Society, 123(6):1669–1672, 1995.], the author established a necessary and sufficient condition for a subspace of the set of all

n×n matrices to have a dense subset of matrices with distinct eigenvalues. The objective of this article is to identify necessary

and sufficient conditions for a subset of the set of all n × n real or complex matrices to have a dense subset of matrices with

distinct eigenvalues. Some results of Hartfiel are extended, and the existence of dense subsets of matrices with distinct singular

values in the subsets of the set of all real or complex matrices is studied. Furthermore, for a matrix function F (x), defined on

a closed and bounded interval whose entries are analytic functions, it is proved that the set of all points for which the matrix

F (x) has repeated analytic eigenvalues/analytic singular values is either a finite set or the whole domain of the function F .
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1. Introduction. It is well known that the set of all n×n matrices with distinct eigenvalues is a dense

subset of the set of all real or complex n×n matrices. An arbitrary subspace of the set of all n×n matrices

may not have a dense subset of matrices with distinct eigenvalues. For a subset Ω of the set of all n × n
matrices, let Ωd denote the set of all matrices in Ω with distinct eigenvalue. In [6], the author established

the following:

Theorem 1.1. ([6, Theorem 1 and Corollary 1]) If Ω is a subspace and Ωd is nonempty, then Ωd is

dense in Ω. If Ω is a convex set and Ωd is nonempty, then Ωd is dense in Ω

The motivation to consider problems of these nature arises in analyzing the behavior of a system [5]. In

[5], the author considered a particular case of this result viz., for the set of all stochastic matrices. It is of

interest to know whether the counterpart of these results holds for singular values, analytic eigenvalues, and

analytic singular values.

The first objective of this article is to extend Theorem 1.1 for a larger class of matrices, and weakening

the assumptions. For a convex set Ω, we show that, if the closure of Ω contains a matrix with distinct

eigenvalues, then Ωd is dense in Ω (Theorem 3.4). Also, we extend this result for non-convex sets (Theorem

3.5). The second objective of this article is to study the counterpart of these results for singular values of

rectangular matrices.

For an n × n matrix A, define a (0, 1)-matrix A
′

as follows: (i, j)th entry of A
′

is 1, if the (i, j)th

entry of the matrix A is nonzero, and 0 otherwise. For a (0, 1)-matrix P of size n × n, define WP = {A :

A
′ ≤ P componentwise}. In [6], the author applied Theorem 1.1 to the subspace WP , and obtained a

∗Received by the editors on March 30, 2020. Accepted for publication on October 6, 2020. Handling Editor: Ren-Cang Li.

Corresponding Author: M. Rajesh Kannan. Part of the contents of this article is included in the first author’s M.Sc. Thesis.
†Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

(himadrilaldas2014@gmail.com, rajeshkannan@maths.iitkgp.ac.in, rajeshkannan1.m@gmail.com).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 834-846, December 2020.

835 On the Dense Subsets of Matrices with Distinct Eigenvalues and Distinct Singular Values

necessary and sufficient condition, in terms of P , for the subspace WP to have a dense subset of matrices

with distinct eigenvalues. In this article, we study the counter part of this result for singular values of

rectangular matrices (Theorem 3.10). Also we study about the subsets of matrices (with the entries are

analytic functions) with distinct analytic eigenvalues and distinct analytic singular values, using the notion

of analytic spectral decomposition and analytic singular value decomposition. For details about analytic

spectral decomposition and analytic singular value decomposition, we refer to [1, 3, 4, 9]. The applications

of analytic singular value decomposition can be founds in time dependent linear quadratic optimal control

problems for descriptor systems and in the differential algebraic equations. For more details, we refer to

[2, 10, 12]. Besides this, we define a class of polynomials associated with a matrix defined in terms of the

entries of the matrix, and we study the same problem for these newly defined class of polynomials viz.,

existence of dense subset of matrices with distinct zeros with respect to polynomials in this class.

The organization of this article is as follows: In Section 2, we collect the needed known definition and

results. Section 3 is divided into two subsections. In Subsection 3.1, we prove results related to the denseness

of the set of matrices with distinct eigenvalues. We also provide a weaker form of Theorem 1.1. In Subsection

3.2, we extend some of the results of Subsection 3.1 for the set of matrices with distinct singular values,

which includes an extension of Theorem 1 of [6] for singular values of rectangular complex (or real) matrices.

In Section 4, we prove the counterpart of some of the results of Section 3 for the analytic eigenvalues and

analytic singular values. In Section 5, we introduce a class of polynomials defined in terms of entries of a

given matrix, which includes characteristic polynomial, and prove results similar to that of Section 3.

2. Notation, definition and preliminary results. Let R and C denote the set of all real and

complex numbers, respectively. Let Mm×n(F) denote the set of all m × n matrices whose entries are from

F, where F is R or C. Throughout this paper, we assume m ≥ n. Let A ∈ Mm×n(F), with m ≥ n. We call

aii, i = 1, 2, . . . , n, the diagonal entries of A. For a matrix A ∈ Mm×n(R), AT denotes the transpose of A,

and for A ∈ Mm×n(C), A∗ denotes the conjugate transpose of A . For a given matrix A ∈ Mn×n(C) the

determinant of A is denoted by detA. If A is a positive semidefinite n×n matrix, then there exists a unique

positive semidefinite n× n matrix B such that A = B2. Such a matrix B is said to be the square root of A,

and is denoted by
√
A.

