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BETWEEN A AND A∗, AT OR A 1
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Abstract. A unifying approach is presented between similarity, consimilarity, T congruence and

*congruence of a matrix A to a symmetric, to a Hermitian or to a real matrix. Also studied are

similarity consimilarity, T congruence and *congruence of a matrix A to A∗, AT , and A. Attempts

are made to find special (con)similarities and congruences, as well as to find connections between

these classes of maps. For example, it is shown that if AA is nonderogatory and nonsingular, then the

consimilarities between A and AT are precisely the Hermitian similarities between AA and (AA)∗.

Also, if A is nonsingular, then the coninvolutory T congruences between A and A∗ are in 1-to-1

correspondence with Hermitian similarities between A(A−1)T and (A(A−1)T )∗.
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1. Introduction. All matrices are assumed to be complex, unless otherwise
restricted. For a given A, pA denotes its characteristic polynomial and mpA denotes
its minimal polynomial. Matrix A is nonderogatory if pA = mpA.

Matrices A,B ∈ Mn(C) are said to be consimilar if there exists a nonsingular
S ∈ Mn(C) with SAS−1 = B. In this case S (and S−1) is said to be a consimilarity
transformation between A and B.

Matrices A,B ∈ Mn(C) are T congruent (respectively, *congruent) if there exists
a nonsingular S ∈ Mn(C) such that SAST = B (respectively, SAS∗ = B).

For a matrix A, we investigate the relation of being similar (respectively, consim-
ilar, T congruent or *congruent) to a symmetric matrix, to a Hermitian matrix or to
a real matrix. We find a kind of unifying approach to this problem, to be called “the
standard Proposition”. Most of the results in these standard propositions are indeed
standard, but some lead to new results, such as:

Proposition 1.1. Every A ∈ Mn(C) is similar to a symmetric matrix via a
symmetric matrix.

We try to find the “natural” similarities (consimilarities, T congruences, *congru-
ences) between A and AT , between A and A∗, and between A and A. In all cases we
connect these particular problems to the result in the standard Proposition.

In particular, we are interested in Hermitian similarities between A and A∗. We
show:
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Theorem 1.2. Let A ∈ Mn(C) be nonderogatory and assume that A and A∗ are
similar via a Hermitian matrix V . Suppose that a given S ∈ Mn(C) satisfies
SA = A∗S. Then S is Hermitian if and only if there exists a real polynomial p of
degree less than n such that S = V p(A).

Our second goal is to obtain results corresponding to the following theorem of O.
Taussky and H. Zassenhaus.

Theorem 1.3. [12] Let F be a field and A ∈ Mn(F) then:
1. There exists a symmetric X ∈ GLn(F) such that XAX−1 = AT ,
2. Every X ∈ Mn(F) such that XA = AT X is symmetric if and only A is nonderoga-
tory.
3. Every X ∈ GLn(F) such that XAX−1 = AT is symmetric if and only A is non-
derogatory.

For consimilarities we obtain:
Theorem 1.4. Let A ∈ Mn(C).
1. A is consimilar to a Hermitian matrix via a symmetric matrix.
2. There exists a symmetric consimilarity V ∈ GLn(C) between A and A∗.
3. If AA is nonderogatory then all V ∈ Mn(C) such that V A = A∗V are sym-

metric.
4. If A is nonsingular and all V ∈ Mn(C) such that V A = A∗V are symmetric,

then AA is nonderogatory.
Theorem 1.5. Let A ∈ Mn(C).
1. There exists a Hermitian V ∈ GLn(C) such that V AV −1 = AT .
2. If A is nonsingular and AA is nonderogatory, then all V ∈ Mn(C) such that

V A = AT V are Hermitian.
Theorem 1.6. Let A ∈ Mn(C).
1. A is consimilar to a real matrix via a coninvolution.
2. A is consimilar to A via a coninvolution.
For T congruences we obtain:
Theorem 1.7. Let A ∈ Mn(C).
1. ([3],[4] or[14]) A is T congruent to AT via an involution.
2. If A is nonsingular and its cosquare A(A−1)T is nonderogatory then all S ∈

GLn(C) such that SAST = AT are involutions.
Theorem 1.8. Let A ∈ Mn(C). The following assertions are equivalent.
1. A is T congruent to a real matrix,
2. A is T congruent to a real matrix via a coninvolution,
3. A and A are T congruent,
4. A and A are T congruent via a coninvolution,
5. A and A∗ are T congruent,
6. A and A∗ are T congruent via a coninvolution,
7. A is T congruent to a Hermitian matrix,
8. A is T congruent to a Hermitian matrix via a coninvolution.
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For *congruences we obtain:
Theorem 1.9. Let A ∈ Mn(C).
1. A is *congruent to a symmetric matrix via a coninvolution.
2. ([8]) A is *congruent to AT via a coninvolution.
3. If A is nonsingular and its *cosquare A(A−1)∗ is nonderogatory then all S ∈

GLn(C) such that SAS∗ = AT are coninvolutions.
Theorem 1.10. Let A ∈ Mn(C). The following assertions are equivalent.
1. A is *congruent to a real matrix,
2. A is *congruent to a real matrix via a coninvolution,
3. A and A are *congruent,
4. A and A are *congruent via a coninvolution,
5. A and A∗ are *congruent,
6. A and A∗ are *congruent via an involution.
We do not know whether the results in Theorem 1.5(2), in Theorem 1.7(2) and in

Theorem 1.9(3) can be strengthened to “if and only if” (perhaps only in the singular
case) as in Theorem 1.3 and Theorem 1.4(3).

2. On similarities between A and AT , A∗ or A.

2.1. Similarities between A and A or AT . We need the following fact.
Proposition 2.1. ([6], Theorem 3.2.4.2) Let A ∈ Mn(C) and suppose that A

is nonderogatory. Then BA = AB if and only if there exists a polynomial p with
B = p(A). The polynomial may be taken to be of degree less than n, in which case p

is unique.
We start with the first “standard Proposition”.
Proposition 2.2. Let F be a field and let A ∈ Mn(F). Assume that each

nonsingular symmetric S ∈ Mn(F) can be written as S = U2, where U ∈ Mn(F) is
symmetric. Then the following assertions are equivalent.

