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AN EXTENSION OF A RESULT OF LEWIS�

TIN-YAU TAMy

Abstract. A result of Lewis on the extreme properties of the inner product of two vectors in
a Cartan subspace of a semisimple Lie algebra is extended. The framework used is an Eaton triple
which has a reduced triple. Applications are made for determining the minimizers and maximizers
of the distance function considered by Chu and Driessel with spectral constraint.
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1. Main results. The purpose of this note is to establish an extension of a result
of Lewis [7, Theorem 3.2] and make some applications.

Theorem 1.1. (Lewis [7]) Let g be a real semisimple Lie algebra with Cartan
decomposition g = k + p where the analytic group of k is K � G. For x 2 p, let
x0 denote the unique element of the singleton set Ad (K)x \ a+ where a+ is a closed
fundamental Weyl chamber. For x; y 2 p, (x; y) � (x0; y0), where (�; �) denotes the
Killing form, with equality holding if and only if there is k 2 K such that both Ad (k)x
and Ad (k)y are in a+.

Lewis' result generalizes some well-known results including von Neumann's result
[10] and a result of Fan [2] and Theobald [15], which are corresponding to the real
simple Lie algebra sup;q and the reductive Lie algebra gln(R). Here is a framework
for the extension which only requires basic knowledge of linear algebra. Let G be
a closed subgroup of the orthogonal group on a real Euclidean space V . The triple
(V;G; F ) is an Eaton triple if F � V is a nonempty closed convex cone such that

(A1) Gx \ F is nonempty for each x 2 V .
(A2) maxg2G(x; gy) = (x; y) for all x; y 2 F .

The Eaton triple (W;H;F ) is called a reduced triple of the Eaton triple (V;G; F ) if
it is an Eaton triple and W := spanF and H := fgjW : g 2 G; gW = Wg � O(W )
[14]. For x 2 V , let x0 denote the unique element of the singleton set Gx \ F . It is
known that H is a �nite reection group [11]. Let us recall some rudiments of �nite
reection groups [4]. A reection s� on V is an element of O(V ), which sends some
nonzero vector � to its negative and �xes pointwise the hyperplane H� orthogonal to
�, i.e., s�� := �� 2(�; �)=(�; �)�, � 2 V . A �nite group G generated by reections
is called a �nite reection group. A root system of G is a �nite set of nonzero vectors
in V , denoted by �, such that fs� : � 2 �g generates G, and satis�es

(R1) � \ R� = f��g for all � 2 �.
(R2) s�� = � for all � 2 �.
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The elements of � are called roots. We do not require that the roots are of equal
length. A root system � is crystallographic if it satis�es the additional requirement:

(R3) 2 (�;�)(�;�) 2 Z for all �; � 2 �,

and the group G is known as the Weyl group of �.
A (open) chamber C is a connected component of V n[�2�H�. Given a total order

< in V [4, p.7], � 2 V is said to be positive if 0 < �. Certainly, there is a total order
in V : Choose an arbitrary ordered basis f�1; : : : ; �mg of V and say � > � if the �rst
nonzero number of the sequence (�; �1); : : : ; (�; �m) is positive where � = ���. Now
�+ � � is called a positive system if it consists of all those roots which are positive
relative to a given total order. Of course, � = �+ [��, where �� = ��+. Now �+

contains [4, p.8] a unique simple system �, i.e., � is a basis for V1 := span� � V ,
and each � 2 � is a linear combination of � with coe�cients all of the same sign
(all nonnegative or all nonpositive). The vectors in � are called simple roots and the
corresponding reections are called simple reections. The �nite reection group G is
generated by the simple reections. Denote by �+(C) the positive system obtained by
the total order induced by an ordered basis f�1; : : : ; �mg � C of V as described above.
Indeed �+(C) = f� 2 � : (�; �) > 0 for all � 2 Cg. The correspondence C 7! �+(C)
is a bijection of the set of all chambers onto the set of all positive systems. The
group G acts simply transitively on the sets of positive systems, simple systems and
chambers. The closed convex cone F := f� 2 V : (�; �) � 0; for all � 2 �g,
i.e., F = C� is the closure of the chamber C which de�nes �+ and �, is called a
(closed) fundamental domain for the action of G on V associated with �. Since G
acts transitively on the chambers, given x 2 V , the set Gx \ F is a singleton set and
its element is denoted by x0. It is known that (V;G; F ) is an Eaton triple (see [11]).
Let V0 := fx 2 V : gx = x for all g 2 Gg be the set of �xed points in V under the
action of G. Let � = f�1; : : : ; �ng, i.e., dimV1 = n. If f�1; : : : ; �ng denotes the basis
of V1 = V ?0 dual to the basis f�i = 2�i=(�i; �i) : i = 1; : : : ; ng, i.e., (�i; �j) = �ij ,
then F = f

