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Abstract. Let G be a graph with a vertex set V and an edge set E consisting of unordered pairs of vertices. The tree

cover number of G, denoted τ(G), is the minimum number of vertex disjoint simple trees occurring as induced subgraphs of G

that cover all the vertices of G. In this paper, the tree cover number of a line graph τ(L(G)) is shown to be equal to the path

number π(G) of G. Also, the tree cover numbers of shadow graphs, corona and Cartesian product of two graphs are found.

The graph parameter τ(G) is related to another graph parameter M+(G), called the maximum semidefinite nullity of G.

Suppose S+(G,R) denotes the collection of positive semidefinite real symmetric matrices associated with a given graph G. Then

M+(G) is the maximum nullity among all matrices in S+(G,R). It has been conjectured that τ(G) ≤M+(G). The conjecture

is shown to be true for graph classes considered in this work.
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1. Introduction. Let G = (V,E) denote a simple graph with vertex set V = {v1, v2, . . . , vn} and edge

set E consisting of two-element subsets of V . The number of vertices of G is called the order of G and

is denoted |G|. If there are m edges in G, then the graph is said to have size m. A graph parameter we

will be discussing in this paper is called the tree cover number of G, denoted τ(G). We define τ(G) to be

the minimum number of vertex disjoint simple trees occurring as induced subgraphs of G that cover all the

vertices of G. This parameter was introduced in [2] and it was shown that the maximum semidefinite nullity

of an outerplanar graph is equal to its tree cover number.

In this paper, we will find the tree cover number of some graph classes. For a simple connected graph

G, we prove that the tree cover number of its line graph L(G) is equal to the minimum number of paths

π(G) needed in a path decomposition of G. Thus, the tree cover number of a line graph L(G) is related to

the well studied parameter of path number of G. We then study the tree cover number of the shadow graph

S(G) of a simple graph G. For given simple graphs G and H we find the tree cover number of the corona

G ◦H, and the Cartesian product G�H.

Given an n × n Hermitian matrix A, its graph G(A) is the simple graph on n vertices {v1, v2, . . . , vn},
which has an edge between vi and vj if and only if the (i, j)th entry of A is nonzero and i 6= j. The graph is

independent of the real diagonal entries of A. The set of real symmetric positive semidefinite matrices that

share a common graph G is denoted S+(G,R). We define the minimum semidefinite rank of G, mrR+(G),

as min{rankA : A ∈ S+(G,R)} and the maximum semidefinite nullity of G, MR
+(G), as max{nullityA :

A ∈ S+(G,R)}. Similar parameters mrC+(G) and MC
+(G) are defined by considering the complex Hermitian

positive semidefinite matrices S+(G,C) associated with a given graph G. Since S+(G,R) ⊆ S+(G,C) it is
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clear that mrC+(G) ≤ mrR+(G) and MR
+(G) ≤ MC

+(G). It has been shown that strict inequality mrC+(G) <

mrR+(G) is possible [1]. Since we mainly consider the graph parameter tree cover number of G, our results

hold for both real and complex fields. We therefore omit the field reference and write mr+(G) and M+(G)

instead.

In [2], it has been shown that τ(G) ≤ M+(G) for chordal graphs and certain bipartite graphs and that

the equality holds for outerplanar graphs. It has been conjectured that τ(G) ≤ M+(G) for every graph G.

Each section of this paper examines a different class of graph: line graphs, shadow graphs, corona graphs,

and Cartesian products. At the end of each section, we discuss the connection between the newly found tree

cover number and their corresponding maximum semidefinite nullity.

2. Preliminaries. A graph G is simple if it contains no loops or parallel edges. We write e = uv for an

edge e with endpoints u and v. If u and v are the ends of an edge, they are said to be adjacent or neighbors.

The ends of an edge are said to be incident with the edge, and vice-versa. The set of neighbors of a vertex

v in G is denoted NG(v). The number of edges of G incident with v is called the degree of v in G, denoted

dG(v). For a simple graph, dG(v) = |NG(v)|. A vertex of degree one is called a pendant vertex or a leaf of

G.

Given a graph G, F is a subgraph of G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). An induced subgraph of

G, denoted by G[Y ], is the subgraph of G whose vertex set is Y and whose edge set consists of all edges in

E(G) which have both ends in Y .

A path is a simple graph whose vertices can be arranged in a linear sequence v1v2 · · · vn such that two

vertices are adjacent if and only if they are consecutive in the sequence. The path on n vertices is denoted Pn.

A graph G is connected if there exists a path between any pair of vertices. A cycle on three or more vertices

is a simple graph whose vertices can be arranged in a cyclic sequence so that two vertices are adjacent if

they are consecutive in the sequence and nonadjacent otherwise. The cycle on n vertices is denoted by Cn.

Note that τ(Cn) = 2, where one tree is a single vertex v in Cn and a second tree is the path induced by

V (Cn) \ v

A graph with no cycle is called acyclic. A tree is a connected acyclic graph. One type of tree is called

a star, denoted Stn, which has one vertex of degree n − 1 and the remaining vertices are pendant vertices.

For any tree G, by definition τ(G) = 1.

A complete graph Kn on n vertices is a simple graph where any two vertices are adjacent. Since any

three vertices of Kn induce a cycle, each tree in a minimum tree cover of Kn can only contain two vertices.

Hence, τ(Kn) = dn2 e. A graph is said to be bipartite if its vertex set can be partitioned into two subsets X

and Y , called parts, so that every edge has one end in X and one end in Y . If every vertex in X is joined to

every vertex in Y , then G is called a complete bipartite graph, denoted Km,n where |X| = m and |Y | = n.

