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A SMOOTH VERSION OF SYLVESTER’S LAW OF INERTIA

AND ITS NUMERICAL REALIZATION∗

PETER KUNKEL†

Abstract. A smooth version of Sylvester’s law of inertia is presented for symmetric matrix functions of constant rank.

The techniques used in the proof are constructive but the resulting numerical approaches are unstable, and therefore require

stabilization. Two different stabilization techniques are suggested, one based on a descent method and one based on Newton’s

method. Some numerical tests are included to demonstrate the applicability of the obtained numerical methods.
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1. Introduction. Dealing with matrices both theoretically and numerically, a common tool is the use

of factorizations and canonical forms under certain classes of transformations. Common factorizations are the

LR and QR decomposition in the context of the solution of linear equations, and Schur form and the singular

value decomposition in the context of eigenvalue problems, see [5]. Given additional structural properties

of the matrices under consideration, the used factorization should maintain these properties since they may

reflect physical properties or lead to more efficient algorithms. In the case of symmetric matrices, typical

factorizations are the Cholesky decomposition and its rational (i.e., root-free) modification also called LDLT

decomposition as well as Sylvester’s law of inertia, see again [5]. Further important structural classes are

skew-symmetric matrices, Hamiltonian matrices, and symplectic matrices which occur, e.g., in the context

of geometric integration of structured ordinary differential equations, see [6].

Turning to smooth matrix functions, which play a central role for example in the theoretical and numer-

ical treatment of linear differential-algebraic equations with variable coefficients, see [8], it is then a natural

question whether we can obtain similar factorizations in a pointwise manner such that all factors inherit the

smoothness of the given matrix function. It is well-known that this is sometimes only possible locally or

only with loss of smoothness even if we assume that the pointwise rank of the matrix function is constant,

see [3]. In the cases where such smooth factorizations exist globally, we can use them to derive suitable

canonical forms without losing smoothness or being forced to restrict the domain to a sufficiently small open

set. An example in this respect can be found in [9] where pointwise skew-symmetric matrices were treated

and it was shown that under constant rank assumptions we can smoothly transform a given self-adjoint

differential-algebraic equation by appropriately chosen changes of bases in such a way that the dynamics are

described by a Hamiltonian system implying that the dynamics are described by a symplectic flow.

Recently another structural class of differential-algebraic equations has been considered in [10, 11] con-

taining pointwise symmetric matrix function. To get a canonical form under smooth pointwise congruence

transformations in the spirit of [9], a global and smooth version of Sylvester’s law of inertia is needed. The

purpose of this paper is to present such a result. Since it turns out that the constructive algorithms which

are used in the proof yield unstable transformations the result is not satisfactory from the numerical point
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of view. We therefore also include techniques to get stable numerical procedures.

The paper is organized as follows. In Section 2, we introduce the notation and provide some basic results

we need in the further course of the paper. We then state and prove a smooth version of Sylvester’s law of

inertia in Section 3. Since it turns out that from the numerical point of view, the constructive techniques

used so far are not satisfactory we develop stabilizations of the approach in Section 4. We then present some

numerical experiments to illustrate the obtained results in Section 5 and close with a conclusion in Section 6.

2. Preliminaries. Let Ck for k ∈ N0 denote the class of k-times continuously differentiable functions,

let C∞ denote the class of infinitely often continuously differentiable functions, and let Cω denote the class

of (real) analytic functions. Furthermore, let GL(n) be the general linear group containing all invertible

matrices in Rn,n and let O(n) be the orthogonal group containing all orthogonal matrices in Rn,n.

Consider a matrix function E ∈ Ck(I,Rm,n) with k ∈ N0 ∪ {∞, ω}, where I ⊂ R is a compact interval

with non-empty interior. Throughout this paper, we will assume that E has constant rank in the sense that

there is an r ∈ N0 with rankE(t) = r for all t ∈ I. Additionally, all relations between matrix functions are

to be understood to hold pointwise. In the case k 6= 0, we write Ė for d
dtE. Finally, we write In for the

identity matrix in Rn,n.

A classical result for such a matrix function, which is also needed in what follows, is due to [4].

Theorem 2.1. Let A ∈ Ck(I,Rm,n) with k ∈ N0 ∪ {∞, ω} have constant rank. Then there exist matrix

functions U ∈ Ck(I,O(m)) and V ∈ Ck(I,O(n)) such that

(2.1) UTAV =

[
Σ 0

0 0

]
with Σ ∈ Ck(I,GL(r)).

In particular, Theorem 2.1 guarantees the existence of smooth bases of kernel, cokernel, range, and

corange of A of the same class of smoothness as A being defined globally on the whole interval I. Note that

a similar global result in the case when A depends on multiple parameters cannot hold in view of the hairy

ball theorem, sometimes also called the theorem of the combed hedgehog. For a local version of Theorem 2.1

in the case of multiple parameters, see, e.g., [8].

Since we deal with pointwise congruence in the symmetric case, we need the following immediate conse-

quence of Theorem 2.1, see, e.g., [12]

Corollary 2.2. Let A ∈ Ck(I,Rn,n) with k ∈ N0 ∪ {∞, ω} have constant rank and let AT = A, i.e.,

let A be pointwise symmetric. Then there exists a matrix function Q ∈ Ck(I,O(n)) such that

QTAQ =

[
Σ 0

0 0

]
with Σ ∈ Ck(I,GL(r)).

Proof. Taking Q = U from Theorem 2.1, we get

QTA =

[
B

0

]
, B =

[
Σ 0

]
V T ,
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where B possesses pointwise full row rank. By symmetry of A, it follows that

ATQ = AQ =
[
BT 0

]
.

Hence,

QTAQ =

[
BQ

0

]
=
[
QTBT 0

]
and the claim holds.