Pn
i=1 ci�i : ci � 0g�V0. Thus the interior IntF = C of F is the nonempty

set f
Pn

i=1 ci�i : ci > 0g � V0. There is a unique element ! 2 G sending �+ to ��

and thus sending F to �F . Moreover, the length [4, p.12] of ! is the longest one [4,
p.15-16]. So we call it the longest element.

We will present two examples requiring some basic knowledge of Lie theory [5].
Let g = k+ p be a Cartan decomposition of a real semisimple Lie algebra g. Denote
the Killing form of g by B(�; �). The Killing form is positive de�nite on p but negative
de�nite on k. Let K be an analytic subgroup of k in the analytic group G of g. Now
Ad (K) is a subgroup of the orthogonal group on p with respect to the restriction of
the Killing form on p since the Killing form is invariant under Ad (K). Among the
Abelian subalgebras of g that are contained in p, choose a maximal one a (maximal
Abelian subalgebra in p). For � 2 a� (the dual space of a), set g� = fx 2 g : [h; x] =
�(h)x for all h 2 ag. If 0 6= � 2 a� and g� 6= 0, then � is called a (restricted) root [5,
p.313] of the pair (g; a). The set of roots will be denoted �. We have the orthogonal
direct sum g = g0+

P
�2� g� known as restricted-root space decomposition [5, p.313].

We view a as a Euclidean space by taking the inner product to be the restriction of
B to a. The map a� ! a that assigns to each � 2 a� the unique element x� of a

satisfying �(x) = B(x; x�) for all x 2 a is a vector space isomorphism. We use this
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isomorphism to identify a� with a, allowing us, in particular, to view � as a subset
of a. The set � = f� 2 � : 12� =2 �g generates a �nite reection group W , i.e., W is
generated by the reections s� (� 2 �), which is called the Weyl group of (g; a), and
is a root system of W . It is called the reduced root system of the pair (g; a). Now �x
a simple system � for the root system �. Then � determines a fundamental domain
a+ for the action of W on a. We now describe another way to view the Weyl group
W . Use juxtaposition to represent the adjoint action of G on g, i.e., gx = Ad (g)x,
g 2 G, x 2 g. Set NK(a) = fk 2 K : ka � ag (the normalizer of a in K) and
ZK(a) = fk 2 K : kx = x for all x 2 ag (the centralizer of a in K). Then the
action of K on g induces an action of the group NK(a)=ZK(a) on a, i.e., [k]x = kx
for [k] 2 NK(a)=ZK(a). There exists an isomorphism  : W ! NK(a)=ZK(a) that
is compatible with the two actions on a, or more precisely, for which wx =  (w)x,
w 2W , x 2 a [5, p.325, p.394]. We use the isomorphism  to identify these two groups
(in the literature, the Weyl group is usually de�ned to be NK(a)=ZK(a)). Note in
particular that, given x 2 a, we have Wx = NK(a)x � Kx. Since Ad (k) is an
automorphism of g, NK(a) = fk 2 K : ka = ag. Thus W = fAd (k)ja : k 2 K; ka =
ag. Obviously a = span a+. A theorem of Cartan asserts that Ad (K)x \ a 6= � [5,
p.320] for any x 2 p. Since W acts simply transitively on the (open) Weyl chambers
in a, Ad (K)x\ a+ 6= � which is (A1) for (p;Ad (K); a+). Indeed jAd (K)x\ a+j = 1.
For veri�cation of (A2), see [7].