For a complete bipartite graph, a minimum tree cover can be constructed by letting one induced tree contain

a single vertex from partite set X, and all but one vertex from partite set Y . The remaining vertices induce

the second tree. Hence, τ(Km,n) = 2.

An independent set in a graph is a set of pairwise nonadjacent vertices. The maximum cardinality among

independent sets in G is called the independence number, denoted by α(G). A clique of a graph G is a set

of mutually adjacent vertices. The minimum number of cliques needed to cover all single edges of a graph

G is called the clique cover number of G, denoted cc(G).
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The contraction of an edge e = uv involves the deletion of e and merging of the vertices u and v into

a new vertex w, keeping all the edges in G incident to either u or v. A minor of a graph G is any graph

obtainable from G by means of a sequence of vertex and edge deletions and edge contractions [5, p. 268].

A graph G is said to be chordal if it has no induced cycles of length four or more. A graph which can be

drawn in the plane in such a way that the edges meet only at points corresponding to their common ends is

called a planar graph, and such a drawing is called a planar embedding of the graph. A graph is outerplanar

if it has a crossing-free planar embedding such that all vertices are on the same face.

Given a graph G and v ∈ V (G), the orthogonal removal of v from G, denoted G 	 v, is a multigraph

modified from G[V (G) − {v}] by adding P (u,w) additional edges between each pair u,w ∈ NG(v) where

P (u,w) is the product of the number of edges from v to u and from v to w. For further details in graph

theory, one may consult [5] or [19].

We are interested in considering graphs associated to real symmetric or complex Hermitian matrices.

The set of n×n matrices with entries that are complex numbers is denoted by Mn(C) and those with entries

that are real numbers is denoted by Mn(R). A matrix A ∈ Mn(C) is said to be Hermitian if A equals its

conjugate transpose A∗. A matrix A ∈Mn(R) is said to be symmetric if A equals its transpose AT .

If ~x = (x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) are points in Cn, then the Euclidean inner product

〈~x, ~y〉 =
∑n
i=1 xiyi. A Hermitian matrix A ∈ Mn(C) is positive definite if 〈A~x, ~x〉 is positive for all nonzero

~x in Cn and it is positive semidefinite if 〈A~x, ~x〉 ≥ 0 for all ~x in Cn.

We may think of A ∈ Mm,n(C) as a linear transformation ~x 7→ A~x from Cn to Cm. We define for

A ∈ Mm,n(C), the nullspace of A and the range of A as follows: nullspace A = {~x ∈ Cn : A~x = 0} and

range A = {~y ∈ Cm : ~y = A~x for some ~x ∈ Cn}. The dimension of the nullspace A is called the nullity of

A and the dimension of the range A is called the rank of A. These numbers are related by the rank-nullity

theorem: rankA+ nullityA = n.

Let A be a real symmetric n× n matrix. Then A is said to satisfy the Strong Arnold Property if there

does not exist a n× n symmetric matrix x 6= 0 such that (i) Ax = 0, (ii) A ◦ x = 0, and (iii) I ◦ x = 0 where

◦ denotes the entrywise (Hadamard) product and I is the identity matrix.

Define the parameter ν(G) to be the maximum nullity among matrices A ∈ S+(G,R) that satisfy the

Strong Arnold Property [9, 10]. For further results in Matrix Theory, one may consult [13].

3. Tree cover number of line graphs. Let G be a simple connected graph with n vertices and m

edges. The line graph of a graph G, denoted L(G), has vertex set consisting of the m edges of G and an

edge is drawn between two vertices in L(G) if and only if the corresponding edges in G have a common end

vertex.

We present some well-known conditions for deciding when a graph H is the line graph of a graph G. In

order to state the result we need the following definitions.

A claw in a graph G is defined to be an induced subgraph isomorphic to K1,3. A triangle graph S in

G is a subgraph isomorphic to K3. A triangle S in G is odd if |N(v) ∩ V (S)| is odd for some v ∈ V (G). A

triangle S in G is even if |N(v) ∩ V (S)| is even for every v ∈ V (G) [19].
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Figure 1. H is the line graph of G.

Theorem 3.1. ([[3, 4, 14, 18]]) Let H be a graph. The following conditions are equivalent:

1. H is a line graph of G; that is, L(G) = H;

2. The edges of H can be partitioned into complete subgraphs such that no vertex lies in more than two

of the subgraphs;

3. H is claw-free and if two odd triangles have a common edge, then the subgraph induced by their

vertices is a K4;

4. H contains none of the nine forbidden graphs of Figure 2 as an induced subgraph.

Figure 2. These nine graphs are forbidden induced subgraphs of any line graph.

In order to find the tree cover number of L(G), we first show that every induced simple tree in L(G) is

a path.

Proposition 3.2. Let L(G) be the line graph of a simple graph G. Then the following hold:

1. Every induced simple tree in L(G) must be an induced path obtained from a path in G
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2. Any path in G corresponds to an induced path in L(G).

Proof. Suppose T is an induced simple tree in L(G) and v is a vertex of T . If deg(v) ≥ 3 in L(G),

then v and three of its neighbors will induce a K1,3 in L(G), contradicting the characterization given in

Theorem 3.1. Therefore, every vertex v of T has degree at most two. Thus, T must be an induced path in

L(G).

Suppose e1e2 · · · el−1el is an induced path in L(G). Since the vertices are distinct in L(G), the edges in

G are distinct and the adjacent edges have a common vertex. Thus, P = v1e1v2e2 · · · vlelvl+1 is a path in G.