1. A is similar to a symmetric matrix.
2. A is similar to a symmetric matrix via a symmetric matrix.
3. A is similar to AT via a symmetric matrix.
Proof. (1) → (3) There exists V ∈ Mn(F) such that V AV −1 is symmetric, i.e.,

V AV −1 = (V AV −1)T = (V T )−1AT V T . We obtain:

(V T V )A(V T V )−1 = AT

V T V is the required symmetric matrix.
(3) → (2) Let S be symmetric such that SAS−1 = AT . There exists a symmetric U

such that U2 = S. Then: SAS−1 = AT ⇒ U2A(U2)−1 = AT ⇒ UAU−1 = U−1AT U .
This identity shows UAU−1 is symmetric and that A is similar to it via the symmetric
matrix U .
(2) → (1) Trivial.
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Remark 2.3. The proofs of all “standard Proposition” are identical. The main
problem is always the implication (3) → (2), in which a statement of type “each
S ∈ Mn(C) of type P is the square of some U ∈ Mn(C) of type P” is required.

Note that the standard Proposition is only an equivalence of assertions. But since
it is known that every A ∈ Mn(C) is similar to a symmetric matrix (see [6], Theorem
4.4.9) and since the field C satisfies the hypothesis in Proposition 2.2 (indeed, if
S ∈ Mn(C) is nonsingular and symmetric, then there exists U ∈ Mn(C), polynomial
in S, with U2 = S (see [7], Theorem 6.4.12.a). U is symmetric, being polynomial in
S) we conclude that we have proved Proposition 1.1.

Finally we note that Theorem 1.3 implies that the assertion “A is similar to AT ”
could be added to the standard Proposition.

2.2. Similarities between A and A or A∗. Note that A and A (or A∗) need
not be similar at all. E ∈ Mn(C) is involutory (or “an involution”) if E−1 = E and
J ∈ Mn(C) is coninvolutory (or “a coninvolution”) if J−1 = J .

Lemma 2.4.

1. For each nonsingular A ∈ Mn(C), A−1A is coninvolutory.
2. (See [7], Theorem 6.4.22) If E ∈ Mn(C) is coninvolutory, then there exists a

coninvolution X ∈ Mn(C) such that X2 = E.
The standard Proposition becomes:
Proposition 2.5. Let A ∈ Mn(C).
1. The following assertions are equivalent.

(a) A is similar to a real matrix.
(b) A is similar to a real matrix via a coninvolutory matrix.
(c) A is similar to A via a coninvolutory matrix.

2. The following assertions are equivalent.
(a) A is similar to a Hermitian matrix.
(b) A is similar to a Hermitian matrix via a Hermitian, positive definite

matrix.
(c) A is similar to A∗ via a Hermitian, positive definite matrix.

Proof.
1. (a) → (c) There exists S ∈ Mn(C) such that SAS−1 = R ∈ Mn(R). So:

SAS−1 = R = R = S AS−1 and we obtain (S−1S)A(S−1S)−1 = A.
E = S−1S is the required coninvolutory matrix.
(c) → (b) Let U ∈ Mn(C) be coninvolutory and such that UAU−1 = A. Let
E ∈ Mn(C) be coninvolutory such that E2 = U . The identity E2A(E2)−1 =
A implies EAE−1 = E−1AE, and so EAE = E AE, i.e., EAE−1 is real and
A is similar to it via the coninvolutory matrix E.
(b) → (a) Trivial.

2. (a) → (c) There exists V ∈ Mn(C) such that V AV −1 is Hermitian, i.e.,
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V AV −1 = (V AV −1)∗ = (V ∗)−1A∗V ∗. We obtain:

(V ∗V )A(V ∗V )−1 = A∗.

V ∗V is the required Hermitian and positive definite matrix.
(c) → (b) Let H ∈ Mn(C) be Hermitian and positive definite such that
HAH−1 = A∗. There exists a Hermitian and positive definite U ∈ Mn(C)
such that U2 = H . Then: HAH−1 = A∗ ⇒ U2A(U2)−1 = A∗ ⇒ UAU−1 =
U−1A∗U . This identity shows that UAU−1 is Hermitian and that A is similar
to it via the Hermitian and positive definite matrix U .
(b) → (a) Trivial.

The structures of the two proofs of Proposition 2.5 are completely identical to
the proof of Proposition 2.2.

It is known from the literature that A and A are similar if and only if A is similar
to a real matrix, (see [6], Theorem 4.1.7.) and so the statement “A is similar to A”
can be added to Proposition 2.5(1). But the statement “A is similar to A∗” cannot be
added to Proposition 2.5(2). Indeed, A and A∗ can be similar (via a Hermitian matrix)
without A being similar to a Hermitian matrix. For example, let A ∈ Mn(R) be any
real non-diagonalizable matrix. By Theorem 1.3 there exists a real symmetric (hence
Hermitian) S such that SAS−1 = AT = A∗. But A is not similar to a Hermitian
matrix (as Hermitian matrices are similar to a real diagonal matrix).

For completeness, we mention the following Lemma and Proposition.
Lemma 2.6. Let A,B ∈ Mn(C) be similar. If A is similar to A (via a coninvo-

lution), then B is similar to B (via a coninvolution).
Proof. If SAS−1 = B and JAJ−1 = A, then B = (SJS−1)B(SJS−1)−1. More-

over, if J is coninvolutory so is SJS−1.
Our proof of the following proposition contains new arguments for the equivalence

of conditions (4) and (5).
Proposition 2.7. ([6], page 172) Let A ∈ Mn(C). The following assertions are

equivalent.
1. A is similar to A.
2. A is similar to A via a coninvolutory matrix.
3. A is similar to a real matrix.
4. A is similar to A∗.
5. A is similar to A∗ via a Hermitian matrix.
Proof. (1)→(2) Let J ∈ Mn(C) be the Jordan normal form of A. A similar to

A implies J similar to J , i.e., if Jk(λ) is a Jordan block of A, so is Jk(λ) (λ /∈ R).
So J consists of blocks of type Jk(λ) (λ ∈ R), similar to Jk(λ) via the real involution
Ik, and of blocks Jk(λ) ⊕ Jk(λ) (λ /∈ R), similar to its conjugate via the reversal

matrix, the real involution (here considered consisting of blocks
[

0 Ik

Ik 0

]
). So J is

similar to J by a real involution and Lemma 2.6 implies that A is similar to A via a
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coninvolution.
(2)→(1) Trivial.
(2)↔(3) This is Proposition 2.5.
(1)↔(4) This follows from the fact that B and BT are similar, where B = A.
(2)→(5) Let E ∈ Mn(C) be coninvolutory and such that EAE−1 = A. If X ∈
Mn(C) is coninvolutory and X2 = E, then XAX−1 = X−1AX . This identity
implies that X−1AX ∈ Mn(R). By Theorem 1.3 there exits a real symmetric
S ∈ Mn(R) such that S(X−1AX)S−1 = (X−1AX)T = XTA∗(XT )−1. It fol-
lows that ((XT )−1SX)A((XT )−1SX)−1 = A∗ and as X is coninvolutory we obtain
(X∗SX)A(X∗SX)−1 = A∗. Since S is Hermitian, so is X∗SX .
(5)→(4) Trivial.