For a matrix A := (aij) in Mm×n(C), the Frobenius norm of A, denoted by ‖A‖, is defined by√
m∑
i=1

n∑
j=1

|aij |2. Throughout this article, we use the topology induced by the Frobenius norm on the set of all

real or complex m×n matrices. For a matrix A ∈Mm×n(C), define B(A; ε) = {B ∈Mm×n(C) : ‖B−A‖ < ε}.

For X ⊆ Mm×n(C) (or Mm×n(R)), the closure of X is denoted by X. In a metric space E, a point

p ∈ E is called an isolated point in E if p is not a limit point of E. We call a set E isolated if E has no limit

points.

Theorem 2.1. ([7, Theorem 11.4 (a)]) In Mn×n(C), the set of matrices that have multiple eigenvalues

(at least one eigenvalue of multiplicity 2 or more) is closed.

Let S be a commutative ring with unity. Let f(x) =
n∑
k=0

akx
k and g(x) =

m∑
k=0

bkx
k be two polynomials

in S[x] of degree n and m, respectively.
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Definition 2.1. (Resultant) The Sylvester matrix of f(x), g(x) ∈ S[x] is an (n+m)× (n+m) matrix,

denoted by Syl(f, g), defined as

Syl(f, g) =



an an−1 · · · · · · a0 0 · · · 0

0 an an−1 · · · · · · a0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 an an−1 · · · · · · a0
bm bm−1 · · · · · · b0 0 · · · 0

0 bm bm−1 · · · · · · b0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 bm bm−1 · · · · · · b0


.

The resultant of two polynomials f(x), g(x) ∈ S[x] is the determinant of the Syl(f, g), and is denoted by

Res(f, g).

Theorem 2.2. ([8, Theorem 5.7]) Let F be a field. If f(x) =
n∑
k=0

akx
k and g(x) =

m∑
k=0

bkx
k are two

elements in F [x], where m and n are positive integers, then, Res(f, g) = 0 if and only if either an = 0 = bm
or f(x) and g(x) has a common factor of positive degree in F [x].

Hence, if f(x) and g(x) are two non-constant polynomial in F [x], where F is algebraically closed field,

then Res(f, g) = 0 if and only if f(x) and g(x) has a common root.

A function of the form

f(x) =

∞∑
n=0

cnx
n

or, more generally,

f(x) =

∞∑
n=0

cn(x− a)n

is called an analytic function, where the domain of the function is an open subset U of R or C, and cn are

in R or C [13].

Let E be a subset of R, and let f : E → R be a function. If a is an interior point of E , f is said to be

real analytic at a, if there exists an open interval (a − r, a + r) in E for some r > 0, such that there exists

a power series
∑∞
n=0 cn(x − a)n centered at a, which has radius of convergence greater or equal to r, and

converges to f in (a− r, a+ r) [14].

Theorem 2.3. ([13, Theorem 8.5]) Suppose the series
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n converge in the segment

S = (−R,R). Let E be the set of all x ∈ S at which

∞∑
n=0

anx
n =

∞∑
n=0

bnx
n.

If E has a limit point in S, then an = bn for n = 0, 1, 2, . . . , and hence,
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n holds for all

x ∈ S.
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Let MR
n×n(C) denote the set of all matrices having real eigenvalues. Let A(t) be a family of matrices

such that the entries are smoothly depend on a parameter t, for t ∈ [a, b]. The following theorem is a counter

part of Schur’s lemma for the matrices A(t) whose entries are analytic functions.

Theorem 2.4. ([3, Theorem 1.1]) Let A(t) be an n× n matrix function with analytic entries on [a, b],

where −∞ ≤ a < b ≤ ∞. If A(t) ∈MR
n×n(C) for each t ∈ [a, b], then there exist an unitary matrix function

U(t), which is analytic on [a, b], such that

Q(t) = U−1(t)A(t)U(t),

where Q(t) is an upper-triangular matrix whose entries are analytic functions of t on [a, b].

Diagonal entries of Q(t) are called the analytic eigenvalues of A(t). A singular value decomposition of

a matrix A in Mm×n(C) is a factorization A = UΣV ∗, where U is an m×m unitary matrix, V is an n× n
unitary matrix and Σ = diag (s1, s2, . . . , sn) is an m×n diagonal matrix, where m ≥ n. The numbers si are

called the singular values. They may be defined to be non negative and to be arranged in non increasing

order.

Definition 2.2. (Analytic singular value decomposition, [1]) For a real analytic matrix valued function

E(t) : [a, b]→Mm×n(R), an analytic singular value decomposition is a path of factorization

E(t) = X(t)S(t)Y (t)T ,

where X(t) : [a, b]→Mm×m(R) is orthogonal, S(t) : [a, b]→Mm×n(R) is diagonal, Y (t) : [a, b]→Mn×n(R)

is orthogonal and X(t), S(t) and Y (t) are analytic.