Suppose P = v1e1v2e2 · · · vlelvl+1 is a path in G. Then clearly Q = e1e2 · · · el−1el is a path in L(G)

since adjacent edges in P have a common vertex. In order to show that Q is an induced path in L(G), we

show that the vertices e1e2 · · · el do not induce a cycle amongst themselves. Suppose a cycle is induced, so

that deg(ej) ≥ 3, for some j such that 1 < j < l. Then a K1,3 is induced in L(G), contradicting that L(G)

is a line graph (See Theorem 3.1). If el and e1 are adjacent in L(G) then vl+1 = v1 in P , which contradicts

the assertion that the vertices of a path in G are distinct. Therefore, Q is an induced path in L(G).

From Proposition 3.2 we see that finding tree covers of L(G) correspond to finding path decompositions

of G. A path decomposition of a graph G is a list of paths {P1, P2, . . . , Pk} such that each edge of G appears

in exactly one path in the list. The minimum number of paths in such a list is called the path number of G

and is denoted by π(G) [12, 16].

v1
e1

v2

e2

v3
e3

v4

e4
e5 e6

Figure 3. The complete graph K4 can be covered by two paths: v2v1v4v3 and v1v3v2v4.

Theorem 3.3. Let L(G) be the line graph of a simple graph G. Then τ(L(G)) = π(G).

Proof. Let k be the number of paths in a minimal path decomposition of G. Each of the paths P1, . . . , Pk
in the minimal path decomposition produces induced paths Q1, . . . , Qk in L(G). Since each edge in G appears

in one and only one path in {P1, . . . , Pk}, we conclude that each vertex of L(G) appears in one and only one

path in {Q1, . . . , Qk}. Thus, we have a vertex disjoint tree cover of L(G) of size k. Hence, τ(L(G)) ≤ k. By

Proposition 3.2, every induced tree in L(G) has to be an induced path in L(G) and every induced path in

L(G) is obtained from a path in G. Therefore, a minimal tree cover in L(G) must be obtained from a path

decomposition in G. Hence, k ≤ τ(L(G)). Thus, τ(L(G)) = π(G).

Theorem 3.4. Let L(G) be the line graph of a simple graph G. Then τ(G) ≤ π(G) = τ(L(G)).

Proof. We first show that τ(G) ≤ π(G). Let {T1, . . . , Tk} be a minimal tree cover of G. If one of the

trees Ti, for some 1 ≤ i ≤ k, is not a path, then more than one path is needed to cover the edges of Ti.

Hence, k ≤ π(G). Now suppose all the trees are induced simple paths in G. If all the edges of G are covered

by the k paths, then k = π(G). If some of the edges of G are not covered by the k paths of the tree cover,

then vertices of those edges must induce a cycle with vertices of some path in the cover. Suppose e and f
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Figure 4. Since π(K4) = 2, where K4 is the complete graph, τ(L(K4)) = 2. The paths e1e4e3 and e6e2e5 induce a tree

cover for L(K4).

are two edges not covered by the paths T1, . . . , Tk. In addition, suppose e and f induce a cycle with some

vertices of T1. Then at least one additional path is needed to cover edges e and f . Hence, k ≤ π(G). From

Theorem 3.3 the conclusion follows.

Proposition 3.5. If G is a tree, then τ(L(G)) = k
2 , where k is the number of vertices of odd degree in

G.

Proof. From [16], π(G) = k
2 , where k is the number of vertices of G of odd degree. Thus, τ(L(G)) = k

2

using Theorem 3.3.

If G is a tree that is not a path then clearly τ(G) = 1 < τ(L(G)). We give below examples of graphs G

for which τ(G) = τ(L(G)).

Proposition 3.6. If a simple graph G is either a path, a cycle, or a complete graph, then τ(G) =

τ(L(G)).

Proof. Since every path Pn has two pendant vertices, from Proposition 3.5 we get τ(Pn) = 1 = τ(L(Pn)).

Suppose the graph G = Cn, where Cn is a cycle on n vertices. Let V (Cn) = {v1, . . . , vn} with edges

ei = vivi+1 for i = 1, . . . , n− 1 and en = v1vn. Then π(Cn) = 2 with the paths v1v2 · · · vn−1vn and vnv1. By

Theorem 3.3, π(Cn) = τ(L(Cn)) = 2. Also, τ(Cn) = 2 with trees consisting of the path v1v2 · · · vn−1 and

the single vertex vn.

Suppose the graph G = Kn is a complete graph on n vertices. Let V (Kn) = {v1, . . . , vn} with edges vivj
for i 6= j and i, j in {1, 2, . . . , n}. By Theorem 3.4, τ(Kn) ≤ π(Kn) = τ(L(Kn)). Since every two vertices

are adjacent in the graph Kn, each tree in the tree cover can only contain two vertices without inducing a

cycle. Hence, τ(Kn) = dn2 e. From [12], we have π(Kn) = dn2 e.

Proposition 3.7. Let Km,n be a complete bipartite graph. Then

τ(L(Km,n)) =

{
m+n

2 if mn is odd,

d mn
2n−δ(m,n)e if mn even.
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Proof. From [12],

π(Km,n) =

{
m+n

2 if mn is odd,

d mn
2n−δ(m,n)e if mn even,

where δ(m,n) = 1 if m = n and 0 otherwise. Thus, by Theorem 3.4, we have the result.