There exists no A ∈ Mn(C) for which the assertion “if S is a similarity between
A and A, then S is coninvolutory” is correct. Indeed, if S is a similarity between A

and A, so is αS (α ∈ C). But αS need not be coninvolutory.
In the same way one notes that not all similarities between A and A∗ are Hermi-

tian. (If S is a similarity between A and A∗, so is αS. But if S is Hermitian, αS is
not, if α /∈ R. Such an S is called “essentially Hermitian” and one might ask whether
this is the only possibility.)

For A ∈ Mn(C) we define the complex vector space

C(A) = {X ∈ Mn(C) : XA = AX}.

For A ∈ Mn(C) which is similar to A∗ we define the complex vector spaces:

C(A,A∗) = {S ∈ Mn(C) : SA = A∗S}

and the real vector space:

H(A,A∗) = {H ∈ Mn(C) : H is Hermitian and HA = A∗H} ⊂ C(A,A∗).

C(A,A∗) has the property: “S ∈ C(A,A∗) implies S∗ ∈ C(A,A∗)”. Therefore we can
define a map T : C(A,A∗) → H(A,A∗) by T (S) = 1

2S + 1
2S

∗. As a map between real
vector spaces, T is linear and Kern(T ) = {X ∈ C(A,A∗) : X is skew Hermitian} =
iH(A,A∗). We have shown the identity C(A,A∗) = H(A,A∗) ⊕ iH(A,A∗) (as real
vector spaces), and therefore, the complex dimension of C(A,A∗) is equal to the real
dimension of H(A,A∗). This also shows that there exist S ∈ C(A,A∗) which are not
essentially Hermitian. For example, if H1, H2 ∈ H(A,A∗) are not multiples of each
other, then S = H1 + iH2 ∈ C(A,A∗) is not essentially Hermitian.

Proposition 2.8. Let A ∈ Mn(C) such that A and A∗ are similar. The follow-
ing assertions are equivalent.

1. A is nonderogatory,
2. dimC(A,A∗) = n,
3. dimH(A,A∗) = n.
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Proof. Theorem 4.4.17 of [7] implies that A is nonderogatory if and only if
dimC(A) = n. If A and A∗ are similar, then dimC(A) = dimC(A,A∗). Indeed,
if SAS−1 = A∗, then an isomorphism R : C(A) → C(A,A∗) can be defined by
R(X) = SX .

If A ∈ Mn(C) is nonderogatory, then Theorem 1.2 represents a characterization
of H(A,A∗) ⊂ C(A,A∗).
Proof of Theorem 1.2

Fix a Hermitian V ∈ Mn(C) such that V AV −1 = A∗. As in the proof of Propo-
sition 2.8, we define an isomorphism R : C(A,A∗) → C(A) by R(S) = V −1S. Let
S ∈ C(A,A∗). Since V −1S ∈ C(A) and since A is assumed to be nonderogatory, we
conclude from Proposition 2.1 that there exists a unique polynomial p1 of degree less
than n such that V −1S = p1(A).

Note that S∗ ∈ C(A,A∗) and the same argument shows that there is a unique
polynomial p2 of degree less than n such that V −1S∗ = p2(A).

Next we note that

V −1S = p1(A) ⇒ S = V p1(A) = V p1(A)V −1V = p1(V AV −1)V = p1(A∗)V.

Using the identity [p(A)]∗ = p(A∗) and V ∗ = V we obtain:

S∗ = [p1(A∗)V ]∗ = V ∗[p1(A∗)]∗ = V p1(A),

i.e., V −1S∗ = p1(A) and the uniqueness imply that p2 = p1.
We conclude: S is Hermitian⇔ S−S∗ = 0 ⇔ V (p1−p1)(A) = 0 ⇔ (p1−p1)(A) =

0 and since the degree of p1 − p1 is less than the degree of the minimal polynomial of
A we see that this is equivalent to p1 − p1 = 0, i.e., p1 is a real polynomial.

We conclude with the observation that the similarities between A and A∗ are
precisely the nonsingular linear combinations of (the Hermitian matrices) V, V A, . . .

. . . , V An−1. The Hermitian similarities between A and A∗ are precisely the nonsin-
gular real linear combinations.

3. On consimilarities between A and AT , A∗, or A.

3.1. Consimilarities, general part. Consimilarity between matrices is a well
understood phenomenon.

Theorem 3.1. ([1] or [5])
1. A,B ∈ Mn(C) are consimilar if and only if AA is similar to BB, rank(A) =

rank(B), rank(AA) = rank(BB), rank(AAA) = rank(BBB) etc. until alter-
nating products with n terms.

2. Every A ∈ Mn(C) is consimilar to some Hermitian matrix and to some real
matrix.

It follows that every A ∈ Mn(C) is consimilar to A,A∗, and AT (see also [5]).
For A,B ∈ Mn(C) we define the real vector space:

Ccon(A,B) = {X ∈ Mn(C) : AX = XB}.
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and for A,B ∈ Mn(C) we define the complex vector space

C(AA,BB) = {X ∈ Mn(C) : AAX = XBB}.

We recall the following results.
Lemma 3.2. Let A,B ∈ Mn(C).
1. S ∈ Ccon(A,B) ⇒ S ∈ CAA(BB).

If B ∈ Mn(C) is nonsingular, then
2. If S, iS ∈ Ccon(A,B) then S = 0.
3. S ∈ Ccon(A,B) ⇒ ASB−1 ∈ Ccon(A,B).
4. S ∈ C(AA,BB) ⇒ ASB−1 ∈ C(AA,BB).
5. ([1]) S ∈ C(AA,BB) ⇒ eiθASB−1 + e−iθS ∈ Ccon(A,B), for all θ ∈ R.
Proof. (1) If AS = SB then AAS = A(AS) = ASB = (AS)B = SBB.

(2) If S, iS ∈ Ccon(A,B) then AS = SB and −AS = SB, so 2SB = 0 and S = 0
follows, as B is nonsingular.
(3) If AS = SB then AASB−1 = AASB−1 = SBBB = SB.
(4) If AAS = SBB then AAASB−1 = ASB−1BB.