Diagonal entries si(E(t)) of S(t) are called the analytic singular values. Due to the requirement of

smoothness, singular values may be negative and also their ordering may be arbitrary.

Let Am,n([a, b]) denote the set of matrix functions A(t) such that for each t, A(t) ∈ Mm×n(R), and all

the entries of A(t) are real analytic function on [a, b].

Theorem 2.5. ([1, Theorem 1]) If E(t) ∈ Am,n([a, b]), then there exists an analytic singular value

decomposition on [a, b].

The following theorem is an extended version of the preceding theorem for the set of all m× n complex

matrices.

Theorem 2.6. ([4, Theorem 3.1]) Let E(t) : [a, b] → Mm×n(C) be an m × n matrix function, not

identically zero, with analytic entries on [a, b], where −∞ ≤ a < b ≤ ∞. Then, E(t) can be factored as

E(t) = X(t)S(t)Y (t)∗,

where X(t) and Y (t) are unitary matrix functions, with all entries are analytic on [a, b], of order m × m
and n × n, respectively. For each t, S(t) is a diagonal matrix with diagonal entries and s1(E(t)), s2(E(t)),

. . . , sn(E(t)) analytic on [a, b].

Here the columns of X(t) consist of normalized eigenvectors of E(t)E(t)∗, and the columns of Y (t)

consist of normalized eigenvectors of E(t)∗E(t). Also, ei(t) = si(E(t))2, where ei(t) are the eigenvalues of

E(t)∗E(t), are analytic on [a, b]. The functions si(E(t)) are called the analytic singular values of E(t).
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3. Dense subsets of matrices with distinct eigenvalues and distinct singular values . In this

section, our main objectives are the following: Given Ω, a subset of Mn×n(C), we prove some of the results

about the existence of dense subsets Ωs of Ω such that all the matrices in Ωs have distinct eigenvalues. For

m ≥ n, we consider the counterpart of these problem for the singular values. To facilitate understanding, we

divide this section into two subsections, one for the results about the eigenvalues and others for the results

about the singular values.

3.1. Eigenvalue case. For a function F : D →Mn×n(C), let us define

Z(D) = {x ∈ D : F (x) has repeated eigenvalues},

where D is a subset of C. In the following theorem, we prove that if D is an open, connected subset of C
and the entries of F are analytic functions on D, then either Z(D) = D or Z(D) has no limit points in D.

Theorem 3.1. Let D be an open connected subset of C, and F : D → Mn×n(C) be a function whose

entries are analytic functions on D. Then, either Z(D) = D or Z(D) has no limit points in D.

Proof. Let

px(y) = det (yI − F (x)) = yn +

n∑
k=1

hk(x)yn−k.

Then, px(y) is a polynomial in y, and hk(x) is analytic, for each 1 ≤ k ≤ n. For each fixed x ∈ D, the

eigenvalues of the matrix F (x) are the roots of the polynomial px(y) = 0. So, if px(y) = 0 has multiple

roots, then F (x) has repeated eigenvalues. Now, by Theorem 2.2, px(y) = 0 has multiple roots if and

only if Res(px(y), p′x(y)) = 0, where p′x(y) = nyn−1 +
n−1∑
k=1

(n − k)hk(x)yn−k−1. Also, it is easy to see that,

Res(px(y), p′x(y)) is an analytic function of x on D. Hence, the zero set of Res(px(y), p′x(y)) is either D or

an isolated subset of D.

If Res(px(y), p′x(y)) = 0 for all x ∈ D, then the polynomial px(y) = 0 has multiple roots for all x ∈ D.

Thus, all matrices in F (D) has repeated eigenvalues, so Z(D) = D. If the zero set of Res(px(y), p′x(y)) = 0

is isolated in D, then the set Z(D) has no limit points in D.

In the following theorem, we show that if D is an open interval in R and the entries of the function F

are analytic functions on D, then the conclusion of the above result holds true for Z(D) in D.

Theorem 3.2. Let D be an open interval in R, and F : D →Mn×n(C) be a function whose entries are

analytic functions on D. Then, either Z(D) = D or Z(D) has no limit points in D.

Proof. The proof is similar to that of Theorem 3.1 (Using Theorem 2.3).

The next theorem is analogous of Theorem 3.1. Here we consider the entries of the function F are

polynomials, and D is an arbitrary subset of C. The idea of the proof is similar to that of in [6, Theorem 1].

This theorem is vital to prove some of the theorems of this section.

Theorem 3.3. Let F : D ⊆ C → Mn×n(C) be a function defined by F (x) =
p∑
k=0

Akx
k, where Ak ∈

Mn×n(C) for k = 0, 1, . . . , p. Then, either Z(D) = D or Z(D) is finite.