3.1. Connection to maximum semidefinite nullity. It has been conjectured in [2] that τ(G) ≤
M+(G). We will verify this conjecture for some classes of line graphs.

It has been shown in [11] that if G is a simple graph with |G| ≥ 2 and G contains a Hamiltonian path

(a path P such that V (P ) = V (G)), then mr+(L(G)) = |G| − 2. In this case, M+(L(G)) = |E(G)| − |G|+ 2.

If G is a path Pm on m vertices, then M+(L(Pm)) = (m − 1) −m + 2 = 1 = τ(Pm) = τ(L(Pm)). If G is a

cycle on m vertices, then M+(L(Cm)) = m−m+ 2 = 2 = τ(Cm) = τ(L(Cn)).

It has been shown in [11] that if Kn is a complete graph on n vertices, then M+(L(Kn)) = n(n−1)
2 −n+2.

It is not difficult to verify that τ(L(Kn)) = dn2 e ≤M+(L(Kn)).

It has been shown in [15] that if Tn is a tree on n vertices then mr+(L(Tn)) = n− l where l is the number

of pendant vertices in Tn. Hence, M+(L(Tn)) = (n− 1)−n+ l = l− 1. From Proposition 3.5, we know that

τ(L(Tn)) = k
2 where k is the number of vertices of odd degree. It is a known fact that the degree sum equals

twice the number of edges. To see k ≤ 2l − 2, one can rewrite the left hand side of
∑n
i=1(d(vi) − 2) = −2

into three summands: over the set of pendant vertices, the set of even vertices, and the set of odd vertices

with degree at least 3. This results in the inequality −l + (k − l) ≤ −2.

In the case of the complete bipartite graph Km,n, we consider several cases. When n = 1, then L(Km,1) ≡
Km. Since K1 and K2 are both trees, from [17] M+(K1) = M+(K2) = 1 = τ(L(K1,1)) = τ(L(K2,1)).

Consider the case m ≥ 3 and n = 1. It is well known that mr+(Km) = 1. Hence, M+(Km) = m− 1. Note

that m+1
2 ≤ m− 1 and

⌈
m
2

⌉
≤ m− 1 for m ≥ 3.

From [11], for all complete bipartite graphs Km,n where m ≥ n ≥ 2, we have mr+(L(Km,n)) = m+n−2

and M+(L(Km,n)) = mn−m− n+ 2. We show that τ(L(Km,n)) ≤M+(L(Km,n)) holds.

If mn is odd, then m,n must be odd. We may assume m ≥ n > 2. Note that m > 3
2 and n > 2 ≥ 3m−4

2m−3 .

Therefore, we have:

0 ≤ (2m− 3)

(
n− 3m− 4

2m− 3

)
,

0 ≤ 2mn− 3m− 3n+ 4,

m+ n ≤ 2mn− 2m− 2n+ 4,

m+ n

2
≤ mn−m− n+ 2.

Thus, τ(L(Km,n)) ≤M+(L(Km,n)) holds in this case.

Assume mn is even and m 6= n. Then we have⌈
mn

2n− δ(m,n)

⌉
=
⌈mn

2n

⌉
=
⌈m

2

⌉
.
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Since ⌈m
2

⌉
≤ m+ 1

2
≤ m+ n

2
,

by the previous case, the desired inequality holds.

Assume mn even and m = n. Then we have⌈
mn

2n− 1

⌉
=

⌈
m2

2m− 1

⌉
=

⌈
m2

m
(
2− 1

m

)⌉ =

⌈
m

2− 1
m

⌉
,

and consequently, ⌈
m

2− 1
m

⌉
≤
⌈

m

2− 1
2

⌉
=

⌈
2m

3

⌉
≤ m

Since m ≤ m+m
2 , by the previous case, the desired inequality is satisfied. Therefore, τ(L(Km,n)) ≤

M+(L(Km,n)).

4. Tree cover number of shadow graphs. Let G be a simple connected graph on two or more

vertices. Let V (G) = {v1, v2, . . . , vn}. We add n vertices {u1, u2, . . . , un} to V (G) and call ui the shadow

vertex of vi, 1 ≤ i ≤ n. We define the shadow graph of G, denoted S(G), as follows: the edge set of S(G) is

given by E(G) ∪ {uiw : w ∈ N(vi), 1 ≤ i ≤ n}. In other words, the edge set S(G) consists of all the edges

of G along with new edges obtained by joining each shadow vertex ui (1 ≤ i ≤ n) to the neighbors of vi
(1 ≤ i ≤ n). As an example, if G = C4 then S(C4) is given in Figure 5.

Observe that (1) a vertex of G and its shadow vertex are not adjacent in S(G) and (2) no two shadow

vertices are adjacent in S(G). This definition of S(G) appears in [8, p. 276].

v1 v2

v3v4

u1 u2

u3u4

Figure 5. The shadow graph of a cycle C4.

We now extend our definition of a shadow graph S(G) to that of a p-shadow graph, denoted Sp(G).

For p > 1, let u1i , u
2
i , . . . , u

p
i denote the p shadow vertices of vi, 1 ≤ i ≤ n. The edges of Sp(G) consists of

edges of G along with new edges from each shadow vertex u1i , u
2
i , . . . , u

p
i of vi to the neighbors of vi in G,

1 ≤ i ≤ n.
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It is clear that if G is a simple connected graph on at least three vertices, then S(G) contains a cycle,

and hence, τ(S(G)) ≥ 2. In several cases, τ(G) ≤ τ(S(G)). In the case of the path Pm on m vertices, we

have the strict inequality τ(Pm) < τ(S(Pm)) for m ≥ 3.