⇔ AASB−1 = SB ⇔ AAS = SBB.
(5) Since S,ASB−1 ∈ C(AA,BB), it follows that

T = eiθASB−1 + e−iθS ∈ C(AA,BB),

as C(AA,BB) is a complex vector space. But

AT = A(eiθASB−1 + e−iθS) = e−iθAASB−1 + eiθAS

= e−iθSBBB−1 + eiθAS = e−iθSB + eiθASB−1B = (e−iθS + eiθASB−1)B = TB

and the conclusion follows.
Proposition 3.3. Let A,B ∈ Mn(C).
1. ([5]) If A and B are consimilar, then AA is similar to BB.
2. ([1],[5]) If B is nonsingular and AA is similar to BB, then A and B are

consimilar.
Proof. (1) If S−1AS = B, then S−1AAS = BB.

(2) (From [1]) Assume S is nonsingular and S−1AAS = BB. Note that both A and
B are nonsingular. From Lemma 3.2 we conclude that

A(eiθASB−1 + e−iθS) = (eiθASB−1 + e−iθS)B

and so, if θ can be chosen such that eiθASB−1 + e−iθS is nonsingular, the conclusion
follows. But eiθASB−1 + e−iθS is nonsingular if and only if

(eiθASB−1 + e−iθS)e−iθS−1 = ASB−1S−1 + e−2iθI
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is nonsingular, and this is the case for all but finitely many θ.

The singular matrices A =
[

0 1
0 0

]
and B =

[
0 0
0 0

]
are not consimilar, but

AA and BB are similar!

The proof of Lemma 3.2, shows that the real vector space Ccon(A,B) is a subset
of the complex vector space C(AA,BB). They have something in common.

Proposition 3.4. Let A,B ∈ Mn(C) be consimilar and nonsingular. Then the
(real) dimension of Ccon(A,B) is equal to the (complex) dimension of C(AA,BB).

Proof. We consider the complex vector space C(AA,BB) as a real vector space
and we consider the map T : C(AA,BB) → Ccon(A,B) defined by T (S) = 1

2ASB−1+
1
2S. (See Lemma 3.2 (5) and put θ = 0 and add 1

2 .) As a map between real vector
spaces, the map T is a linear map. Note that S ∈ Ccon(A,B) implies T (S) = S and
so T is a surjection. We also note S ∈Kern(T ) if and only if ASB−1+S = 0 ⇔ AS =
−SB. We conclude that S � iS is an isomorphism from Kern(T ) to Ccon(A,B),
so dim(Kern(T )) = dim(Ccon(A,B)). The real dimension of C(AA,BB) is equal to
dim(Range(T )) + dim(Kern(T )) = 2 dim(Ccon(A,B)) and for the complex dimension
we obtain dim(C(AA,BB)) = dim(Ccon(A,B)).

Corollary 3.5. Let A,B ∈ Mn(C) be consimilar and nonsingular. Then:
(a) We have

Ccon(A,B)⊕ iCcon(A,B) = C(AA,BB)

in the sense that for each S ∈ C(AA,BB) there exist unique S1, T1 ∈ Ccon(A,B) such
that S = S1 + iT1.
(b) A subset of T ⊂ Ccon(A,B) is real independent in Ccon(A,B) (respectively, the
(real) span is Ccon(A,B)) if and only if T is complex independent in C(AA,BB)
(respectively, the complex span is C(AA,BB)).

Proof. (a) This is the essence of the proof of Proposition 3.4.
(b) This is a direct corollary of (a).

Corollary 3.6.

(a) Let A ∈ Mn(C) be nonsingular. The following assertions are equivalent.
1. AA is nonderogatory.
2. dim(C(AA)) = n.
3. dim(Ccon(A,A)) = n.

If AA is not nonderogatory, then dim(Ccon(A,A)) > n.
(b) If A,B ∈ Mn(C) are nonsingular and consimilar, say V −1AV = B, then:

4. Ccon(A,B) = {SV : S ∈ Ccon(A,A)},
5. If AA is not nonderogatory, then dim(Ccon(A,B)) > n,

and the following assertions are equivalent.
6. AA is nonderogatory.
7. BB is nonderogatory.
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8. dim(C(AA,BB)) = n.
9. dim(Ccon(A,B)) = n.
Proof. (a) Note that C(AA) = C(AA,AA). The equivalence of (1) and (2) is

known (see [7], Theorem 4.4.17(d)). The equivalence of (2) and (3) was proved in
Proposition 3.4.

Finally, [7], Theorem 4.4.17(d)) implies that if AA is not nonderogatory, then
dim(C(AA,AA)) > n, and so dim(Ccon(A,A)) > n.
(b) This follows from part (a) and the observation that C(AA,BB) and C(AA,AA)
are isomorphic (see the proof of Theorem 1.2).

Example Consider A =
[

1 0
0 0

]
. Then AA = A2 = A is nonderogatory and

singular. Then: Ccon(A,A) = {
{[

r1 0
0 r2 + ir3

]
: r1, r2, r3 ∈ R

}
and

C(AA,AA) =
{[

s1 0
0 s2

]
: s1, s2 ∈ C

}
, i.e., dim(Ccon(A,A)) = 3 and

dim(C(AA,AA)) = 2. So, the nonsingularity of A in Proposition 3.4, Corollary 3.5
and Corollary 3.6 is essential.

If AA is nonderogatory, then Proposition 2.1 presents the following description
of C(AA,AA):

C(AA,AA) = {S : S is complex polynomial in AA}.

We obtain the following description of Ccon(A,A).
Theorem 3.7. Let A ∈ Mn(C) be nonsingular and suppose that AA is non-

derogatory. If S ∈ Mn(C) then S ∈ Ccon(A,A) if and only if there exists a real
polynomial p such that S = p(AA).

Proof. Note that S = AA ∈ Ccon(AA,AA), and so is (AA)k (for all k) and
therefore p(AA) ∈ Ccon(AA,AA), for all real polynomial p.

If AS = SA then S ∈ C(AA,AA) and since AA is nonderogatory, we know that
S = p(AA) for some polynomial p of degree strictly less than that of the minimal
polynomial of AA.

Write p(t) = α0 + α1t + · · ·+ αkt
k, where k < degree mpAA. On the one hand:

SA = (α0I + α1(AA) + · · ·+ αk(AA)k)A =
A(α0I + α1(AA) + · · ·+ αk(AA)k).

On the other hand:
SA = AS = A(α0I + α1(AA) + · · ·+ αk(AA)k).