Example 1.2. (real semisimple Lie algebras) With the above notation. Now
(p;Ad (K); a+) is an Eaton triple with a reduced triple (a;W; a+). It is also true for
real reductive Lie algebras [3].
Remark: One may verify (A2) by Kostant's theorem. If x; y 2 p, let x0 2 Ad (K)x\a+
and let k0 2 K such that Ad (k0)x = x0, then for any k 2 K, B(x;Ad (k)y) =
B(Ad (k0)x;Ad (k0)Ad (k)y) since the Killing form is Ad (K)-invariant. Thus we
have B(x;Ad (k)y) = B(x0;Ad (k

0k)y) = B(x0; �(y
0)), where � : p ! a is the or-

thogonal projection with respect to the Killing form in p, where y0 = Ad (k0k)y.
By Kostant's convexity theorem [6] �(y0) is in the convex hull of Wy0. Now let
�(y0) =

P
w2W �wwy0 where �w � 0 for all w 2 W , and

P
w2W �w = 1. Thus

B(x0; �(y
0)) = B(x0;

P
w2W �wwy0) =

P
w2W �w(x0; wy0) �

P
w2W �w(x0; y0) =

(x0; y0) by Lemma 3.2 of [6].
Similarly we have the following example.
Example 1.3. (compact connected Lie groups) Let G be a (real) compact con-

nected Lie group and let (�; �) be a bi-invariant inner product on g. Now Ad (G) is a
subgroup of the orthogonal group on g [5, p.196]. Let t+ be a �xed (closed) funda-
mental chamber of the Lie algebra t of a maximal torus T of G. Now (g;Ad (G); t+)
is an Eaton triple with reduced triple (t;W; t+) where the Weyl groupW of G is often
de�ned as N(T )=T where N(T ) is the normalizer of T in G [5, p.201]. We remark
that Theorem 1.1 is also true for compact connected Lie groups.

The following lemma is a slight extension of Proposition 2.1 in [7] which is stated
for Weyl groups. Now we add the lower bound and the proof is similar.

Lemma 1.4. Let H be a �nite reection group acting on a real Euclidean space
W . For any x; y 2 W , (x0; !y0) � (x; y) � (x0; y0), where ! 2 H is the longest
element. The upper (lower) bound is achieved if and only if there exists h 2 H such



ELA

4 T.Y. Tam

that both hx and hy lie in a common closed chamber F (hx 2 F and hy 2 �F ).

The following is an extension of Theorem 1.1 except we add an assumption for
the upper (lower) bound attainment.

Theorem 1.5. Let (V;G; F ) be an Eaton triple with a reduced triple (W;H;F ).
Then for any x; y 2 V , we have (x0;�(�y0)0) � (x; y) � (x0; y0) and !y = �(�y0)0
where ! 2 H is the longest element. Thus, if G is connected, then f(x; gy) : g 2 Gg is
the interval [(x0;�(�y0)0); (x0; y0)]. If, in addition, x0 or y0 2 IntWF which denotes
the relative interior of F in W , then the upper (lower) bound is achieved if and only
if there exists g 2 G such that both gx and gy are in F (gx 2 F and gy 2 �F ).

Proof. Let g 2 G such that gx = x0 according to (A1). So (x; y) = (gx; gy) =
(x0; gy) � maxg2G(x0; gy) = (x0; y0) by (A2). We notice that the inequality is true
without using reduced triple.

For the lower bound, notice that (x; y) = (x0; gy) = (x0; �(gy)) where � : V !W
is the orthogonal projection onto W . According to a result of Niezgoda [11, Theorem
3.2], �(gy) =

P
h2H �hhy0 where

P
h2H �h = 1, �h � 0 for all h 2 H and H is indeed

a �nite reection group. Now (x; y) =
P

h2H �h(x0; hy0) �
P

h2H �h(x0; !y) =
(x0; !y) by Lemma 1.4.

Notice that the longest element ! sends vectors in F to �F . Now �(�y0)0 2 �F
obviously and (�y0) 2 G(�y) implying �(�y0)0 2 Gy. So �(�y0)0 2 (�F ) \ Gy =
(�F ) \ Gy0 and thus !y0 = �(�y0)0 for any y 2 W . So we have (x0;�(�y0)0) �
(x; y) � (x0; y0).