Theorem 4.1. Let Pm be a path on m vertices with m ≥ 3. Then τ(S(Pm)) = 2. For p > 1,

τ(Sp(Pm)) = dm2 e.

Proof. Let V (Pm) = {v1, v2, . . . , vm} and with edges vivi+1 for i = 1, . . . ,m − 1. Let u1, u2, . . . , um be

the shadow vertices of v1, v2, . . . , vm, respectively.

• Case 1: m is even.

In this case, v1u2v3u4 · · · vm−1um and u1v2u3v4 · · ·um−1vm are two vertex disjoint induced paths in

S(Pm) which cover all the vertices of S(Pm). Hence, τ(S(Pm)) ≤ 2. Since m ≥ 3, τ(S(Pm)) ≥ 2.

• Case 2: m is odd.

The paths v1u2v3u4 · · ·um−1vm and u1v2u3v4 · · · vm−1um are induced in S(Pm) and are vertex dis-

joint. We conclude τ(S(Pm)) = 2.

Now we consider Sp(Pm) for p > 1.

• Case 1: m is even.

Let Ti be the tree induced by the vertices {vivi+1u
1
i · · ·u

p
i u

1
i+1 · · ·u

p
i+1}, where i = 1, 3, . . . ,m − 1.

These are m
2 vertex disjoint induced trees in Sp(Pm) that cover all the vertices. Hence, τ(Sp(Pm)) ≤

m
2 .

• Case 2: m is odd.

For i = 1, 3, 5, . . . ,m− 4 we use the same trees described in the previous case. There are m−3
2 such

trees. In addition we consider the two trees induced by

{vm−2vm−1u
1
m−2 · · ·u

p
m−2u

1
m−1 · · ·u

p
m−1u

1
m · · ·upm}

and by the single vertex vm. These m−3
2 + 2 = m+1

2 = dm2 e vertex disjoint induced trees cover all

the vertices of Sp(Pm). Hence, τ(Sp(Pm)) ≤ dm2 e.

We show that every tree in a minimal tree cover cannot contain more than two adjacent vertices of

the path Pm. Suppose vi−1vivi+1 is a subpath induced in a tree of the tree cover. Then all the shadow

vertices u1i , . . . , u
p
i have to be isolated vertices in the tree cover as otherwise a cycle would be induced by

any one of those shadow vertices along with vi−1vivi+1. Hence, the number of trees in the tree cover is

dm3 e+ pbm3 c ≥ (1 + p)bm3 c ≥ 3bm3 c ≥ d
m
2 e. By a similar argument, there will be bk2 cpb

m
k c isolated vertices

to be covered if we consider induced paths of length k ≥ 3 in a tree of the tree cover. Therefore, the number

of trees in the tree cover is⌈m
k

⌉
+

⌊
k

2

⌋
p
⌊m
k

⌋
≥
(

1 + p

⌊
k

2

⌋)⌊m
k

⌋
≥
⌊
k

2

⌋ ⌊m
k

⌋
≥
⌈m

2

⌉
.

Hence, dm2 e is the minimum number of trees in the tree cover. Therefore, we conclude that τ(Sp(Pm)) =

dm2 e.

In the case of the complete bipartite graph Km,n, we show that τ(Km,n) = τ(S(Km,n)).

Proposition 4.2. Let Km,n be a complete bipartite graph. Then τ(Sp(Km,n)) = 2.

Proof. Let V (Km,n) = {v1, v2, . . . , vm, w1, w2, . . . , wn} where {v1, . . . , vm} and {w1, . . . , wn} are inde-

pendent sets. The edges of Km,n are viwj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Let u1i , u
2
i , . . . , u

p
i be the p-shadow vertices of vi for 1 ≤ i ≤ m. Let y1j , y

2
j , . . . , y

p
j be the p-shadow vertices

of wj for 1 ≤ j ≤ n. The graph Sp(Km,n) has vertex set V (Km,n)
⋃
{u1i , u2i , . . . , u

p
i }mi=1

⋃
{y1j , y2j , . . . y

p
j }nj=1.

The edges of Sp(Km,n) are the original edges of Km,n along with edges from each shadow vertex u1i , . . . , u
p
i

to vertex wa where i 6= a and from each shadow vertex y1j , . . . , y
p
j to vertex vb where j 6= b.

Then the trees induced by vertices

{v1, y11 , y21 , . . . , y
p
1 , y

1
2 , y

2
2 , . . . , y

p
2 , . . . , y

1
m, y

2
m, . . . , y

p
m, w1, w2, . . . , wn−1}

and

{wn, v2, v3, . . . , vn, u11, u21, . . . u
p
1, u

1
2, u

2
2, . . . , u

p
2, . . . , u

1
n, u

2
n, . . . , u

p
n}

are vertex disjoint induced trees that cover all vertices of Sp(Km,n).

We show that when G denotes a cycle Cn or a complete graph Km, τ(G) = τ(S(G)) when |G| is even,

and τ(G) < τ(S(G)) when |G| is odd.

Theorem 4.3. Let Cm be a cycle on m vertices with m ≥ 3. Then

τ(S(Cm)) =

{
2 if m is even,

3 if m is odd.

Proof. Let V (Cm) = {v1, v2, . . . , vm}, and the cycle has edges v1vm and vivi+1 for i = 1, . . . ,m− 1. Let

u1, . . . , um be the shadow vertices.

• Case 1: m is even.