Proof. It is easy to see that, (i, j)th entry of the matrix F (x) is
p∑
k=0

a
(k)
ij x

k, where a
(k)
ij is the (i, j)th

entry of the matrix Ak for i, j = 1, 2, . . . , n.
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Set

px(y) = det (yI − F (x)) = yn +

n∑
k=1

qk(x)yn−k.

Then px(y) is a polynomial in y, and each coefficient qk(x) is a polynomial in x. The eigenvalues of F (x)

are the roots of the equation px(y) = 0 for each x ∈ D.

Now, the matrix F (x) has repeated eigenvalues if and only if the polynomial px(y) has repeated roots.

By Theorem 2.2, px(y) = 0 has repeated roots if Res(px(y), p′x(y)) = 0, where p′x(y) = nyn−1 +
n−1∑
k=1

(n −

k)qk(x)yn−k−1. As Res(px(y), p′x(y)) is a polynomial in x, hence, the zero set of Res(px(y), p′x(y)) is either

D or a finite subset of D.

If Res(px(y), p′x(y)) = 0 for all x ∈ D, then the polynomial px(y) = 0 has multiple roots for all x ∈ D.

Thus, all the matrices in F (D) has repeated eigenvalues, so Z(D) = D. If the zero set of Res(px(y), p′x(y))

is finite in D, then Z(D) is finite too.

In the following lemma, we show that if the closure of a subset of the set of all n× n complex matrices

contains at least one matrix whose eigenvalues are distinct, then the subset also contains matrices whose

eigenvalues are distinct.

Lemma 3.1. Let Ω be a subset of Mn×n(C), and Ωd be the matrices in Ω having distinct eigenvalues. If

Ω contains at least one matrix with distinct eigenvalues, then Ωd is non empty.

Proof. If Ω contains a matrix with distinct eigenvalues, then Ωd is non-empty. Let A be a limit point of

Ω whose eigenvalues are distinct. Then there exists a sequence {Am} in Ω such that lim
m→∞

Am = A. Now, if

all the matrices Am have repeated eigenvalues, then, by Theorem 2.1, A has repeated eigenvalues. Hence,

{Am} contains matrices having distinct eigenvalues. Hence, Ωd is non empty.

Next lemma shows that, if the entries of the function F are polynomials, then either all matrices in

F (D) are singular or there are finite number of matrices in F (D) which are singular. To avoid ambiguities,

let us assume the set D is an infinite set.

Lemma 3.2. Let F : D ⊆ C → Mn×n(C) be a function defined by F (x) =
p∑
k=0

Akx
k, where Ak ∈

Mn×n(C). Then, either all the matrices in F (D) are singular or only finitely many of them are singular.

Proof. Let us rewrite the (i, j)th entry of the matrix F (x) as follows:
p∑
k=0

a
(k)
ij x

k, where a
(k)
ij is the (i, j)th

entry of Ak for i, j = 1, 2, . . . , n. As det(F (x)) is a polynomial in x, hence either det(F (x)) = 0 for all x ∈ D
or det(F (x)) = 0 for finitely many x ∈ D. If det(F (x)) = 0 for all x in D, then all the matrices in F (D) are

singular, and if det(F (x)) = 0 for finite number of x in D, then finitely many matrices in F (D) are singular.

The next theorem is a generalization of [6, Corrollary 1].

Theorem 3.4. Let Ω be a convex subset of Mn×n(C), and Ωs be the set of all nonsingular matrices in

Ω with distinct eigenvalues. If Ω contains at least one nonsingular matrix with distinct eigenvalues, then Ωs
is dense in Ω.

Proof. Let A be a nonsingular matrix in Ω with distinct eigenvalues. Then, there exists a sequence {Am}
in Ω such that {Am} converges to A. If all the matrices Am are singular, then A is also singular. So the

sequence {Am} contains nonsingular matrices. By Theorem 2.1, the sequence {Am} contains matrices whose
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eigenvalues are distinct. Let Ar and As be two matrices in the sequence {Am} such that Ar is non-singular,

and As has distinct eigenvalues.

Set F (t) = (1−t)Ar+ tAs, where 0 ≤ t ≤ 1. Now, F ([0, 1]) contains a non-singular matrix, and a matrix

whose eigenvalues are distinct. Hence, by Theorem 3.3, F (t) has repeated eigenvalues only for finitely many

t
′
s in [0, 1]. By Lemma 3.2, F (t) is singular only for finitely many t

′
s in [0, 1]. Thus, F ([0, 1]) contains

nonsingular matrices with distinct eigenvalues. Hence, Ωs 6= φ.

Let A ∈ Ω and B ∈ Ωs. Set E(t) = (1 − t)A + tB = t(B − A) + A, for 0 ≤ t ≤ 1. By Theorem

3.3, E(t) has repeated eigenvalues only for finitely many t′s, and, by Lemma 3.2, E(t) is singular only for

finitely many t′s. Assume that E(t) has repeated eigenvalues for t = t1, t2, . . . , tp, and E(t) is singular for

for t = tp+1, . . . , tp+q. Let L = {ti > 0 : i ∈ {1, 2, . . . , p+ q}}. If L is nonempty, then, define s = minL,

otherwise choose s to be any real number in the interval (0, 1). Then, for any t ∈ (0, s), the matrix E(t)

is nonsingular and has distinct eigenvalues. Hence, for any ε > 0, the open ball B(A; ε) has nonempty

intersection with Ωs. As A ∈ Ω is arbitrary, hence Ωs is dense in Ω.