The first aim of the present paper is to obtain a smooth version of Sylvester’s law of inertia. Although

Sylvester’s law of inertia is a well-known textbook result we state it here together with a proof for later

reference.

Theorem 2.3. Let E ∈ Rn,n and let ET = E. Then there exists a matrix W ∈ GL(n) with

WTEW =

 Ip 0 0

0 −Iq 0

0 0 0

 .
In particular, p and q are the number of positive and negative eigenvalues of E.

Proof. Since E is symmetric, the spectral theorem guarantees the existence of a Q ∈ O(n) such that

QTEQ = diag(λ1, . . . , λn)

with all eigenvalues λ1, . . . , λn ∈ R. Without loss of generality, we may assume that

λ1, . . . , λp > 0, λp+1, . . . , λp+q < 0, λp+q+1, . . . , λn = 0.

Defining D = diag(d1, . . . , dn) by di = 1/
√
|λi| for i = 1, . . . , p + q and di = 1 otherwise yields the desired

result with W = QD.

As we will explain in the next section, the proof of Theorem 2.3 cannot be transferred to the case of

matrix functions.

3. A smooth version of Sylvester’s law of inertia. In order to prove a smooth version of Sylvester’s

law of inertia, an obvious idea would be to follow the proof of Theorem 2.3 and use a smooth version of the

spectral theorem. But this is only possible under loss of smoothness. Even for matrix functions of class C∞

the eigenvalues may only be of class C1, see [3] for details. This, however, does not mean that there is no

smooth version of Sylvester’s law of inertia.

Theorem 3.1. Let E ∈ Ck(I,Rn,n) with k ∈ N0 ∪ {∞, ω} have constant rank r and let ET = E. Then

there exists a matrix function W ∈ Ck(I,GL(n)) such that

(3.2) WTEW =

 Ip 0 0

0 −Iq 0

0 0 0


with p, q ∈ {0, . . . , n} independent of t ∈ I and p+ q = r.
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Proof. Applying Corollary 2.2 we immediately get the third block row and column in (3.2). Thus, we are

allowed to assume without loss of generality that r = n. Since the eigenvalues depend continuously on the

matrix, see [3], they cannot change sign. Hence, p and q are constant on I. For convenience, we then write

S = diag(Ip,−Iq). Furthermore, let t̂ ∈ I and Ŵ ∈ Rn,n with ŴTE(t̂)Ŵ = S according to Theorem 2.3. As

it is typical for proofs in this area we need to distinguish two cases.

For k 6= 0, the initial value problem

Ẇ = − 1
2E
−1ĖW, W (t̂) = Ŵ

consisting of a matricial linear ordinary differential equation possesses a solution W ∈ Ck(I, GL(n)) satisfying

d
dt (W

TEW ) = ẆTEW +WTĖW +WTEẆ

= − 1
2 (E−1ĖW )TEW +WTĖW − 1

2W
TE(E−1ĖW )

= − 1
2W

TĖW +WTĖW − 1
2W

TĖW = 0

due to the symmetry of E, Ė, and E−1. Hence, WTEW is constant. Because of W (t̂)TE(t̂)W (t̂) =

ŴTE(t̂)Ŵ = S the constant is given by S and WTEW = S holds.

For k = 0, let

ŴTEŴ =

[
E11 E12

E21 E22

]
such that E11 ∈ C0(I,Rp,p), E12 = ET21 ∈ C0(I,Rp,q), and E22 ∈ C0(I,Rq,q). Moreover, we have that

E11(t̂) = Ip, E12(t̂) = E21(t̂)T = 0, and E22(t̂) = −Iq. Thus, there exists a sufficiently small (relatively)

open neighborhood Î ⊆ I of t̂ such that E11 is pointwise symmetric positive definite, E22 is pointwise

symmetric negative definite, and E12 is arbitrarily small in norm if we restrict all functions to Î. Since

Cholesky decomposition is a smooth process there is an L11 ∈ C0(Î,Rp,p) with

E11 = L11L
T
11.

Hence, [
L−111 0

0 Iq

] [
E11 E12

E21 E22

] [
L−T11 0

0 Iq

]
=

[
Ip L−111 E12

ET12L
−T
11 E22

]
and [

Ip 0

−ET12L−T11 Iq

] [
Ip L−111 E12

ET12L
−T
11 E22

] [
Ip −L−111 E

T
12

0 Iq

]
=

[
Ip 0

0 Ẽ22

]
with the Schur complement Ẽ22 = E22 − ET12E−111 E12. For sufficiently small Î, the matrix function Ẽ22 ∈
C0(Î,Rq,q) as perturbation of E22 is still pointwise symmetric negative definite. Accordingly, there is an

L22 ∈ C0(Î,Rq,q) with

−Ẽ22 = L22L
T
22

and [
Ip 0

0 L−122

] [
Ip 0

0 Ẽ22

] [
Ip 0

0 L−T22

]
=

[
Ip 0

0 −Iq

]
= S.

Thus,

W = Ŵ

[
L−T11 0

0 Iq

] [
Ip −L−111 E

T
12

0 Iq

] [
Ip 0

0 L−T22

]
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gives the desired property WTEW = S on Î. Since this can be done for every t̂ ∈ I we obtain an open

covering of I. Due to the compactness of I it contains a finite open covering of I. From this finite open

covering we can deduce finitely many points

t0 < t1 < · · · < tm−1 < tm

such that I = [t0, tm] and

WT
i EWi = S on [ti, ti+1]

for i = 0, . . . ,m− 1, where Wi ∈ C0([ti, ti+1],Rn,n) from the above construction. In general, the pieces Wi

do not combine to a continuous function on I. Hence, we need to modify the pieces to fit them together. For

this, consider i ∈ {1, . . . ,m− 1}. At the point ti, we have

Wi−1(ti)
TE(ti)Wi−1(ti) = S, Wi(ti)

TE(ti)Wi(ti) = S

implying that

Wi−1(ti)
−TSWi−1(ti)

−1 = Wi(ti)
−TSWi(ti)

−1.