In this case, the graphs induced by

{u1, v1, v2, u3, v4, u5, . . . , um−1} and {u2, v3, u4, v5, . . . , vm−1, vm, um}

are two vertex disjoint induced trees which cover all the vertices of S(Cm). This shows τ(S(Cm)) ≤ 2.

Since m ≥ 3, τ(S(Cm)) ≥ 2.

• Case 2: m is odd.

The subgraphs induced by

{u1, v2, u3, v4, . . . , um−2, vm−1, um} and {u2, v3, u4, v5, . . . , um−1, vm}

as well as the isolated vertex v1 are three vertex disjoint induced paths which cover all the vertices

of S(Cm). Hence, τ(S(Cm) ≤ 3. Since m ≥ 3, τ(S(Cm)) ≥ 2. It remains to show τ(S(Cm)) 6= 2.

By way of contradiction, assume there exist two vertex disjoint induced trees T1 and T2 that cover the

vertices of S(Cm). Since |S(Cm)| = 2m, we assume without loss of generality T1 is induced on at least m

vertices. As observed in the proof of Theorem 4.1, suppose vi−1vivi+1 is a path induced in T1. Then ui
becomes an isolated vertex as otherwise a cycle would be induced by {ui, ui−1, vi, vi+1}. This increases the

number of trees in the tree cover number to more than two, contradicting our assumption. Since only two

adjacent vertices of Cm can be included in T1, we label them v1 and v2. The maximum number of vertices in

an induced tree T1 is m and the tree is induced by {u1, v1, v2, u3, v4, v5, . . . , um−2, vm−1}. The graph induced

in S(Cm) by the remaining vertices has two connected components. Thus, three vertex disjoint, induced

trees are required to cover V (S(Cm)).
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Theorem 4.4. Let Km be a complete graph on m vertices. Then

τ(S(Km)) =

{
dm2 e if m is even,

dm2 e+ 1 if m is odd.

Proof. Let V (Km) = {v1, v2, . . . , vm} and E(Km) = {vivj : i 6= j} for i, j = 1, . . . ,m. Let u1, . . . , um be

the shadow vertices of v1, v2, . . . , vm. Note that any three vertices of Km induce a cycle. Thus, any tree in

the tree cover of S(Km) cannot include more than two vertices vi, vj for i 6= j and i, j ∈ {1, . . . ,m}. Hence,

dm2 e ≤ τ(S(Km)).

Consider any minimal tree cover of Km, when m is even. This minimal tree cover consists of m
2

edges of Km. Thus, τ(Km) = m
2 . Now in S(Km) consider the m

2 trees induced by {vi, vi+1, ui, ui+1},
for i = 1, 3, . . . ,m− 1. These trees cover all the vertices of S(Km). Therefore, τ(S(Km)) = m

2 = dm2 e.

Consider any minimal tree cover of Km, when m is odd. This minimal tree cover consists of bm2 c edges

of Km and a single vertex denoted as v1. Thus, τ(Km) = dm2 e. Now in S(Km) consider the bm2 c trees

induced by {vi, vi+1, ui, ui+1}, for i = 2, . . . ,m − 1. These trees cover all the vertices except for v1 and u1.

Now v1 and u1 have to be isolated vertices in the tree cover of S(Km) because vivjv1 or vivju1 for i 6= j,

i, j 6= 1 induce a cycle. Therefore, τ(S(Km)) = bm2 c+ 2 = dm2 e+ 1.

4.1. Connection to maximum semidefinite nullity. For some classes of shadow graphs, we are

able to verify the conjecture that τ(G) ≤M+(G).

From [17], we know that mr+(G) = |G|−1 if and only if G is a tree. Since the shadow graph S(G) of any

graph G with at least three vertices contains cycles, we get mr+(S(G)) ≤ |S(G)|−2. Hence, M+(S(G)) ≥ 2.

Therefore, τ(S(Pm)) = 2 ≤M+(S(Pm)) and τ(S(Km,n)) = 2 ≤M+(S(Km,n)).

Consider Pm with m ≥ 3 and Sp(Pm) with p ≥ 1. Since each shadow vertex has degree at most two, we

can sequentially orthogonally remove uji for a fixed i, and j = 1, . . . , p. This will not result in any additional

edges for uji , i = 1,m, since they are all pendent vertices. For the other shadow vertices that all have degree

two, new edges have to be drawn between vi−1 and vi+1 for i = 2, . . . ,m − 1. These new edges produce a

graph consisting of m − 2 triangles. This graph is chordal. The minimum semidefinite rank of the graph

is equal to its clique cover number [7]. We count the minimum number of triangles needed to cover all the

single edges in the graph.

When there is only one shadow vertex for each vertex of Pm, the clique cover number is m − 2 as all

edges obtained after orthogonal removal of shadow vertices of degree 2 are single edges. Hence, by [2, 7],

mr+(S(Pm)) = m + m − 2 = 2m − 2 and M+(S(Pm)) = 2m − (2m − 2) = 2. Thus, τ(S(Pm)) = 2 =

M+(S(Pm)).

Suppose each vertex of Pm has p > 1 shadow vertices. In this case, the orthogonal removal of shadow

vertices of degree 2 produces a triangle with a multiedge joining two of its vertices. The m − 2 triangles

can now be covered by
⌊
m
2

⌋
triangles in its minimum clique cover. Hence, mr+(Sp(Pm)) = pm +

⌊
m
2

⌋
and

M+(Sp(Pm)) = (pm+m)− (pm+
⌊
m
2

⌋
) =

⌈
m
2

⌉
= τ(Sp(Pm)).