The idea of the following theorem is to extend the idea of the previous theorem viz., instead convex

combination of matrices, one can look at the arbitrary polynomial combination.

Theorem 3.5. Let Γ be a subset of Mn×n(C) such that, if A and B are in Γ, then there exists a

polynomial p(x) =
k∑
i=0

Aix
i defined on [0, 1] such that p(0) = A, p(1) = B and p([0, 1]) ⊂ Γ. Let Γs be the set

of all matrices in Γ which are nonsingular and have distinct eigenvalues. Then, Γs is dense in Γ if and only

if Γ contains a nonsingular matrix whose eigenvalues are distinct.

Proof. Here only if condition is easy to verify. Now, if Γ contains a nonsingular matrix whose eigenvalues

are distinct, then, by the proof of Theorem 3.4, it is clear that Γs is nonempty. Let A be an element of Γ,

and B be an element of Γs. Let p(x) be a polynomial
k∑
i=0

Aix
i in [0, 1] such that p(0) = A, p(1) = B and

p([0, 1]) ⊂ Γ. Rest of the proof to similar to that of Theorem 3.4.

3.2. Singular value case. In this section, we shall extend some of the results of section 3.1 for

the singular values of matrices. For a function F : U → Mm×n(C), let us define Y(U) = {x ∈ U :

F (x) has repeated singular values}, where U is a subset of R. The next theorem is a counter part of Theorem

3.1 for the singular values of matrices.

Theorem 3.6. Let U be an open interval in R, and F : U →Mm×n(C) be a function whose entries are

analytic functions on U . Then, either Y(U) = U or Y(U) has no limit points in U .

Proof. The singular values of an m×n complex matrix A are positive square roots of the eigenvalues of

A∗A. Set

px(y) = det (yI − F (x)∗F (x)) = yn +

n∑
k=1

hk(x)yn−k.

Then, px(y) is a polynomial in y, and hk(x) is analytic, for each 1 ≤ k ≤ n. For each fixed x ∈ U , the

singular values of F (x) are the positive square roots of the roots of the polynomial px(y) = 0. So, if px(y) = 0

has multiple roots, then F (x) has repeated singular values. Now, by Theorem 2.2, px(y) = 0 has multiple

roots if and only if Res(px(y), p′x(y)) = 0, where p′x(y) = nyn−1 +
n−1∑
k=1

(n − k)hk(x)yn−k−1. Also, it is easy

to see that, Res(px(y), p′x(y)) is an analytic function of x on U . Hence, by Theorem 2.3, the zero set of
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Res(px(y), p′x(y)) is either the set U itself or an isolated subset of U .

If Res(px(y), p′x(y)) = 0 for all x ∈ U , then the polynomial px(y) = 0 has multiple roots for all x ∈ U .

Thus, all matrices in F (U) has repeated singular values, so Y(U) = U . If the zero set of Res(px(y), p′x(y)) = 0

is isolated in U , then Y(U) has no limit points in U .

In the next theorem, we consider the entries of F (x) are polynomials, instead of analytic functions. In

this case, the domain of the function F need not be an open interval.

Theorem 3.7. Let F : U ⊆ R → Mm×n(C) be a function defined by F (x) =
p∑
k=0

Akx
k, where Ak ∈

Mm×n(C) for k = 0, 1, . . . , p. Then, either Y(U) = U or Y(U) is finite.

Proof. It is easy to see that, (i, j)th entry of the matrix F (x) is
p∑
k=0

a
(k)
ij x

k, where a
(k)
ij is the (i, j)th

entry of Ak for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Set

px(y) = det (yI − F (x)∗F (x)) = yn +

n∑
k=1

qk(x)yn−k.

Then px(y) is a polynomial in y, and each coefficient qk(x) is a polynomial in x. The singular values of F (x)

are the positive square roots of the roots of the equation px(y) = 0 for each x ∈ U .

Now for each x in U , F (x) has repeated singular values if and only if px(y) = 0 has repeated roots.

By Theorem 2.2, px(y) = 0 has repeated roots if Res(px(y), p′x(y)) = 0, where p′x(y) = nyn−1 +
n−1∑
k=1

(n −

k)qk(x)yn−k−1. Rest of proof is similar to that of Theorem 3.3.

The following example shows that, in Theorem 3.6 and Theorem 3.7, we may not be able to extend the

domain U of the function F (x) from a subset of R to a subset of C.

Example 3.1. Let us consider the function F : C → M3×2(C) defined by F (z) =

z 0

0 z

0 0

 . Then, each

entry of F (z) is a polynomial in z, which is also an analytic function of z. Now,

F (z)∗F (z) =

[
|z|2 0

0 |z|2

]
.