Defining

W̃i = WiWi(ti)
−1Wi−1(ti),

yields

W̃i(ti) = Wi(ti)Wi(ti)
−1Wi−1(ti) = Wi−1(ti)

and
W̃T
i EW̃i = Wi−1(ti)

TWi(ti)
−TWT

i EWiWi(ti)
−1Wi−1(ti),

= Wi−1(ti)
TWi(ti)

−TSWi(ti)
−1Wi−1(ti) = S,

hence continuity on [ti−1, ti+1]. Proceeding in this way from left to right we obtain a matrix function

W ∈ C0(I,Rn,n) satisfying WTEW = S.

Remark 3.2. The previous proof for the case k = 0 can also be based on a generalization of the Cholesky

decomposition for indefinite matrices of the form

(3.3) ΠTAΠ = LTDL

with a permutation matrix Π describing the necessary pivoting, a unit lower triangular matrix L, and

a block diagonal matrix D consisting of 1-by-1- and 2-by-2-blocks, see [1]. For the construction of the

reference transformation Ŵ , we need to blockwise diagonalize D, transform the so obtained diagonal entries

to ±1 as in the proof of Theorem 2.3, and reorder to finally get S. For the locally smooth construction, we

can then use (3.3) for ŴTEŴ but with no permutation and only allowing for 1-by-1-blocks in the diagonal

matrix.

From the theoretical point of view, the posed problem is solved and we have proven a smooth version

of Sylvester’s law of inertia. From the numerical point of view, the positive aspect of the above proof is

that it is constructive, i.e., it directly proposes a method to determine a possible smooth transformation W

satisfying (3.2). Numerical tests, however, show that even if there exits a possible nicely bounded W the

accordingly computed W may blow up in norm.

Example 3.3. Let

E(t) =

[
cos(2πt) sin(2πt)

− sin(2πt) cos(2πt)

]T [
2 0

0 −3

] [
cos(2πt) sin(2πt)

− sin(2πt) cos(2πt)

]
.
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Figure 1. Norm of W as function of t for Example 3.3 constructed according to the proof of Theorem 3.1.

Figure 1 shows the Frobenius norm of W as a function of t obtained by the procedures from the proof of

Theorem 3.1, where ODE refers to the case k 6= 0 and GLUE refers to the case k = 0. Obviously, we have

exponential growth in both approaches which is very drastic in the second case.

4. Numerical realization. In order to stabilize the procedures from the proof of Theorem 3.1 we

consider

(4.4) WTEW = S, S = diag(Ip,−Iq)

with E ∈ Rn,n and nonsingular W ∈ Rn,n and try to transform it according to

ZTWTEWZ = ZTSZ

with nonsingular Z ∈ Rn,n such that ZTSZ = S and WZ is smaller in some appropriate norm. Using the

Frobenius norm this leads us to an optimization problem of the form

(4.5) ‖WZ‖2F = min subject to ZTSZ = S

for Z ∈ Rn,n. The solution set of the constraint is given by the (quadratic) Lie group O(p, q), the so-

called indefinite orthogonal group of signature (p, q), see, e.g., [7]. It is known that O(p, q) is closed with

dim O(p, q) = 1
2n(n + 1). Furthermore, O(p, q) coincides with O(n) for pq = 0 and is thus bounded in

this case. However, O(p, q) is unbounded for pq 6= 0 which actually leads to the problems observed for

Example 3.3.

Theorem 4.1. Let W ∈ Rn,n be nonsingular. Then the optimization problem (4.5) possesses a solution.
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Proof. The relation ‖Z‖W = ‖WZ‖F defines a new matrix norm. The problem (4.5) can then be written

as

‖Z‖2W = min subject to Z ∈ O(p, q).

Choosing some fixed Ẑ ∈ O(p, q) this optimization problem is equivalent to

‖Z‖2W = min subject to Z ∈ O(p, q), ‖Z‖W ≤ ‖Ẑ‖W ,

where now the solution set of the constraints is not only closed but also bounded and thus compact. The

claim follows then from the solvability of the best approximation problem with respect to compact sets, see,

e.g., [2].

In order to solve (4.5) we first need to treat the constraint. For this, we look for a suitable parametrization

of O(p, q). The quantities of the form A1/2 used there denote the square root of the symmetric positive

definite matrix A, i.e., the unique symmetric positive definite matrix A1/2 with the property A1/2A1/2 = A.

Furthermore, the inverse of A1/2 is written as A−1/2.

Lemma 4.2. For every A ∈ Rq,p, the relation

(4.6) (Ip +ATA)−1/2AT (Iq +AAT )1/2 = AT

holds.

Proof. Let

UTAV =

[
Σ 0

0 0

]
, Σ = diag(σ1, . . . , σr),

with U, V orthogonal, σ1 ≥ · · · ≥ σr > 0, r = rankA, be a singular value decomposition of A. Then

(Ip +ATA)−1/2AT (Iq +AAT )1/2

=

(
V

[
I + Σ2 0

0 I

]
V T
)−1/2

V

[
Σ 0

0 0

]
UT

(
U

[
I + Σ2 0

0 I

]
UT
)1/2

= V

[
(I + Σ2)−1/2Σ(I + Σ2)1/2 0

0 0

]
UT = V

[
Σ 0

0 0

]
UT = AT .

Theorem 4.3. The Lie group O(p, q) can be parametrized according to

(4.7) O(p, q) =


[
Z11 Z12

Z21 Z22

]∣∣∣∣∣∣∣∣
Z21 ∈ Rq,p arbitrary

Z11 = Q11(Ip + ZT21Z21)1/2, Q11 ∈ O(p),

Z22 = (Iq + Z21Z
T
21)1/2Q22, Q22 ∈ O(q),

Z12 = Z−T11 ZT21Z22 = Q11Z
T
21Q22

 .