Now we are going to handle the attainment of the upper bound. Suppose x0 or
y0 2 IntWF . For de�niteness, let x0 2 IntWF . Now, as before (x; y) = (x0; gy) =
(x0; �(gy)) where gx = x0, �(gy) =

P
h2H �hhy0, where

P
h2H �h = 1, �h � 0 for all

h 2 H , and � : V !W is the orthogonal projection ontoW . If (x; y) = (x0; y0), thenP
h2H �h(x0; hy0) = (x0; y0) =

P
h2H �h(x0; y0). If �h 6= 0, then (x0; hy0) = (x0; y0),

because otherwise
P

h2H �h(x0; y0) <
P

h2H �h(x0; y0) by (A2), a contradiction. In
consequence, there exists gh 2 H such that both ghx0 and ghhy0 are in F by Lemma
1.4. By [4, Theorem 1.12, p.22], gh = id and ghh = h is a product of simple reections
�xing y0. So either �h = 0 or hy0 = y0 and hence �(gy) = y0. However gy and y0 have
the same norm (induced by the inner product) since g is an element of the orthogonal
group on V ; thus gy = y0. So gx = x0 and gy = y0.

The proof of the attainment of the lower bound is similar. We remark that
it is not known whether the condition x0 or y0 2 IntWF can be removed. For
the semisimple Lie algebra case [7], no such assumption is made (same for compact
connected Lie groups) and is mainly due to the richer structure of the Lie framework.

Applying Theorem 1.5 on the reductive Lie algebras gln(F), F = R, C , and H

respectively, we have the following result.

Corollary 1.6. (Fan [2], Theobald [15]) Let A and B be real symmetric
(Hermitian, quaternionic Hermitian) matrices with eigenvalues �1 � � � � � �n and
�1 � � � � � �n, respectively. The set

ftrUAU�B : U 2 SUn(F )g
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is the interval [a; b] where

a =

nX
i=1

�i�n�i+1;

b =
nX
i=1

�i�i:

Proof. Just take F = fdiag(a1; : : : ; an) : a1 � � � � � ang and H is then the
symmetric group Sn. The longest element sends the elements diag(a1; : : : ; an) in F
to its reversal diag(an; : : : ; a1).

Let In;n = (�In) � In. The group G = SO(n; n) is the group of matrices in
SL(2n;R) which leaves invariant the quadratic form �x21�� � ��x

2
n+x

2
n+1+ � � �+x

2
2n.

In other words, SO(n; n) = fA 2 SL(2n;R) : AT In;nA = In;ng. The group SO(n; n)
has two components (usually SO0(n; n) refers to the identity component) and hence
is not connected. It is also noncompact. It is well known that [5]

son;n = f

�
X1 Y
Y T X2

�
: XT

1 = �X1; X
T
2 = X2; Y 2 Rn�ng;

K = SO(n)� SO(n);

k = so(n)� so(n); i:e:; Y = 0;

p = f

�
0 Y
Y T 0

�
; Y 2 Rn�ng; i:e:; X1 = X2 = 0;

a = �1�j�nR(Ej;n+j +En+j;j);

where Ei;j is the 2n� 2n matrix and 1 at the (i; j) position is the only nonzero entry.
The Killing form is

B(

�
0 X
XT 0

�
;

�
0 Y
Y T 0

�
) = 4(n� 1)trXY T :

Now the adjoint action of K on p is given by

�
U 0
0 V

�T �
0 S
ST 0

��
U 0
0 V

�
=

�
0 UTSV

V TSTU 0

�

where U; V 2 SO(n). We will identify p with Rn�n and thus a will then be iden-
ti�ed with real diagonal matrices. We may choose a+ = fdiag(a1; : : : ; an) : a1 �
� � � � an�1 � janjg. The action of K on p is then orthogonal equivalence, i.e.,
H 7! UHV where U; V 2 SO(n). The action of the Weyl group W on a is given
by diag(d1; : : : ; dn) 7! diag(�d�(1); : : : ;�d�(n)), diag(d1; : : : ; dn) 2 a, � 2 Sn (the
symmetric group) and the number of negative signs is even. The longest element !
sends diag(a1; : : : ; an) 2 a+ to