So the diagonal entries of F (z)∗F (z) are neither polynomials in z nor analytic functions in z on C. So the

idea of the proofs Theorem 3.6 and Theorem 3.7 may not helpful.

Using Theorem 3.7, for a convex subset of m×n complex matrices, we establish a necessary and sufficient

condition for the existence of a dense subset of matrices with distinct singular values. This result is a counter

part of Corollary 1 of [6] for the singular values.

Theorem 3.8. Let Ω be a convex subset of Mm×n(C), and Ωd be the matrices in Ω having distinct

singular values. Then Ωd is dense in Ω if and only if Ωd is non empty.

Proof. If Ωd is dense in Ω, then Ωd is non empty. Suppose that Ωd is non empty. Let A ∈ Ω and

B ∈ Ωd. Let E(t) = (1− t)A+ tB where 0 ≤ t ≤ 1. Then E(t) ⊆ Ω, as Ω is a convex subset. Now, B is in
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E([0, 1]), and B has distinct singular values. So Y([0, 1]) is a proper subset of [0, 1]. As the entries of E(t)

are polynomials in t, so, by Theorem 3.7, Y([0, 1]) is finite.

Let L = {t > 0 : t ∈ Y([0, 1])}. If L is nonempty, then, define s = minL, otherwise choose s to be any

real number in (0, 1). Now, each matrix in E((0, s)) has distinct singular values. Hence, for arbitrary ε > 0,

the open ball B(A; ε) has nonempty intersection with Ωd. Hence, Ωd is dense in Ω.

The following corollary gives a necessary and sufficient condition under which a subspace of Mm×n(C)

has a dense subset, which is a simple consequence of the previous theorem.

Corollary 3.1. Let Ω be a subspace of Mm×n(C), and Ωd be the matrices in Ω having distinct singular

values. Then Ωd is dense in Ω if and only if Ωd is nonempty.

The following lemma gives a condition, which can confirm the existence of matrix whose singular values

are distinct, in a subset of a m× n complex matrices.

Lemma 3.3. Let Ω be a subset of Mm×n(C), and Ωd be the set of all matrices in Ω having distinct

singular values. If Ω contains at least one matrix having distinct singular values, then Ωd is nonempty.

Proof. If Ω contains a matrix, having distinct singular values, then Ωd is non empty. Let A be a limit

point of Ω, whose singular values are distinct. Then there exists a sequence {Ap} in Ω which converges

to A. Now, if Ap has repeated singular values for all p ∈ N, then A∗pAp has repeated eigenvalues for all

p ∈ N. Now, lim
p→∞

A∗pAp = A∗A. Again, each A∗pAp has repeated eigenvalues, so, by Theorem 2.1, A∗A has

repeated eigenvalues. Hence, A has repeated singular values, which contradict the assumption that A has

distinct singular values. Hence, {Ap} must contains matrices, whose singular values are distinct. So Ωd is

nonempty.

The following corollary is an analogous of Theorem 3.8, where we weaken the condition Ωd is nonempty.

Corollary 3.2. Let Ω be a convex subset of Mm×n(C) and Ωd be the matrices in Ω having distinct

singular values. Then Ωd is dense in Ω if and only if Ω contains a matrix having distinct singular values.

Proof. Proof follows from Theorem 3.8 and Lemma 3.3.

The next theorem is a consequence of Theorem 3.7 and Lemma 3.3.

Theorem 3.9. Let Γ be a subset of Mm×n(C), and let Γd be the set of all matrices in Γ whose singular

values are distinct. Suppose that for given two matrices A and B in Γ, there exists a polynomial p(x) =
k∑
i=0

Aix
i on [0, 1] such that p(0) = A, p(1) = B and p([0, 1]) ⊂ Γ. Then, Γd is dense in Γ if and only if Γ

contains a matrix whose singular values are distinct.

Proof. The proof is similar to that of Theorem 3.8.

For a matrix A ∈ Mm×n(C), A = (aij) has a nonzero diagonal, if there exists an injective function

f : {1, 2, . . . , n} → {1, 2, . . . ,m} such that af(i)i is nonzero for i = 1, 2, . . . , n [11]. Let P denote the set of

all m×n matrices whose entries are either 0 or 1. For an m×n complex matrix A = (aij), define Ã = (ãij),

as follows:

ãij =

{
1, aij 6= 0,

0, aij = 0.
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For a matrix P = (pij) ∈ P, define S(P ) = {A ∈Mm×n(C) : ãij ≤ pij}. It is easy to verify that S(P ) is

a subspace of Mm×n(C).

It is clear from the previous theorems that S(P ) contains a dense subset of matrices, whose singular

values are distinct if and only if S(P ) includes a matrix having distinct singular values. For a matrix, P ∈ P,

let S(P )d denote the set of all matrices in S(P ) having distinct singular values. In the next theorem, we

give a necessary and sufficient condition for the subset S(P )d to be dense in S(P ).

Theorem 3.10. Let P ∈ P. Then S(P )d is dense in S(P ) if and only if either P or Pij has a nonzero

diagonal for some 1 ≤ i ≤ m and 1 ≤ j ≤ n, where Pij is obtained by deleting the ith row and the jth column

of P .