Proof. The property ZTSZ = S reads[
Z11 Z12

Z21 Z22

]T [
Ip 0

0 −Iq

] [
Z11 Z12

Z21 Z22

]
=

[
Ip 0

0 −Iq

]
,

or

ZT11Z11 − ZT21Z21 = Ip, ZT11Z12 − ZT21Z22 = 0, ZT12Z12 − ZT22Z22 = −Iq.
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Let Z ∈ O(p, q). Then

ZT11Z11 = Ip + ZT21Z21 = (Ip + ZT21Z21)1/2(Ip + ZT21Z21)1/2,

or

(Ip + ZT21Z21)−1/2ZT11Z11(Ip + ZT21Z21)−1/2 = Ip,

and hence,

Q11 = Z11(Ip + ZT21Z21)−1/2 ∈ O(p).

Moreover,

Z12 = Z−T11 ZT21Z22.

Furthermore,
ZT22Z22 = Iq + ZT12Z12 = Iq + ZT22Z21Z

−1
11 Z

−T
11 ZT21Z22

= Iq + ZT22Z21(Ip + ZT21Z21)−1ZT21Z22,

or

ZT22(Iq − Z21(Ip + ZT21Z21)−1ZT21)Z22 = Iq.

Using the Sherman-Morrison formula, see, e.g., [5], this is the same as

ZT22(Iq + Z21Z
T
21)−1Z22 = Iq,

or

ZT22(Iq + Z21Z
T
21)−1/2(Iq + Z21Z

T
21)−1/2Z22 = Iq,

and hence,

Q22 = (Iq + Z21Z
T
21)−1/2Z22 ∈ O(q).

Finally, we have

Z−T11 ZT21Z22 = Q11(Ip + ZT21Z21)−1/2ZT21(Iq + Z21Z
T
21)1/2Q22 = Q11Z

T
21Q22

due to Lemma 4.2.

Conversely, let Z ∈ Rn,n be in the set of the right-hand side of (4.7). Then

Ip + ZT21Z21 − ZT11Z11 = Ip + ZT21Z21 − (Ip + ZT21Z21)1/2QT11Q11(Ip + ZT21Z21)1/2 = 0

and

ZT11Z12 − ZT21Z22 = ZT11Z
−T
11 ZT21Z22 − ZT21Z22 = 0

as well as
Iq + ZT12Z12 − ZT22Z22

= Iq + ZT22Z21Z
−1
11 Z

−T
11 ZT21Z22 − ZT22Z22

= Iq + ZT22Z21(Ip + ZT21Z21)−1ZT21Z22 − ZT22Z22

= Iq − ZT22(Iq − Z21(Ip + ZT21Z21)−1ZT21)Z22

= Iq − ZT22(Iq + Z21Z
T
21)−1Z22

= Iq −QT22(Iq + Z21Z
T
21)1/2(Iq + Z21Z

T
21)−1(Iq + Z21Z

T
21)1/2Q22 = 0

implying that Z ∈ O(p, q).
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An immediate consequence of the parametrization (4.7) is that O(p, q) is one-to-one to the product

O(p)× Rq,p ×O(q) reflecting the property

dim O(p, q) = dim O(p) + dimRq,p + dim O(q) = 1
2p(p+ 1) + pq + 1

2q(q + 1) = 1
2n(n+ 1).

This can also formulated in the following way.

Corollary 4.4. Every Z ∈ O(p, q) can be factorized according to

Z =

[
Q11 0

0 Iq

] [
(Ip + ZT21Z21)1/2 ZT21

Z21 (Iq + Z21Z
T
21)1/2

] [
Ip 0

0 Q22

]
.

On the basis of the preceding structural properties of O(p, q) we will now discuss two possibilities to

stabilize a given smooth factorization (4.4).

4.1. Stabilization by a descent method. Turning back to the optimization problem (4.5) we observe

that the Frobenius norm is invariant under orthogonal transformations. Hence, we concentrate on matrices

Z ∈ O(p, q) for which Q11 = Ip and Q22 = Iq. In the spirit of Jacobi’s method for the determination of

all eigenvalues of a symmetric matrix, see, e.g., [5], we construct an iterative procedure by choosing the

remaining parameter Z21 as zero matrix with the exception of a parameter σ ∈ R at the position (l, k) of the

resulting Z with suitably chosen k ∈ {1, . . . , q} and l ∈ {q+ 1, . . . , n}. Denoting W = [w1 · · · wn ], building

WZ for such a special Z only alters the two columns given by k and l. For convenience, we therefore use

the shorthand notation x = wk and y = wl. Note that x 6= 0 and y 6= 0 due to the nonsingularity of W .

Application of the special Z then reads

[ x y ]

[ √
1 + σ2 σ

σ
√

1 + σ2

]
=
[ √

1 + σ2x+ σy σx+
√

1 + σ2y
]
.

Since the squared Frobenius norm is the sum of the squared Euclidean norms of the columns, the optimization

problem (4.5) reduces to

(4.8)
∥∥√1 + σ2x+ σy

∥∥2
2

+
∥∥σx+

√
1 + σ2y

∥∥2
2

= min

and thus to

(1 + 2σ2)(‖x‖22 + ‖y‖22) + 4σ
√

1 + σ2xT y = min .

Omitting the additive constant, scaling appropriately, and setting

c =
2xT y

‖x‖22 + ‖y‖22
,

we finally arrive at the problem

(4.9) f(σ) = min, f(σ) = σ2 + c σ
√

1 + σ2.