!a =

�
diag(�a1; : : : ;�an�1; an) if n is odd
diag(�a1; : : : ;�an) if n is even.
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Applying Theorem 1.5 on the simple Lie algebra son;n, we have the following result.
Corollary 1.7. (Miranda-Thompson [9], Tam [13]) Let A and B be n�n real

matrices with singular values �1 � � � � � �n � 0, �1 � � � � � �n � 0 respectively, the
set

ftrUAV B : U; V 2 SO(n)g

is the interval [a; b], where

a =

�
�
Pn�1

i=1 si + sign det(AB)sn if n is odd

�
Pn�1

i=1 si � sign det(AB)sn if n is even,

b =

n�1X
i=1

si + sign det(AB)sn;

where si = �i�i, i = 1; : : : ; n.
Proof. Recall that a+ = fdiag(a1; : : : ; an) : a1 � � � � � an�1 � janj � 0g. Any

real n�n matrix A is special orthogonally similar to diag(a1; : : : ; an�1; [sign detA]an)
in a+ where a1 � � � � � an � 0 are the singular values of A.

2. Applications to least squares approximations with orbital con-

straint. In [1] Chu and Driessel considered the following two least squares prob-
lems with spectral constraints. Let S(n) be the space of n � n real symmetric
matrices. Given H 2 S(n), the isospectral surface O(H) is de�ned to be the set
O(H) = fQHQT : Q 2 O(n)g. It is simply the manifold of all real symmetric
matrices which are co-spectral with H , by the well-known spectral theorem.
Problem 1. Given X 2 S(n). Find the minimizer L 2 O(H) for

min
L2O(H)

kL�Xk2;

where the norm is the Frobenius matrix norm, i.e., kY k2 = trY Y �.
Given H 2 Rp�q , set O

0(H) = fUHV : U 2 O(p); V 2 O(q)g. So O0(H) is simply
the manifold of all real matrices which have the same singular values of H , by the
singular value decomposition.
Problem 2. Given X 2 Rp�q . Find the minimizer L 2 O0(H) of

min
L2O0(H)

kL�Xk2;

where the norm is also the Frobenius matrix norm.
The minimizer L 2 O(H) provides the shortest distance between the given X 2

S(n) and the isospectral surface O(H). Notice that

kL�Xk2 = (L�X;L�X) = (L;L) + (X;X)� 2(X;L);

where (X;L) := trXL, X;L 2 S(n). Since (L;L) = (H;H) for all L 2 O(H) and
(X;X) are constants, �nding the minimizer of Problem 1 is equivalent to �nding the
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maximizer L 2 O(H) for (X;L). We can assume that trH = trX = 0. It is because
that

(X;L) = (X 0 +
1

n
(trX)In; L

0 +
1

n
(trL)In) = (X 0; L0) +

1

n
trXtrH;

where X 0 = X � 1
n
(trX)In and L0 = L� 1

n
(trL)In. So the simple Lie algebra sln(R)

with Cartan decomposition sln(R) = so(n)+p comes into the scene. Though we have
SO(n) instead of O(n), the orbits of H are the same.

Theorem 2.1. Let g be a real semisimple Lie algebra with Cartan decomposition
g = k+ p where the analytic group of k is K � G. For x 2 p, let x0 denote the unique
element of the singleton set Ad (K)x \ a+ where a+ is a closed fundamental Weyl
chamber. Given x; y 2 p, if z 2 Ad (K)y, then kx0 � y0k � kx� zk � kx0 + (�y0)0k
and !y0 = �(�y0)0, where k � k is the norm induced by the Killing form B(�; �) and
! is the longest element of the Weyl group of (g; a). The lower (upper) bound is
achieved if and only if there is k 2 K such that both Ad (k)x and Ad (k)z are in a+
(Ad (k)x 2 a+ but Ad (k)z 2 �a+).

Proof. Just notice that

kx�zk2 = B(x�z; x�z) = B(x; x)+B(z; z)�2B(x; z) = B(x; x)+B(y; y)�2B(x; z);

where B(x; x) and B(y; y) are constants. Now notice that y0 = z0 and then apply
Theorem 1.1.