Suppose G is a cycle Cn on n vertices. It can be shown that 3 ≤ M+(S(Cn)). To show this, we

observe that K4 is a minor of S(Cn). Since ν(Ks) = s − 1 and ν(G) is minor-monotone [9, 10] we get

3 = ν(K4) ≤ ν(S(Cn)) ≤M+(S(Cn)). Using Theorem 4.3, we now get τ(S(Cn)) ≤M+(S(Cn)).
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5. Tree cover number of corona of two graphs. The corona G◦H of two simple connected graphs

G and H is defined as the graph obtained by taking one copy of G and |G| copies of H, and then joining

the ith vertex of G to every vertex in the ith copy of H.

In the next proposition, we give an upper bound for the tree cover number of G ◦H using the tree cover

number of G and the tree cover number of H.

Proposition 5.1. If G and H are simple connected graphs then the following inequality holds:

(5.1) τ(G ◦H) ≤ τ(G) + |G| τ(H).

Proof. Let T1, T2, . . . , Tk be a minimum tree cover of G and M1,M2, . . . ,Ml be a minimum tree cover

of H. Taking |G| copies of Mi, 1 ≤ i ≤ l, together with T1, T2, . . . , Tk form a tree cover of G ◦ H. Hence,

τ(G ◦H) ≤ τ(G) + |G| τ(H).

In Theorem 5.2 we show that equality is possible in Proposition 5.1 when H is a tree.

Theorem 5.2. If G is a simple connected graph and H is a tree, then τ(G ◦H) = τ(G) + |G|.

Proof. Let G be a graph on n vertices, denoted {v1, v2, . . . , vn}. Let H be a tree on m vertices, denoted

{w1, w2, . . . , wm} for m ≥ 2. Consider the corona graph C = G ◦H. Then

V (C) = {v1, v2, . . . , vn, w1
1, w

1
2, . . . , w

1
m, . . . , w

n
1 , w

n
2 , . . . , w

n
m}

where wji , i ∈ {1, 2, . . . ,m}, corresponds to the vertex vj in the j-th copy of H. In C, each vertex vj of G

for j ∈ {1, . . . , n} is connected to a copy of H by edges vjw
j
i for i = {1, 2, . . . ,m}. It is clear τ(H) = 1. By

Proposition 5.1, τ(C) ≤ τ(G) + |G|τ(H) = τ(G) + |G|.

We need to show that a smaller tree cover for C cannot be obtained. The additional edges between each

vertex vj of G and the vertices in a copy of H do not reduce the number of trees needed to cover G as an

induced subgraph. This is because these edges do not connect vertices of G to one another, nor copies of H

to other copies of H. Thus, any smaller tree cover would need to connect the copies of H to its corresponding

vertex in the tree cover of G.

Consider a tree in the tree cover of C, say T j that covers the vertex vj . We want to extend this tree

to vertices in the j-th copy of H. There are a few options for adding vertices of the tree H to the tree T j .

Any pendant vertex of the tree H can be added to T j without inducing a cycle. Note, if wji is a pendant,

wji , vj , and any neighbor of wji will induce a cycle, so no neighbor of the pendant vertex can be added to T j .

Adding pendant vertices to T j does not decrease the tree cover number since not every vertex of H can be

added.

Instead, consider adding a non-pendant vertex, wji to T
j . By the same argument as above, no neighbor

of wji can then be added to T j or a cycle will be induced. Thus, adding wji to T j increases the tree cover

number since the remaining vertices of this copy of H now requires more than one tree to cover the vertices.

Thus, τ(C) = τ(G) + |G|.

The example in Figure 6 shows that for G = K2 and H = C4, τ(G◦H) = 3 whereas τ(G)+ |G|τ(H) = 5.

Thus, strict inequality is possible in Proposition 5.1.

5.1. Connection to maximum semidefinite nullity. We verify the conjecture that τ(G ◦ H) ≤
M+(G ◦H) in the case that both G and H independently satisfy the conjecture.
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G

v2

v1

u1

u3

u2

u4

H

v1 v2

u11

u13

u12

u14

u21

u23

u22

u24

G ◦H

Figure 6. Here, V (G) = {v1, v2} and V (H) = {u1, u2, u3, u4}. The corona (given below) has τ(G ◦ H) = 3 < 5 =

τ(G) + |G|τ(H). The three induced trees are u14v1v2u
2
3, u

1
3u

1
1u

1
2, and u

2
1u

2
2u

2
4.

If G is a graph with a cut vertex v, such that H1 and H2 are the connected components of the vertex

deletion G− v, then we write G = G1 ·G2 where G1 and G2 are the subgraphs of G induced by V (H1)∪{v}
and V (H2) ∪ {v}, respectively.

It was shown in [6] that if G = G1 · G2, then mr+(G) = mr+(G1) + mr+(G2). From this, we see that

mr+(G ◦H) = mr+(G) + |G|mr+(H). Thus, M+(G ◦H) = M+(G) + |G|M+(H).

From Proposition 5.1, we know that τ(G ◦ H) ≤ τ(G) + |G|τ(H). Therefore, if G and H satisfy

τ(G) ≤M+(G) and τ(H) ≤M+(H), then τ(G◦H) ≤ τ(G)+ |G|τ(H) ≤M+(G)+ |G|M+(H) = M+(G◦H).