Observing

f ′(σ) = 2σ + c
(√

1 + σ2 + σ2/
√

1 + σ2
)
,

the requirement f ′(σ) = 0 is equivalent to

(4.10) 2σ
√

1 + σ2 + c (1 + 2σ2) = 0,
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or

(4.11) f(σ) = −c, f(σ) =
2σ
√

1 + σ2

1 + 2σ2
.

A short computation shows that f is monotone increasing with

lim
σ→±∞

f(σ) = ±1.

If b = 0 corresponding to xT y = 0, the solution of (4.9) is given by σ = 0. If b 6= 0 corresponding to xT y 6= 0,

we observe that x and y are linearly independent due to the nonsingularity of W implying that

(x± y)T (x± y) > 0 ⇐⇒ ‖x‖22 ± 2xT y + ‖y‖22 > 0 ⇐⇒ −1 <
2xT y

‖x‖22 + ‖y‖22
< 1.

Hence,

|c| = 2|xT y|
‖x‖22 + ‖y‖22

< 1

and (4.11) possesses a unique solution σ ∈ R.

The above discussion leads to the following algorithm for the solution of (4.5).

Algorithm 4.5. Starting with C(0) = W we define C(ν+1) for given C(ν) by choosing kν ∈ {1, . . . , q}
and lν ∈ {q + 1, . . . , n} such that x(ν)T y(ν) 6= 0 for x(ν) being the kν-th column and y(ν) being the lν-th

column of C(ν) and solving the corresponding scalar nonlinear problem (4.8). With the resulting special

transformation denoted here by Z(ν) we then set C(ν+1) = C(ν)Z(ν).

The question now is whether the sequence {C(ν)}ν∈N0 defined by Algorithm 4.5 converges. We start the

examination of Algorithm 4.5 by looking at its descent property.

Lemma 4.6. Let

x̂ =
√

1 + σ2x+ σy, ŷ = σx+
√

1 + σ2y

with σ satisfying

σ
√

1 + σ2(‖x‖22 + ‖y‖22) + (1 + 2σ2)xT y = 0

according to (4.10). Then

‖x̂‖22 + ‖ŷ‖22 =
1

1 + 2σ2
(‖x‖22 + ‖y‖22).

Proof. We have

‖x̂‖22 + ‖ŷ‖22 = (1 + 2σ2)(‖x‖22 + ‖y‖22) + 4σ
√

1 + σ2xT y

= (1 + 2σ2)(‖x‖22 + ‖y‖22)− 4σ
√

1 + σ2
σ
√

1 + σ2

1 + 2σ2
(‖x‖22 + ‖y‖22)

=

[
(1 + 2σ2)− 4σ2(1 + σ2)

1 + 2σ2

]
(‖x‖22 + ‖y‖22)

=
1

1 + 2σ2
(‖x‖22 + ‖y‖22).
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Lemma 4.7. Let Ŵ ∈ Rn,n be the result of one step of Algorithm 4.5 applied to the nonsingular matrix

W ∈ Rn,n. Then

(4.12) ‖Ŵ‖2F − ‖W‖2F = − 2σ2

1 + 2σ2
(‖x‖22 + ‖y‖22)

in the notation of (4.10).

Proof. Let W = [ w1 · · · wn ] and Ŵ = [ ŵ1 · · · ŵn ]. Algorithm 4.5 yields

ŵi = wi for i 6= k, l

and

ŵk =
√

1 + σ2wk + σwl, ŵl = σwk +
√

1 + σ2wl.

According to Lemma 4.6, we then have

‖ŵk‖22 + ‖ŵl‖22 =
1

1 + 2σ2
(‖wk‖22 + ‖wl‖22)

implying

‖Ŵ‖2F − ‖W‖2F =

n∑
i=1

‖ŵi‖22 −
n∑
i=1

‖wi‖22

= (‖ŵk‖22 + ‖ŵl‖22)− (‖wk‖22 + ‖wl‖22)

=

(
1

1 + 2σ2
− 1

)
(‖wk‖22 + ‖wl‖22)

= − 2σ2

1 + 2σ2
(‖x‖22 + ‖y‖22).

A first consequence of Algorithm 4.5 is then that we can characterize optimal solutions by a suitable

algebraic property.

Theorem 4.8. Let Z ∈ O(p, q) be a solution of (4.5) and let C = WZ with C = [C1 C2 ] split according

to the block structure of Z in (4.7). Then

(4.13) CT2 C1 = 0

and the solution set of (4.5) is given by

(4.14) L =

{
Y ∈ O(p, q)

∣∣∣∣Y = Z

[
Q11 0

0 Q22

]
, Q11, Q22 orthogonal

}
.

Proof. Applying Algorithm 4.5 to C = WZ the choice of k and l selects a column x from C1 and a

column y from C2. If CT2 C1 6= 0, we can therefore choose x and y such that xT y 6= 0 implying σ 6= 0. In

view of (4.12) the given Z then cannot be optimal. Hence, (4.13) holds.

Let Z1, Z2 be two solutions of (4.5) with ZT1 W
TWZ1 and ZT2 W

TWZ2 being blockdiagonal according

to (4.13). Writing C = WZ1 and Ĉ = WZ2, we have

Ĉ = CZ, Z = Z−11 Z2, ZTSZ = S
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with

C = [ C1 C2 ], CT1 C2 = 0, Ĉ = [ Ĉ1 Ĉ2 ], ĈT1 Ĉ2 = 0.

Using (4.7) we get

Ĉ1 = C1Z11 + C2Z21, Ĉ2 = C1Z12 + C2Z22,

and thus,
0 = (C1Z12 + C2Z22)T (C1Z11 + C2Z21)

= ZT12C
T
1 C1Z11 + ZT22C

T
2 C2Z21

= ZT22Z21Z
−1
11 C

T
1 C1Z11 + ZT22C

T
2 C2Z21.