Therefore:
0 = SA− SA = A[(α0 − α0)I + (α1 − α1)(AA) + · · ·+ (αk − αk)(AA)k]

and as A is nonsingular, we obtain:

(α0 − α0)I + (α1 − α1)(AA) + · · ·+ (αk − αk)(AA)k = 0
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But k < degree mpAA = degree mpAA and so: αi − αi = 0 (i = 1, . . . , k) i.e., p is a
real polynomial.

Remark 3.8. Consider A =
[

0 0
0 1

]
and S =

[
i 0
0 1

]
. Then S ∈ Ccon(A,A),

but there is no real polynomial such that S = p(AA). So the nonsingularity of A in
Theorem 3.7 is necessary.

Corollary 3.9. Let A ∈ Mn(C) be nonsingular and suppose that AA is non-
derogatory and AA = AA. If B ∈ Mn(C) is consimilar to A via a real consimilarity
then all consimilarities between A and B are real (and are therefore similarities).

Proof. For U, V ∈ Mn(C) we obtain: if UAU−1 = B = V AV −1 then (V −1U)A =
A(V −1U) and we obtain V −1U = p(AA), for some real polynomial p. So U = V p(AA)
and since AA ∈ Mn(R) we conclude: if V ∈ Mn(R) then U ∈ Mn(R).

3.2. Consimilarities between A and A∗. We start with the standard Propo-
sition in this particular case.

Proposition 3.10. Let A ∈ Mn(C). Then:
1. A is consimilar to a Hermitian matrix.
2. A is consimilar to a Hermitian matrix via a symmetric matrix.
3. A is consimilar to A∗ via a symmetric matrix.
Proof. The proof of the equivalence (1) ⇒ (3) ⇒ (2) ⇒ (1) is standard, and

Theorem 3.1 implies that assertion (1) is correct.

We conclude that the natural consimilarities between A and A∗ are the symmetric
ones. We can prove Theorem 1.4. Recall:
Theorem 1.4. Let A ∈ Mn(C).

2. There exists a symmetric consimilarity V ∈ GLn(C) between A and A∗.
3. If AA is nonderogatory then all V ∈ Ccon(A,A∗) are symmetric.
4. If A is nonsingular and all V ∈ Ccon(A,A∗) are symmetric, then AA is

nonderogatory.
Proof. Note that the first statement of Theorem 1.4 as stated in Section 1 is part

of Proposition 3.10.
(2) Since every A ∈ Mn(C) is consimilar to a Hermitian matrix, Proposition 3.10

implies the existence of a symmetric consimilarity between A and A∗.
(3) Note that AV = V A∗ implies AAV = V A∗A∗ = V (AA)T and Theorem 1.3

implies that such a V is symmetric, provided AA is nonderogatory.
(3) If all V ∈ Ccon(A,A∗) are symmetric, then Corollary 3.5 implies that all

S ∈ C(AA, (AA)T ) are symmetric. From Theorem 1.3 we can conclude that
AA is nonderogatory.

3.3. Consimilarities between A and AT . We start with the standard Propo-
sition in this particular case.

Proposition 3.11. Let A ∈ Mn(C). The following assertions are equivalent.
1. A is consimilar to a symmetric matrix.
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2. A is consimilar to a symmetric matrix via a Hermitian positive definite ma-
trix.

3. A is consimilar to AT via a Hermitian positive definite matrix.
4. A is consimilar to a diagonal matrix.
Proof. The equivalence (1) ⇒ (3) ⇒ (2) ⇒ (1) is standard.

(1) → (4) Every complex symmetric matrix is consimilar to a diagonal matrix, even
via a unitary matrix (see [6], Theorem 4.4.4).
(4) → (1) Trivial.

Not all A ∈ Mn(C) are consimilar to a diagonal matrix (see [6], Theorem 4.6.11).
And so, not all A ∈ Mn(C) are consimilar to a symmetric matrix. But A and AT are
always consimilar and from the previous proposition one might suspect already the
type of the natural consimilarities between A and AT .

We can now prove Theorem 1.5.
Theorem 1.5. Let A ∈ Mn(C).

1. There exists a nonsingular Hermitian V ∈ Ccon(A,AT ).
2. If A is nonsingular and AA is nonderogatory, then all U ∈ Ccon(A,AT ) are

Hermitian.
Proof.
1. We construct a Hermitian V ∈ Mn(C) such that V −1AV = AT . There exists

S ∈ Mn(C) with S−1AS = R ∈ Mn(R), a real matrix. Next, there exists a
real symmetric T ∈ Mn(R) with T−1RT = RT . Thus

T−1S−1AST = RT = (S−1AS)T = S∗AT (ST )−1.

We obtain:

((S∗)−1T−1S−1)A(STST ) = AT

and so

(STS∗)−1A(STS∗) = AT .

Clearly, V = STS∗ is the required nonsingular Hermitian matrix.
2. Next we assume that A is nonsingular and AA is nonderogatory. Fix the

Hermitian V with V −1AV = AT . Note that

V −1AAV = AT A
T
= (AA)T .

Let U ∈ Mn(C) be such that AU = UAT . We show that U is Hermitian.
Note that A(UV −1) = UAT V −1 = (UV −1)A and so UV −1 = p(AA), for
some real polynomial p, i.e., U = p(AA)V . So:

U = p(AA)V = V V −1p(AA)V = V p(V −1AAV ) = V p((AA)T )
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As p is a real polynomial we obtain p(AA) = p(AA) and so:

U∗ = (p(AA)V )∗ = V ∗p(AA)
T
= V p((AA)

T
) = U

and we conclude that U is Hermitian.
Remark 3.12. Let A ∈ Mn(C) be nonsingular. Note: C(AA,AT AT ) =

C(AA, (AA)∗). If we consider C(AA, (AA)∗) as a real vector space, then we con-
clude that both the subspace H(AA, (AA)∗), i.e., the subspace of all Hermitian
S ∈ C(AA, (AA)∗) and the subspace Ccon(A,AT ) have the same dimension. We
obtain:

Theorem 3.13. Let A ∈ Mn(C) be nonsingular. If AA is nonderogatory then:

Ccon(A,AT ) = H(AA, (AA)∗).

Proof. Theorem 1.5 implies that Ccon(A,AT ) ⊂ H(AA, (AA)∗) and since both
vector spaces are n-dimensional, the conclusion follows.

If AA is not nonderogatory the situation is less clear to me. I cannot even answer
the following question.
Question. Let A ∈ Mn(C) be nonsingular. If AA is not nonderogatory, must
Ccon(A,AT ) contain a non-Hermitian matrix?