Applying Theorem 2.1 on sln(R) we have the following solution to Problem 1
(Chu and Driessel made the assumption that the eigenvalues of x and y are distinct,
but it is not necessary. That x has distinct eigenvalues means that x0 is in Int aa+
(the relative interior of a+ in a) and x is called a regular element in Lie theoretic
language. See [1, Theorem 4.1]).

Corollary 2.2. Let X;H be n � n real symmetric matrices with eigenvalues
x1 � � � � � xn and h1 � � � � � hn respectively. Then for any Q 2 SO(n)

nX
i=1

(xi � hi)
2 � kX �QHQTk2 �

nX
i=1

(xi � hn�i+1)
2;

where kXk2 = trXXT . The lower (upper) bound is achieved if and only if there is
a Q 2 SO(n) such that QXQT = diag(x1; : : : ; xn) and QHQT = diag(h1; : : : ; hn)
(QHQT = diag(hn; : : : ; h1)).

One can deduce the solution for Problem 2 (Chu and Driessel [1] also made
the assumption that the singular values of x and y are distinct, but again it is not
necessary. See [1, Theorem 5.1]) by applying Theorem 2.1 on sop;q. However, special
care needs to be taken when p = q. Let us proceed for the case p = q = n.

We have the following re�nement of the result of Chu and Driessel by applying
Theorem 2.1 on son;n.

Corollary 2.3. Let X;H be n�n real matrices with singular values x1 � � � � �
xn � 0 and h1 � � � � � hn � 0 respectively. Then for any U; V 2 SO(n)

n�1X
i=1

(xi � hi)
2 + ([sign detX ]xn � [sign detH ]hn)

2
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� kX � UHV k2

�

�Pn�1
i=1 (xi + hi)

2 + ([sign detX ]xn � [sign detH ]hn)
2 if n is oddPn�1

i=1 (xi + hi)
2 + ([sign detX ]xn + [sign detH ]hn)

2 if n is even,

where kXk2 = trXXT . The lower (upper) bound is achieved if and only if there are
U; V 2 SO(n) such that

UXV = diag(x1; : : : ; xn�1; [sign detX ]xn)

and

UHV = diag(h1; : : : ; hn�1; [sign detH ]hn)

�
UHV =

�
diag(�h1; : : : ;�hn�1; [sign detH ]hn) if n is odd
diag(�h1; : : : ;�hn�1;�[sign detH ]hn) if n is even.

�

Corollary 2.4. Let X;H be n�n real matrices with singular values x1 � � � � �
xn � 0 and h1 � � � � � hn � 0 respectively. Then for any U; V 2 O(n)

nX
i=1

(xi � hi)
2 � kX � UHV k2 �

nX
i=1

(xi + hi)
2;

where kXk2 = trXXT . The lower (upper) bound is achieved if and only if there
are U; V 2 O(n) such that UXV = diag(x1; : : : ; xn) and UHV = diag(h1; : : : ; hn)
(UHV = � diag(h1; : : : ; hn)).

Proof. Notice that we can assume that H and X are of nonnegative determinants
since L 2 O0(H) and k�k is invariant under orthogonally similarity. Let K = SO(n)�
SO(n) be the group in the discussion of son;n. Now O0(H) = Ad (K)H[Ad (K)(DH)
where D = diag(�1; 1; : : : ; 1). Notice that Ad (K) and Ad (K)(DH) are disjoint if
and only if detH 6= 0. So the problem is reduced to the optimization of kX�Lkwhere
L 2 Ad (K)H [ Ad (K)(DH) with detX � 0 and detH � 0. Applying Theorem 2.1
yields

min
L2Ad (K)H

kX � Lk2 =
nX
i=1

(xi � hi)
2;

min
L2Ad (K)(DH)

kX � Lk2 =
n�1X
i=1

(xi � hi)
2 + (xn + hn)

2

and

max
L2Ad (K)H

kX � Lk2 =

�Pn�1
i=1 (xi + hi)

2 + (xn � hn)
2 if n is oddPn

i=1(xi + hi)
2 if n is even,

and

max
L2Ad (K)(DH)

kX � Lk2 =

�Pn
i=1(xi + hi)

2 if n is oddPn
i=1(xi + hi)