Since Z22 is nonsingular, this is equivalent to the (homogeneous) Sylvester equation

Z21(Z−111 C
T
1 C1Z11) + (CT2 C2)Z21 = 0.

Observing that the matrices in parantheses are both symmetric positive definite due to the nonsingularity

of C and Z11, the only possible solution is given by Z21 = 0 implying Z12 = 0 and Z11, Z22 being orthogonal.

Hence, Z is orthogonal, and therefore,

‖WZ2‖F = ‖WZ1Z
−1
1 Z2‖F = ‖WZ1Z‖F = ‖WZ1‖F .

Before we can actually show convergence we need an estimate which guarantees a lower bound for the

descent away from the solution.

Lemma 4.9. Given the compact set

D = {C = WZ | Z ∈ O(p, q), ‖C‖F ≤ ‖W‖F , W nonsingular},

then there exists a δ > 0 so that

(4.15) min
C∈D

i=1,...,n

‖Cei‖2 ≥ δ,

with ei, i = 1, . . . , n, being the canonical basis vectors in Rn.

Proof. Take a fixed i = 1, . . . , n and consider

min
C∈D
‖Cei‖2.

The minimum, say δi, exists since we have a continuous function on a compact domain and is nonnegative

since the function is nonnegative. Assume that δi = 0. Then there is a C ∈ D with ‖Cei‖2 = 0, hence

Cei = 0 implying that C is singular in contradiction to C = WZ with Z ∈ O(p, q) and W nonsingular.

Thus, δi > 0 and we can choose δ = min{δ1, . . . , δn} > 0.

Theorem 4.10. Let the sequence C
(ν)
ν∈N0

be generated by Algorithm 4.5 with intermediate quantities x(ν),

y(ν), and σν . Furthermore, let Ẑ ∈ L and Ĉ = WẐ. Then C(ν) ∈ D for all ν ∈ N0 satisfying

(4.16) ‖Ĉ‖F ≤ ‖C(ν+1)‖F ≤ ‖C(ν)‖F ≤ ‖W‖F .

Moreover,

(4.17)

∞∑
ν=0

4σ2
ν

1 + 2σ2
ν

≤ ‖W‖F − ‖Ĉ‖F
δ2
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and

(4.18) lim
ν→∞

σν = 0, lim
ν→∞

x(ν)T y(ν) = 0.

Proof. The claim (4.16) follows by induction directly from (4.12) and from Ẑ being an optimal solution

of (4.5). In more detail we have

‖C(ν+1)‖2F − ‖C(ν)‖2F = − 2σ2
ν

1 + 2σ2
ν

(‖x(ν)‖22 + ‖y(ν)‖22) ≤ − 4σ2
ν

1 + 2σ2
ν

δ2,

where we utilized (4.15). Summing up then yields

µ∑
ν=0

4σ2
ν

1 + 2σ2
ν

≤ ‖C
(0)‖2F − ‖C(µ+1)‖2F

δ2
≤ ‖C

(0)‖2F − ‖Ĉ‖2F
δ2

,

and the limit of the sum for µ→∞ exists and is bounded as claimed in (4.17). It immediately follows that

lim
ν→∞

4σ2
ν

1 + 2σ2
ν

= 0,

which is equivalent to the first part of (4.18). For the second part, we observe that

f(σν) =
x(ν)T y(ν)

‖x(ν)‖22 + ‖y(ν)‖22
according to (4.11). Since |f(σν)| ≤ |σν | due to a simple calculation, we finally obtain

|σν | ≥
|x(ν)T y(ν)|
2‖C(ν)‖F

≥ |x
(ν)T y(ν)|
2‖W‖F

showing the second part of (4.18).

The preceeding theorem shows that we approach the set of optimal solutions of the optimization problem

(4.5) as long as (4.18) implies

lim
ν→∞

C
(ν)
2

TC
(ν)
1 = 0, C(ν) =

[
C

(ν)
1 C

(ν)
2

]
.

Actually this is a property of the pivot strategy, that is, of the choice of kν , lν in Algorithm 4.5. One

possibility is to choose kν , lν in such a way that∣∣x(ν)T y(ν)∣∣ =
∥∥ vec(C

(ν)
2

TC
(ν)
1 )
∥∥
∞

holds, with vec stacking all entries of a matrix into a vector. Compare this with the classical form of Jacobi’s

method, see [5]. Another possibility is to guarantee that (kν , lν) equals (k, l) for each possible pair with

k = 1, . . . , p, l = p+ 1, . . . , n for infinitely many ν ∈ N0. In this case, it is also allowed that some of the σν
vanish.

In order to get a smooth process that stabilizes the approach of Section 3, we can take a fixed sequence

of pairs (k, l) so that every possiblity actually occurs, for example

(4.19) (1, q + 1), . . . , (1, n), (2, q + 1), . . . , (2, n), . . . , (q, q + 1), . . . , (q, n)

and repeat it a certain number of times. Compare this with the so-called cyclic form of Jacobi’s method,

see again [5]. Since all steps in the procedure are analytic and only a finite number of steps are performed

the overall process is analytic maintaining the smoothness of the original matrix function W .
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4.2. Stabilization by Newton’s method. In view of Theorem 4.8 we can replace the optimization

problem (4.5) by the solution of a system of nonlinear equations suggested by (4.13). In order to fix a unique

solution we are looking for a solution of a special structure.

Lemma 4.11. The solution set L contains a matrix Z of the form

Z =

[
(Ip + ZT21Z21)1/2 ZT21

Z21 (Iq + Z21Z
T
21)1/2

]
.

Proof. Let Z̃ ∈ L. Due to Theorem 4.3, it has the form

Z̃ =

[
Q11(Ip + Z̃T21Z̃21)1/2 Q11Z̃

T
21Q22

Z̃21 (Iq + Z̃21Z̃
T
21)1/2Q22

]
,

which can be written as

Z̃ =

[
(Ip + ZT21Z̃21)1/2 ZT21

Z21 (Iq + Z21Z
T
21)1/2

] [
Q11 0

0 Q22

]
with Z21 = Z̃21Q

T
11. The claim follows from the structure of L according to (4.14).