Nonderogatory real matrices R such that R2 is not nonderogatory might be es-
pecially interesting in connection to this question. Note that if AA is not nonderoga-
tory and k is the degree of the minimal polynomial of AA, then {S ∈ Ccon(A,AT ) :

S is Hermitian} has real dimension at least k. The example A =
[

1 0
0 −1

]
shows

that this particular dimension can be larger then k. For this example it can be checked
that:

1. Ccon(A,AT ) =
{[

a ib

ic d

]
: a, b, c, d ∈ R

}
has dimension 4,

2. {S ∈ Ccon(A,AT ) : S is Hermitian} =
{[

a ib

−ib d

]
: a, b, d ∈ R

}
has di-

mension 3,
3. C(AA,AT AT ) = M4(C) has real dimension 8,

4. H(AA,AT AT ) =
{[

a b + ic

b − ic d

]
: a, b, c, d ∈ R

}
has dimension 4.

Another reason why real examples might be interesting is the following:
Lemma 3.14. Let A ∈ Mn(R) be real and nonsingular and suppose that AA = A2

is nonderogatory. Then all consimilarity transformations between A and AT are real
and symmetric.

Proof. Since AT = A∗ the conditions on A imply by Theorem 1.4 and Theorem 1.5
that any U ∈ Mn(C) such that U−1AU = AT = A∗ is both symmetric and Hermitian,
so it is real symmetric.
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3.4. Consimilarities between A and A. Once again we have the standard
Proposition. Note that the standard Proposition contains Theorem 1.6.

Proposition 3.15. Let A ∈ Mn(C). Then
1. A is consimilar to a real matrix.
2. A is consimilar to a real matrix via a coninvolutory matrix.
3. A is consimilar to A via a coninvolutory matrix.
4. A is consimilar to A.
Proof. The proof of the equivalence (1) ⇒ (3) ⇒ (2) ⇒ (1) is standard, and

Theorem 3.1 implies that assertion (1) is correct; it also implies that statement (4)
can be added to the standard Proposition.

So coninvolutory consimilarities between A and A exist for sure. However, there
exists no A ∈ Mn(C) with the property that all consimilarities between A and A are
coninvolutory. Indeed, if S is a consimilarity between A and A, so is αS (α ∈ R).
But S coninvolutory does not imply that αS is coninvolutory.

Remark 3.16. Here is another proof of Proposition 3.15, (1) → (2).
If UAU−1 = B ∈ Mn(R) and U = RE is the RE-decomposition of U (see [7] section
6.4, so R ∈ Mn(R) and E is coninvolutory) then REAER−1 = B. We conclude:
EAE = R−1BR is real. So the coninvolutory matrices are a kind of “nucleus” for
this type of consimilarities. Note that Proposition 2.7, (3) → (2) can be proved in
the same way.

Note that A ∈ Ccon(A,A). Therefore we have the following description of
Ccon(A,A), for nonsingular A ∈ Mn(C) such that AA is nonderogatory.

Proposition 3.17. Let A ∈ Mn(C) be nonsingular and such that AA is non-
derogatory. Then S ∈ Ccon(A,A) if and only if S = p(AA)A for some real
polynomial p.

Proposition 3.18. Let A ∈ Mn(C) and suppose that AA is nonderogatory.
1. If A is symmetric then all U ∈ Mn(C) such that UAU−1 = A(= A∗) are

symmetric.
2. If A is nonsingular and Hermitian then all U ∈ Mn(C) such that UAU−1 =

A(= AT ) are Hermitian.
Corollary 3.19. Let A ∈ Mn(C) and suppose that AA is nonderogatory.
1. If A is symmetric then all coninvolutory U ∈ Mn(C) such that UAU = A

are symmetric and unitary.
2. If A is nonsingular and Hermitian then all coninvolutory U ∈ Mn(C) such

that UAU = A are Hermitian and orthogonal.
Proof. This is a corollary of Proposition 3.18 and the fact that a symmetric conin-

volutory U is unitary (since U−1 = U = U∗), respectively, a Hermitian coninvolutory
U is orthogonal (since U−1 = U = UT ).

3.5. On the history of these results on consimilarity. After we obtained
the previous results on consimilarity the referee pointed our attention to [2]. In fact,
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this paper contains Theorem 1.4 and Theorem 1.5 as a corollary of a more general
result. Their proof was quite technical and I am convinced the proof presented here
is a proof on a more elementary level. Moreover, all the results from section 3 in [2]
are in fact corollaries of Theorem 1.4 and Theorem 1.5.

Corollary 3.20. [2] Let A,B,C ∈ Mn(C).

1. For the equation AX − XAT = C the following are equivalent.
(a) CT = −C and the equation is consistent.
(b) The equation has a (nonsingular) Hermitian solution.

2. If moreover AA is nonsingular and nonderogatory then CT = −C and AX −
XAT = C is consistent implies that all solutions of this equation are Hermi-
tian.

Proof. (1) It is clear that (b) implies (a). To see that (a) implies (b), let X be a
solution of the equation AX − XAT = C. The identity CT = −C implies that X∗

is also a solution, and so (X + X∗)/2 is a Hermitian solution. If V is nonsingular
and Hermitian such that V −1AV = AT , then one can choose α ∈ R such that
(X + X∗)/2 + αV becomes a nonsingular Hermitian solution of AX − XAT = C.

(2) If X is a solution of the equation AX−XAT = C, then AX−XAT = C = −CT =
−(X∗AT−AXT ). So A(X−XT )−(X−X∗)AT = 0 ⇒ A(X−XT )−(X − XT )AT = 0.
Theorem 1.5 implies that X − XT is Hermitian as X − XT is skew-Hermitian we
obtain that X − XT = 0, i.e., X is Hermitian.

Corollary 3.21. [2] Let A,B,C ∈ Mn(C).

1. For the equation AX + XAT = C the following are equivalent.
(a) CT = −C and the equation is consistent.
(b) The equation has a (nonsingular) skew-Hermitian solution.

2. If moreover AA is nonsingular and nonderogatory then CT = −C and AX +
XAT = C is consistent implies that all solutions of this equation are skew-
Hermitian.

Proof. This follows from the observation that UA = AT U if and only if (iU)A =
−AT iU and U is Hermitian if and only if iU is skew-Hermitian. The rest is as in the
previous corollary.

Likewise, the other statements in section 3 of [2] on the equations of type AX ±
XA∗ = C are direct corollaries of Theorem 1.4.