2 + (xn � hn)
2 if n is even.
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The minimizers L are in Ad (K)H since

min
L2O0(H)

kX�Lk2 = minf min
L2Ad (K)H

kX�Lk2; min
L2Ad (K)(DH)

kX�Lk2g =

nX
i=1

(xi�hi)
2:

The maximizers are either in Ad (K)H or Ad (K)(DH), depending n is even or odd.
Nevertheless,

max
L2O0(H)

kX�Lk2 = maxf max
L2Ad (K)H

kX�Lk2; max
L2Ad (K)(DH)

kX�Lk2g =

nX
i=1

(xi+hi)
2:

We remark that when p 6= q, say p < q, then the action of the Weyl group on a

is given by diag(d1; : : : ; dp) 7! diag(�d�(1); : : : ;�d�(p)), diag(d1; : : : ; dp) 2 a, � 2 Sp
(the symmetric group) and there is no restriction on the signs, under the appropriate
identi�cations. Now a+ = fdiag(a1; : : : ; an) : a1 � � � � � an � 0g. The orbit Ad (K)H
is equal to O0(H). Thus we can apply Theorem 2.1 directly to arrive at the results of
Chu and Driessel when p 6= q, i.e., Corollary 2.4 is true for real p� q matrices. When
one considers sup;q, the complex case will then be obtained and the treatment of the
p = q case is the same as p 6= q case. Needless to say, application of Theorem 2.1
on various real simple Lie algebras yields di�erent results, e.g., real (complex) skew
symmetric matrices, complex symmetric matrices, etc.

The setting for Eaton triple with reduced triple is similar and the proof of the
following is omitted.

Theorem 2.5. Let (V;G; F ) be an Eaton triple with a reduced triple (W;H;F ).
Given x; y 2 V , if z 2 Gy, then kx0 � y0k � kx� yk � kx0 + (�y0)0k where k � k is
induced by the inner product. If, in addition, x0 or y0 2 IntWF which denotes the
relative interior of F in W , then the lower (upper) bound is achieved if and only if
there exists g 2 G such that both gx and gy are in F (gx 2 F and gy 2 �F ).

We remark that the inequality kx0 � y0k � kx � yk is known and is true for an
Eaton triple without reduced triple [12, p.85].

3. Remarks. In [8], Lewis introduced the notion of normal decomposition sys-
tem (V;G; ) for the study of optimization and programming problems, where V is a
real inner product space and G is a closed subgroup of O(V ) and the map  : V ! V
has the following properties:

1.  is idempotent, i.e., 2 = .
2.  is G-invariant, i.e., (gx) = (x) for all x 2 V .
3. for any x 2 V , there is g 2 G such that x = g(x).
4. if x; y 2 V , then (x; y) � (x; y) with equality if and only if x = g(x) and
y = g(y) for some g 2 G.

By Theorem 2.4 (the proof does not use equality attainment property) of [8], the range
of  is a closed convex cone and we denote it by F . Thus a normal decomposition
system (V;G; ) gives an Eaton triple (V;G; F ). Conversely if (V;G; F ) is an Eaton
triple, then there exists a unique operator  : V ! F satisfying the above four
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conditions [11, p.14] except the equality case. The equality case holds if we assume
that x0 or y0 are in IntWF by Theorem 1.5.

The reduced triple is almost identical to the normal decomposition (sub)system
[8, Assumption 4.1] while the di�erence is only the equality case. It is interesting to
notice that the Eaton triple arose from probability while normal decomposition arises
from the consideration of optimization and programming.

The condition for attainment in the upper bound in Theorem 1.5 is proved by
using the �nite reection group structure which is an algebraic approach via a result
of Niezgoda [11]. In contrast, the corresponding result [7, Theorem 3.2] of Lewis for
Cartan subspace p has an analytic proof (without the restriction that x0 or y0 2
Int aa+ for the equality attainment).

Acknowledgement. The author gives thanks to an anonymous referee for pointing
out that the assumption that x or y 2 IntWF needs to be made in Theorem 1.5 and
for bringing [12] to the author's attention. He also thanks Professor A.S. Lewis for
pointing out the relationship between Eaton triple and normal decomposition system.
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