Thus, we are left with the determination of a suitable matrix Z21 ∈ Rq,p. We therefore consider the

system of nonlinear equations

(4.20) F (Z21) = 0,

with F : Rq,p → Rq,p defined by

(4.21)

(a) F (Z21) = CT2 C1,

(b) C = [ C1 C2 ] = WZ,

(c) Z =

[
(Ip + ZT21Z21)1/2 ZT21

Z21 (Iq + Z21Z
T
21)1/2

]
.

Let Z∗21 be a solution of (4.20) with Z∗ according to (4.21c) and W ∗ = WZ∗. Then (4.20) is equivalent to

(4.22) F̃ (Z̃21) = 0

with F̃ : Rq,p → Rq,p defined by

(a) F̃ (Z̃21) = C̃T2 C̃1,

(b) C̃ = [ C̃1 C̃2 ] = W ∗Z̃,

(c) Z̃ =

[
(Ip + Z̃T21Z̃21)1/2 Z̃T21

Z̃21 (Iq + Z̃21Z̃
T
21)1/2

]
.

In particular, (4.22) possesses the solution Z̃∗21 = 0. Without loss of generality, we are thus allowed to assume

that Z∗21 = 0 is a solution of (4.20).

In the following we use the notion of differentials replacing the more familiar d by ∆ thus mimicking the

notation known in the context of Newton’s method.

In order to show that Z∗21 = 0 is a regular solution we need to show that the Newton correction ∆Z21

defined by

(4.23) ∆F (Z21) = F ′(Z21)∆Z21 = −F (Z21)
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vanishes at the solution Z∗21, i.e., for vanishing right-hand side in (4.23). Note that A1/2A1/2 = A implies

∆A1/2A1/2 + A1/2∆A1/2 = ∆A, which is a uniquely solvable Sylvester equation for ∆A1/2. Taking A =

Ip + ZT21Z21, we get ∆A = ∆ZT21Z21 + ZT21∆Z21. Hence, A = Ip and ∆A = 0 for Z21 = 0 resulting in

∆(Ip + ZT21Z21)1/2 = 0 at the solution. Similarly, we have ∆(Iq + Z21Z
T
21)1/2 = 0 at the solution. Thus, the

Newton correction at the solution is given by

(a) ∆CT2 C1 + CT2 ∆C1 = 0,

(b) ∆C = [ ∆C1 ∆C2 ] = W∆Z,

(c) ∆Z =

[
0 ∆ZT21

∆Z21 0

]
.

Writing W = [ W1 W2 ] yields ∆C = [ W2∆Z21 W1∆ZT21 ]. Observing that Z = I for Z21 = 0 and thus

C = W , we finally arrive at

(4.24) ∆Z21W
T
1 W1 +WT

2 W2∆Z21 = 0.

Since W is nonsingular, the matrices WT
1 W1 and WT

2 W2 are symmetric positive definite so that the Sylvester

equation (4.24) possesses the unique solution ∆Z21 = 0.

Theorem 4.12. The problem (4.20) possesses a unique solution which is regular in the sense that the

linearization at the solution is invertible.

Proof. Regularity was shown by the preceeding discussion. Uniqueness follows from (4.14) with Z from

Lemma 4.11 since we require Q11 = Ip and Q22 = Iq in (4.14).

Taking the dependence on W into account, we write (4.20) as

F (Z21,W ) = 0.

Due to the implicit function theorem, this can locally be solved for Z21 according to

Z21 = G(W )

with a function G : GL(n) → Rq,p. Since F is analytic, also G is analytic. In the case of a path W ∈
Ck(I,GL(n)), as in Theorem 3.1, we get a path Z ∈ Ck(I,O(p, q)) stabilizing the approach of Section 3.

As a by-product of the numerical considerations we have shown the following stronger version for The-

orem 3.1.

Theorem 4.13. Let E ∈ Ck(I,Rn,n) with k ∈ N0 ∪ {∞, ω} have constant rank and let ET = E. Then

there exists a matrix function W ∈ Ck(I,GL(n)) satisfying (3.2) and being pointwise of minimal norm in

the sense of (4.5).

4.3. Alternative parametrization. We actually based the approach of Section 4.2 on a parametriza-

tion of O(p, q) slightly different from (4.7).

Theorem 4.14. The Lie group O(p, q) can be parametrized according to

(4.25) O(p, q) =


[
Z11 Z12

Z21 Z22

]∣∣∣∣∣∣∣∣
Z21 ∈ Rq,p arbitrary

Z11 = Q11L
T
11, Q11 ∈ O(p),

Z22 = L22Q22, Q22 ∈ O(q),

Z12 = Z−T11 ZT21Z22

 ,
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where

(4.26) L11L
T
11 = Ip + ZT21Z21, L22L

T
22 = Iq + Z21Z

T
21

by means of the Cholesky factorization.

Proof. The proof follows the lines of those for Theorem 4.3. Let Z ∈ O(p, q) according to (4.25) with

block Z21. Then

ZT11Z11 = Ip + ZT21Z21 = L11L
T
11,

or

L−111 Z
T
11Z11L

−T
11 = Ip,

and hence,

Q11 = Z11L
−T
11 ∈ O(p).

Moreover,

Z12 = Z−T11 ZT21Z22.

Furthermore,

ZT22Z22 = Iq + ZT12Z12 = Iq + ZT22Z21Z
−1
11 Z

−T
11 ZT21Z22 = Iq + ZT22Z21(Ip + ZT21Z21)−1ZT21Z22,

or

ZT22(Iq − Z21(Ip + ZT21Z21)−1ZT21)Z22 = Iq.