6. Tree cover number of Cartesian products of two graphs. The Cartesian product of simple

graphs G and H is the graph G�H whose vertex set is V (G) × V (H) and whose edge set is the set of

all pairs {(u1, v1), (u2, v2)} such that (u1u2 ∈ E(G) and v1 = v2) or (u1 = u2 and v1v2 ∈ E(H)). The

vertices of a Cartesian product can be viewed in a grid, where the i-th row consists of all vertices with form

(·, vi) and induces a copy of the graph G, and the j-th column consists of all vertices with form (uj , ·) and

induces a copy of the graph H. For example, the Cartesian product Pm�Pn of two paths Pm and Pn is the

(m× n)-grid. We obtain the following upper bound for the tree cover number of G�H.

Proposition 6.1. Let G and H be simple connected graphs. Then

τ(G�H) ≤ min{|G| τ(H), |H| τ(G)}.

Proof. Let G and H be simple connected graphs. Consider the graph G�H. Draw the vertices of graph

G�H as a grid where each row of vertices induce a copy of the graph G and each column of vertices induce

a copy of the graph H. Since no additional edges are added between two vertices in the same row, G�H

can be covered by the following tree cover: in each row, use the same tree cover as the minimum tree cover

of G. This results in |H| τ(G) trees. Similarly, since no additional edges are added between two vertices in

the same column, G�H can be covered by the following tree cover: in each column, use the same tree cover
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T8 �P3

Figure 7. The above graph illustrates Theorem 6.2. The graph T8 �P3 can be covered by two vertex disjoint induced

trees, displayed as induced subgraphs to the right of T8 �P3.

as the minimum tree cover of H. This results in |G| τ(H) trees. The minimum of these two quantities gives

an upper bound for τ(G�H).

The following results show that strict inequality is possible in Proposition 6.1.

Theorem 6.2. Let Tm and Tn be trees on m ≥ 2 and n ≥ 2 vertices respectively. Then τ(Tm�Tn) = 2.

Proof. Let V (Tm) = {u1, u2, . . . , um} and V (Tn) = {v1, v2, . . . , vn}. The vertices of Tm�Tn are

{(ui, vj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Since every tree must have at least two pendant vertices, we con-

sider a longest path in Tm with endpoints a and b. We label Tm such that u1 = a and um = b. Since any

tree is bipartite, we can partition the vertices of Tn into two partite sets, H1 and H2.

Let G1 be the tree induced by the vertices in the right-most column of the m × n grid along with the

vertices in the i-th rows, where vi ∈ H1, that are not in the left-most column of the grid. Let G2 be the tree

induced by the remaining vertices of Tm�Tn.

No cycles are induced between vertices in distinct rows of G1 (or G2) because of the vertices (ui, vj),

(ui, vk) in G1 have vj and vk in the same partite set. No cycles are induced between vertices in distinct

columns of G1 (or G2) because each row represents the tree Tm which is acyclic. Therefore, τ(Tm�Tn) ≤ 2.

Since τ(Tm�Tn) > 1, the theorem holds.

Proposition 6.3. Let Cm be a cycle on m vertices and Pn be a path on n vertices. Then

τ(Cm�Pn) = 2.

Proof. The two trees described in Theorem 6.2 cover the vertices of Cm�Pn. Since the vertices of the

first column are in one tree and the vertices of the last column are in another tree, a cycle Cm cannot be

induced. Thus, τ(Cm�Pn) = 2.

Theorem 6.4. Let Pm be a path on m vertices and Kn be a complete graph on n vertices. Then

τ(Kn�Pm) = dn2 e.

Proof. The nm vertices (vi, wj) of Kn�Pm consists of the vertices {v1, . . . , vn} of Kn and the vertices

{w1, . . . , wm} of Pm. Each row of Kn�Pm corresponds to Kn and each column corresponds to Pm. Each
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induced tree in Kn�Pm contains at most two vertices from each row as otherwise a cycle will be induced.

Thus, τ(Kn�Pm) ≥ dn2 e. To prove equality, it suffices to describe a tree cover of size dn2 e.

• Case 1: n is even.

Let Ti be the induced graph on vertices {(i, 1), (i+1, 1), (i+1, 2), (i+2, 2), . . . , (i+m−1 (mod n),m),

(i + m (mod n),m)} for i = 1, 3, 5, . . . , n − 1. Then T1, T3, . . . , Tn−1 are n
2 vertex disjoint simple

trees which cover Kn�Pm.

• Case 2: n is odd.

In the first n − 1 columns, cover the vertices as above in the even case. Cover the vertices of the

n-th column using a path. Hence, τ(Kn�Pm) ≤ n−1
2 + 1 = dn2 e.

6.1. Connection to maximum semidefinite nullity. From [17], we know that mr+(G) = |G| − 1

if and only if G is a tree. Therefore, M+(G) = 1 if and only if G is a tree. Since Pm�Pn, Cm�Pn and

Tn�Pm are not tree graphs, their maximum semidefinite nullity is at least two. Therefore, τ(Pm�Pn) ≤
M+(Pm�Pn), τ(Cm�Pn) ≤M+(Cm�Pn) and τ(Tn�Pm) ≤M+(Tn�Pm). From [15], we know that for

n ≥ 2, M+(Kn�Pm) = n. Thus, τ(Kn�Pm) = dn2 e < n = M+(Kn�Pm).

7. Conclusions. The tree cover number for some graph classes involving line graphs, shadow graphs,

corona of two graphs, and Cartesian products has been found and verified. It has also been shown that these

classes satisfy the conjecture described in [2] that τ(G) ≤ M+(G). These results along with the results in

[2] provide additional strong evidence in support of this conjecture.
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