4. On T congruences between A and AT , A∗, or A.

4.1. T congruences, the general part. In [9] a canonical form for T congruence
was discovered, the so called T congruence canonical form of a matrix. There are three
types of T congruence canonical matrices: Jn(λ) stands for an n×n Jordan block with

eigenvalue λ. H2n(µ) stands for the 2n × 2n block matrix H2n(µ) =
[

0 In

Jn(µ) 0

]
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and Γn stands for the n × n matrix:

Γn =




0 (−1)n+1

↗ (−1)n

−1 ↗
1 1

−1 −1
1 1 0




.

Theorem 4.1. [9] A square complex matrix is T congruent to a direct sum of
canonical matrices, Jk(0), Γn and H2n(µ), where 0 �= µ �= (−1)n+1 (and µ can be
replaced by µ−1). This T congruence canonical form is uniquely determined up to
permutations of summands.

In [9] the following notation was introduced:

(A−1)T = A−T ,

and A−T A (or sometimes AA−T ) was called the T cosquare of A. The question whether
nonsingular A,B ∈ Mn(C) are T congruent is in some sense completely determined
by the following result from [9].

Proposition 4.2. [9] Let A,B ∈ Mn(C) be nonsingular. Then A,B are
T congruent if and only if their T cosquares A−T A and B−T B are similar.

Again we start with our standard Proposition.
Proposition 4.3. Let A ∈ Mn(C).
1. The following assertions are equivalent.

(a) A is T congruent to a Hermitian matrix.
(b) A is T congruent to a Hermitian matrix via a coninvolutory matrix.
(c) A is T congruent to A∗ via a coninvolutory matrix.

2. The following assertions are equivalent.
(a) A is T congruent to a real matrix.
(b) A is T congruent to a real matrix via a coninvolutory matrix.
(c) A is T congruent to A via a coninvolutory matrix.

3. A is T congruent to a symmetric matrix if and only if A is symmetric.
Proof. We only prove part (2).

(a) → (c). If S ∈ GLn(C) such that SAST = R ∈ Mn(R) then SAST = R = R =
S AS

T
. And so: (S

−1
S)A(ST (S

T
)−1) = A ⇒ (S

−1
S)A(S

−1
S)T = A, i.e., A and A

are T congruent via the the coninvolution S
−1

S.
(c) → (b). Let J ∈ Mn(C) be a coninvolution such that JAJT = A. There exists a
coninvolution X ∈ Mn(C) such that X2 = J . Then: X2A(X2)T = A ⇒ XAXT =
X−1A(XT )−1 = X AA

T
. This identity implies that XAXT ∈ Mn(R) and A is

T congruent to it via the coninvolution X .
(b) → (a) Trivial.
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Part of the main discussion is whether the statement: “A is T congruent to A∗”
can be added to part (1) of Proposition 4.3, respectively, whether the statement: “A
is T congruent to A” can be added to part (2) of Proposition 4.3. And what can be
said about the T congruence of A and AT ?

4.2. The T congruence of A and AT . Although A is T congruent to a sym-
metric matrix if and only if A is symmetric, A and AT are always T congruent. In
fact:

Theorem 4.4. (See [4],[14] or [3]) Let F be a field and let A ∈ Mn(F). Then A

and AT are T congruent via an involution J ∈ Mn(F).
We can now present a proof of Theorem 1.7.
Theorem 1.7 Let A ∈ Mn(C).

1. ([3],[4] or[14]) A is T congruent to AT via an involution.
2. If A is nonsingular and its T cosquare AA−T is nonderogatory then all S ∈

GLn(C) such that SAST = AT are involutions.
Proof.
(1) Theorem 4.4 implies the existence of an involution J such that JAJT = AT .

(2) Assume SAST = AT . Then (ST )−1(A−1)T S−1 = A−1 and so SA(A−1)T S−1 =
AT A−1. Since AT A−1 = AA−1AT A−1 = A[A(A−1)T ]T A−1, we obtain:

(A−1S)[A(A−1)T ](A−1S)−1 = [A(A−1)T ]T .

By Theorem 1.3 we conclude that A−1S is symmetric. But A−1S symmetric implies
that AST = SAT . The two identities SAST = AT and S−1AST = AT imply, as A

and S are nonsingular, that S = S−1, i.e., S is an involution.

4.3. The T congruence of A and A∗, respectively, A and A.
The list of T congruence canonical forms from [9] leads to the conclusion that A

and A∗, respectively, A and A, need not be T congruent.

Example 1. The T congruence canonical form H2(2i) =
[

0 1
2i 0

]
is not T congruent

to H2(2i) = H2(−2i), since this is a different T congruence canonical form. The
T cosquare of H2(2i) is [

2i 0
0 −1/2i

]

and the T cosquare of H2(2i)∗ is [
1/2i 0

0 −2i

]
,

which are not similar. So H2(2i) is not T congruent to H2(2i)∗. Note that H2(2i) is

T congruent to its transpose via the involution S =
[

0 1
1 0

]
.
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But we can say the following:
Lemma 4.5. Let A,B ∈ Mn(C) be T congruent.
1. If A and A are T congruent, so are B and B.
2. If A and A are T congruent via a coninvolution, so are B and B.
3. If A and A∗ are T congruent, so are B and B∗.
4. If A and A∗ are T congruent via a coninvolution, so are B and B∗.

Lemma 4.6. Let A ∈ Mn(C). The following assertions are equivalent.
1. A and A are T congruent.
2. The T congruence canonical form of A is a direct sum of blocks of only the

following five types.
(a) Jk(0),
(b) Γk,
(c) H2k(µ) with µ ∈ R, |u| > 1,
(d) H2k(µ) with µ ∈ C, |µ| = 1, µ �= (−1)k (µ can be replaced by 1/µ = µ),
(e) H2k(µ)⊕ H2k(µ) with µ ∈ C − R, |µ| > 1.

Proof. (1) → (2) According to Lemma 4.5 we have to verify this equivalence only
for matrices in T congruence canonical form. Note that the blocks Jk(0), Γk, H2k(µ)
(µ ∈ R, |µ| > 1) and H2k((−1)k+1) are real. If H2k(µ) (µ ∈ C, |µ| > 1) appears in
the T congruence canonical form, so does H2k(µ) = H2k(µ), as these basic canonical
forms are of different basic type (and we assume that A and A are T congruent.)
However, if |µ| = 1 this argument is incorrect, as H2k(µ) has the same basic type as
H2k(1/µ) = H2k(µ) = H2k(µ).
(2) → (1). Becomes trivial using the previous final observation.

Proposition 4.7. ([10], Lemma 2.3)([11], Theorem 7) Consider the Jordan block
Jn(µ), |µ| = 1 and µ �= ±1. Then there exists a Toeplitz matrix C ∈ Mn(C) such
that (C∗)−1C = Jn(µ).
We can present a proof of Theorem 1.8. Recall:
Theorem 1.8. Let A ∈ Mn(C). The following assertions are equivalent.