Using the Sherman-Morrison formula, this is the same as

ZT22(Iq + Z21Z
T
21)−1Z22 = Iq,

or

ZT22(L22L
T
22)−1Z22 = Iq,

and hence,

Q22 = L−122 Z22 ∈ O(q).

Conversely, let Z ∈ Rn,n be in the set of the right-hand side of (4.25). Then

Ip + ZT21Z21 − ZT11Z11 = Ip + ZT21Z21 − L11Q
T
11Q11L

T
11 = 0

as well as
Iq + ZT12Z12 − ZT22Z22 = Iq + ZT22Z21Z

−1
11 Z

−T
11 ZT21Z22 − ZT22Z22

= Iq − ZT22(Iq − Z21(Ip + Z21Z
T
21)−1ZT21)Z22

= Iq − ZT22(Iq + ZT21Z21)−1Z22

= Iq − ZT22LT22(L22L
T
22)−1L22Q22 = 0,

implying that Z ∈ O(p, q).

All results of Section 4.2 carry over to the parametrization (4.25). While the parametrization (4.7) has

the advantage to exhibit more symmetry leading to a simpler mathematical discussion, the parametrization

(4.25) has the advantage to use Cholesky factorization which is a finite process instead of the determination

of the square root of matrices which requires an iterative process.
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Lemma 4.15. The solution set L contains a matrix Z of the form

Z =

[
LT11 L−111 Z

T
21L22

Z21 L22

]
with L11, L22 according to (4.26).

Proof. Due to Lemma 4.11, the solution set L contains a matrix Z̃ of the form

Z̃ =

[
(Ip + Z̃T21Z̃21)1/2 Z̃T21

Z̃21 (Iq + Z̃21Z̃
T
21)1/2

]
.

Let L11, L22 nonsingular lower triangular and Q11, Q22 orthogonal be given by QR factorization according

to

LT11Q11 = (Ip + Z̃T21Z̃21)1/2, L22Q22 = (Iq + Z̃21Z̃
T
21)1/2

and set Z21 = Z̃21Q
T
11. Then

Z̃ =

[
LT11Q11 QT11Z

T
21

Z21Q11 L22Q22

]
=

[
LT11 QT11Z

T
21Q

T
22

Z21 L22

] [
Q11 0

0 Q22

]
satisfying

L11L
T
11 = Q11(Ip + Z̃T21Z̃21)1/2(Ip + Z̃T21Z̃21)1/2QT11

= Q11(Ip +QT11Z
T
21Z21Q11)Q11 = Ip + ZT21Z21

and
L22L

T
22 = (Iq + Z̃21Z̃

T
21)1/2QT22Q22(Iq + Z̃21Z̃

T
21)1/2

= Iq + Z21Q11Q
T
11Z

T
21 = Iq + Z21Z

T
21.

It remains to show that QT11Z
T
21Q

T
22 = L−111 Z

T
21L22 which follows from

L11Q
T
11Z

T
21Q

T
22L
−1
22

= Q11(Ip + Z̃T21Z̃21)1/2QT11Q11Z̃
T
21Q

T
22Q22(Iq + Z̃21Z̃

T
21)−1/2

= Q11(Ip + Z̃T21Z̃21)1/2Z̃T21(Iq + Z̃21Z̃
T
21)−1/2 = Q11Z̃

T
21 = ZT21

with the help of (4.6).

One can also think of other parametrizations. Using the Cayley transform parametrizations of the Lie

group O(p, q) correspond to parametrizations of its Lie algebra and vice versa. Thus, we can also think of

parametrizations of the Lie algebra and transfer them to O(p, q). At this point, it is not clear whether there

is an optimal parametrization with respect to efficiency and robustness of the representation of the elements

in O(p, q) and in the subset needed for Newton’s method and of Newton’s method itself.

5. Numerical illustration. We implemented the constructions for a smooth version of Sylvester’s

law of inertia from the proof of Theorem 3.1 as well as both approaches for their stabilization as described

in Section 4.1 and in Section 4.2, the latter together with the alternative parametrization described in

Section 4.3.

Example 5.1. Figure 2 shows the Frobenius norm of W for E given in Example 3.3 as function of t

obtained by stabilization in comparison with the original norms as shown in Figure 1. Again ODE refers to

the case k 6= 0 and GLUE refers to the case k = 0 while STABLE refers to the stabilization of the construction in
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Figure 2. Norm of W as function of t for Example 5.1 using stabilization.

the case k = 0. Note that for this example both approaches of Section 4 yield undistinguishable results when

we use (4.19) for at least three times. In particular, both approaches yield nicely bounded transformations

for the smooth version of Sylvester’s law of inertia.

Example 5.2. Choosing

E = UTdiag(2,−3, 3,−2)U

with

U(t) =


1 0 0 0

sin(2πt) 1 0 0

0 cos(2πt) 1 0

1 1 1 1

 .
Figure 3 shows again the Frobenius norm of W as function of t obtained by stabilization in comparison with

the norm obtained using the construction for k = 0 labeled by GLUE. The used stabilization techniques were

the descent method with going through (4.19) once labeled by DESCENT1 and twice labeled by DESCENT2 and

Newton’s method labeled by NEWTON. It can be seen that the results of the descent method approach the

result of Newton’s method quickly with increasing number of applications of (4.19).

6. Conclusions. We presented a smooth version of Sylvester’s law of inertia maintaing the smoothness

of the given matrix-valued symmetric matrix function of constant rank. The proof distinguishes between

the case of continuous functions and continuously differentiable functions. The proof is constructive but the

resulting numerical procedures are unstable. We therefore developed two possible stabilization techniques.

Numerical examples verified the obtained approaches.
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Figure 3. Norm of W as function of t for Example 5.2 using stabilization.
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