Proof. Let S(P )d be dense in S(P ). Then S(P ) contains a matrix A whose singular values are distinct.

If all the n singular values of A are nonzero, then the rank of the matrix A is n. Thus, A has an n × n
sub matrix As such that det(As) 6= 0. Let the ikth row of A be the kth row of As. Now, by definition

of determinant, it is clear that As must has a nonzero diagonal. Let aσ(k)k, where k = 1, 2, . . . , n, be the

elements of a nonzero diagonal, where σ is a permutation on {1, 2, . . . , n}. The entries aσ(k)k in As and

aiσ(k)k in A are the same. The function, which maps k to ik is an injective function from {1, 2, . . . , n} to

{1, 2, . . . ,m}. Hence, the function f : {1, 2, . . . , n} → {1, 2, . . . ,m} defined by f(k) = iσ(k) is an injective

function. Thus, A has a nonzero diagonal whose elements are af(k)k where 1, 2, . . . , n, and hence, the matrix

P has a nonzero diagonal too.

If the matrix A has exactly n− 1 distinct nonzero singular values, then the rank of A is n− 1. So A has

an (n− 1)× (n− 1) sub matrix As such that det(As) 6= 0. Now applying the same argument for the matrix

As as above, we get a nonzero diagonal in the matrix As. Hence, the matrix Pij has a nonzero diagonal, for

some i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

Conversely, suppose that P = (pij) has a nonzero diagonal with the diagonal entries pf(i)i for i =

1, 2, . . . , n, where f : {1, 2, . . . , n} → {1, 2, . . . ,m} is an injective function. Let us construct the matrix

A = (aij) as follows:

aij =

{
k, if i = f(k), j = k and k ∈ {1, . . . , n},
0, otherwise.

Then A∗A = diag
(
1, 4, . . . , n2

)
.

If P does not have any nonzero diagonal, then, for some r and s, the matrix Prs has a nonzero diagonal

whose entries are pg(i)i for i = 1, 2, . . . , n, i 6= s, where g : {1, 2, . . . , n} \ {s} → {1, 2, . . . ,m} \ {r} is an

injective function. Now, construct the matrix B = (bij) as follows:

bij =

{
l, if i = g(l), j = l and l ∈ {1, . . . , n} \ {s},
0, otherwise.

Then, B∗B = diag
(
1, 4, . . . , (s− 1)2, 0, (s+ 1)2, . . . , n2

)
.

Thus, in each cases, there exist matrices in S(P ) which has distinct singular values. Hence, by Corollary

3.1, S(P )d is dense in S(P ).

This theorem is a counter part of [6, Theorem 2 ] for the singular values of rectangular matrices.
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4. Dense subsets with distinct analytic eigenvalues and analytic singular values. In this

section, we shall establish some of the results related to the subsets of matrices having repeated analytic

eigenvalues/analytic singular values. The results are similar to that of Section 3. The following lemma will

be useful in the proof of some of the results of this section.

Lemma 4.1. Let f1(x), f2(x), . . . , fn(x) be analytic functions of x on [a, b] and Y =
⋃
i 6=j
{x ∈ [a, b] :

fi(x) = fj(x)}. Then, either Y = [a, b] or Y is finite.

Proof. As each fi(x) is analytic on [a, b], there exists an open interval U , containing [a, b] such that each

fi(x) is analytic on U .

For i 6= j, define Yij = {x ∈ U : fi(x) = fj(x)}. Now, if the sets Yij ∩ [a, b] are finite, then Y =

∪i 6=jYij ∩ [a, b] is finite. If Yij ∩ [a, b], for some i and j, is infinite, then Yij ∩ [a, b] must have a limit

point in Yij ∩ [a, b] ⊂ U . Thus, by Theorem 2.3, Yij = U , and hence, Yij ∩ [a, b] = [a, b]. That is,

Y = (∪i 6=jYij) ∩ [a, b] = [a, b].

Now, we shall prove a theorem similar to that of Theorem 3.1, using analytic spectral decomposition in

MR
n×n(C).

Theorem 4.1. Let F : [a, b] → MR
n×n(C) be a function whose entries are analytic functions on [a, b].

Let W be the collection of x in [a, b], for which the analytic eigenvalues of F (x) are not distinct. Then,

either W = [a, b] or W is finite.

Proof. As the entries of the function F (x) are analytic on [a, b]. By Theorem 2.4, there exists a unitary

matrix U(t) analytic on [a, b] such that

Q(x) = U−1(x)F (x)U(x),

where Q(x) is an upper-triangular matrix whose entries are analytic functions of x on [a, b]. Since the

eigenvalues of F (x) are the diagonal entries of Q(x), so the eigenvalues of F (x) are analytic functions of x on

[a, b]. Let e1(x), e2(x), . . . , en(x) be the eigenvalues of F (x). So W =
⋃
i 6=j
{x ∈ [a, b] : ei(x) = ej(x)}. Hence,

by Lemma 4.1, either W is finite or W = [a, b].

Now, we shall prove a theorem, similar to the above theorem, for the analytic singular values using

analytic singular value decomposition.

Theorem 4.2. Let F : [a, b] → Mm×n(C) be a function whose entries are analytic functions on [a, b].

Let W be the collection of x in [a, b], for which F (x) has repeated analytic singular values. Then, either

W = [a, b] or W is finite.

Proof. As each entry of F (x) is an analytic function on [a, b], the function F : [a, b] → Mm×n(C)

is an analytic matrix valued function. Thus, by Theorem 2.6, there exists an analytic singular value de-

composition for F (x) on [a, b]. Let F (x) = U(x)S(x)V (x)∗, where U(x) and V (x) are unitary and S(x)

is diagonal. Let s1(F (x)), s2(F (x)), . . . , sn(F (x)) be the diagonal entries of S(x). Then the functions

s1(F (x)), s2(F (x)), . . . , sn(F (x)) are analytic on [a, b]. As W =
⋃
i 6=j
{x ∈ [a, b] : si(F (x)) = sj(F (x))},

hence, by Lemma 4.1, either W is finite or W = [a, b].
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5. Dense subsets of matrices having distinct roots with respect to polynomials. In this

section, we define a class of polynomials in terms of the entries of the matrices, and prove some results

related to the denseness of subsets of matrices for which the polynomials have distinct roots. Let CnSym be

the set of all unordered n-tuple of complex numbers, and Cn[x] denote the set of all polynomials of degree

n with complex coefficients. Define the function rn : Cn[x]→ CnSym such that the image of a polynomial f ,

rn(f), is the unordered n-tuple whose entries are the roots of the polynomial f . Let Pk denote the set of all

polynomials px : Mm×n(C)→ Ck[x] defined by px(A) = xk+
k∑
i=1

qi(A)xi−1, where each qi(A) is a polynomial

function of the entries of A such that rk (px (Mm×n(C))) = CkSym .

Definition 5.1. For an m× n complex matrix A, and a polynomial px ∈ Pk, we call z ∈ C a zero of A

with respect to px if z is a root of the polynomial px(A).

The following example shows that each Pk is nonempty for 1 ≤ k ≤ mn.

Example 5.1. For an m × n matrix A with (i, j)th entry aij , let us consider A as an element of Cmn

by the representation A = (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn). Now, for a fixed k

in {1, 2, . . . ,mn}, let us define a function px : Mm×n(C) → Ck[x] by px(A) = xk +
k∑
i=1

qi(A)xi−1, where

(q1(A), q2(A), . . . , qk(A)) is the first k coordinates of A in Cmn. So px ∈ Pk.

Now, for a function F : D ⊆ C → Mm×n(C) and a fixed px ∈ Pk, where 2 ≤ k ≤ mn, define

Zpx(D) = {z ∈ D : F (z) has repeated zeros with respect to px}.

Next, we shall prove some theorems for the polynomials in Pk, where 2 ≤ k ≤ mn, which are similar

to some theorems in Section 3 and in Remark 5.1, we shall show, how we can use these theorems to prove

theorems in Section 3.

Theorem 5.1. Let D be an open connected subset of C, and F : D → Mm×n(C) be a function whose

entries are analytic functions on D. Then, for a px ∈ Pk either Zpx(D) = D or Zpx(D) has no limit points

in D.

Proof. Let

px(F (z)) = xk +

k∑
i=1

fi(F (z))xi−1.

Then, by definition of px, each fi(F (z)) is a polynomial of the entries of F (z), and hence, for each i, fi(F (z))

is an analytic function of z. Rest of the proof is similar to that of the Theorem 3.1.

Theorem 5.2. Let F : D ⊆ C → Mm×n(C) be a function defined by F (z) =
s∑
i=0

Aiz
i, where Ai ∈

Mm×n(C) for i = 0, 1, . . . , s. Then, for a px in Pk, either Zpx(D) = D or Zpx(D) is finite.

Proof. Let

px(F (z)) = xk +

k∑
i=1

fi(F (z))xi−1,

then, by definition of px, each fi(F (z)) is a polynomial in z. Rest of the proof is similar to that of Theorem

3.3.

Theorem 5.3. Let Ω be a convex subset of Mm×n(C), and Ωd be the matrices in Ω having distinct zeros

with respect to a fixed px in Pk. Then Ωd is dense in Ω if and only if Ωd is non empty.
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The following theorem can be proved using Theorem 5.2 and Theorem 5.3.

Theorem 5.4. Let Γ be a subset of Mm×n(C) with the properties that, if A,B ∈ Γ, then there exists

a polynomial q(z) =
s∑
i=0

Aiz
i on [0, 1] such that q(0) = A, q(1) = B and q([0, 1]) ⊂ Γ, where each Ai ∈

Mm×n(C). Let Γd be the matrices in Γ whose zeros are distinct with respect to a fixed px in Pk. Then, Γd
is dense in Γ if and only if Γd is nonempty.

Remark 5.1. It is easy to see that the characteristic polynomial of an n× n matrix A is in Pn. Hence,

the results of this section generalizes the results of Section 3.
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