3. A and A are T congruent,
4. A and A are T congruent via a coninvolution,
5. A and A∗ are T congruent,
6. A and A∗ are T congruent via a coninvolution.
Proof. Note that once we have established the equivalence of (3), (4), (5) and (6),

the equivalence of the other assertions in Theorem 1.8 of section 1 follows from the
standard Proposition 4.3.

(3) ↔ (5) This follows from Theorem 4.4 and Lemma 4.5, since A is T congruent to A∗.
(3) → (4) From Lemma 4.5 we conclude that we only have to prove this for matrices in

T congruence canonical form. We may assume that A is a direct sum of the
described T canonical blocks (a),. . . ,(e) in Lemma 4.6.
Note that the T canonical blocks of type (a), (b) or (c) and H2k((−1)k+1) of
type (d) are real, i.e., the real involution I has the property IBIT = B, for
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all these blocks.
Let H2k(µ), |µ| = 1 and µ �= ±1 be a canonical form of type (d). Use
Proposition 4.7 to find a Toeplitz matrix C ∈ Mk(C) such that (C∗)−1C =
Jn(µ) and consider:

S =
[

0 C∗

C−T 0

]
.

S is a coninvolution, since SS =
[

0 C∗

C−T 0

] [
0 CT

C∗−1 0

]
= I.

Moreover, SH2k(µ)ST =
[

0 C∗

C−T 0

] [
0 Ik

Jk(µ) 0

] [
0 C−1

C 0

]
=

[
0 C∗Jk(µ)C−1

C−T C 0

]
=

[
0 C∗Jk(µ)C−1

(C∗)−1C 0

]
=[

0 I

Jk(µ) 0

]
= H2k(µ).

If a T canonical block of type (e) (i.e., H2k(µ)⊕H2k(µ) with µ ∈ C−R, |µ| > 1)
appears in the direct sum, then

S =




0 0 Ik 0
0 0 0 Ik

Ik 0 0 0
0 Ik 0 0




is a real involution (and so a coninvolution) such that

S(H2k(µ)⊕ H2k(µ))ST = H2k(µ)⊕ H2k(µ) = H2k(µ)⊕ H2k(µ).

(4) → (3) Trivial, so we have obtained the equivalence of (1), (2) and (3).
(5) → (6) Assume A is T congruent to A∗. By the equivalence of (1), (2) and (3) and the

standard Proposition 4.3 part (2) we conclude that JAJT = R ∈ Mn(R),
for some coninvolution J ∈ Mn(C). By Theorem 4.4 there exists a real
involution S ∈ Mn(R) such that:

SRST = RT ⇒ SJAJT ST = RT = R∗ = JA∗J∗.

Thus,

(J
−1

SJ)A(JT ST (J∗)−1) = A∗ ⇒ (J
−1

SJ)A(J
−1

SJ)T = A∗.

Finally we observe that S ∈ Mn(R) and S = S−1 implies that J
−1

SJ is
coninvolutory.

(6) → (5) Trivial.
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The rest of this subsection is devoted to the question: “Assume that A and
A∗ are T congruent. Under what conditions are all T congruences between A and A∗

coninvolutory?”
One might hope that this condition is: “if AA−T is nonderogatory.” This is not

the case, as we will see.
Lemma 4.8. Let A ∈ Mn(C) be nonsingular.
1. If p is a polynomial of degree less than n and we define G by G = p(AA−T ),

then GAGT = A is equivalent to p(AA−T )p((AA−T )−1) = In.
Moreover, if AA−T is nonderogatory then:

2. If G ∈ Mn(C) is nonsingular and GAGT = A, then there exists a unique
polynomial of degree less than n, such that G = p(AA−T ).

Proof.
1. Next we note that GAGT = A is equivalent to:

p(AA−T )A(p(AA−T ))T = A ⇔ p(AA−T )Ap((AA−T )T ) = A ⇔
p(AA−T )Ap(A−1AT ) = A ⇔ p(AA−T )Ap(A−1AT )A−1A = A ⇔
p(AA−T )p(AA−1AT A−1)A = A ⇔ p(AA−T )p(AT A−1) = In ⇔
p(AA−T )p((AA−T )−1) = In.

2. GAGT = A implies GAA−T G−1 = AA−T and as AA−T is nonderogatory,
we conclude that G = p(AA−T ) for some unique polynomial of degree less
than n.

Lemma 4.8 provides us with many T congruences between A and A, for example
G = ±(AA−T )k (k ∈ Z).

Next we observe the following. If SAST = A∗ then SAA−T S−1 = A∗(A∗)−T =
A∗(A)−1 = A(A)−1A∗(A)−1 = A[AA−T ]∗(A)−1. And so:

((A)−1S)[AA−T ]((A)−1S)−1 = [AA−T ]∗.

Lemma 4.9. Let A ∈ Mn(C) be nonsingular and assume SAST = A∗. Then S

is coninvolutory if and only if (A)−1S is Hermitian.
Proof. Note that ((A)−1S) is the corresponding similarity between AA−T and

[AA−T ]∗.
Well: (A)−1S is Hermitian ⇔ ((A)−1S)∗ = (A)−1S ⇔ S∗A−T = (A)−1S ⇔

ST (A∗)−1 = (A)−1S ⇔ (S)−1AST = A∗. Together with the equation SAST = A∗

(and A,S nonsingular) this is equivalent to S = (S)−1, i.e., S is coninvolutory.
Proposition 4.10. Let A ∈ Mn(C) and assume that AA−T is nonderogatory.

Let J be a coninvolutory T congruence between A and A∗. The following assertions
are equivalent.

1. All T congruences between A and A∗ are coninvolutory.
2. Any G ∈ Mn(C) such that GAGT = A can be written as G = p(AA−T ),

where p is a real polynomial of degree less than n.
Proof. Note first that the coninvolutory T congruence J induces the similarity

((A)−1J)[AA−T ]((A)−1J)−1 = [AA−T ]∗,
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which is Hermitian.
(1) → (2) Fix G ∈ Mn(C) such that GAGT = A. Then S = JG has the property
SAST = A∗, and is therefore, by assumption, coninvolutory. S induces the Hermitian
similarity

((A)−1S)[AA−T ]((A)−1S)−1 = [AA−T ]∗.

By Theorem 1.2 we conclude: (A)−1S = (A)−1Jp(AA−T ) for some real polynomial p
of degree less than n, and so G = p(AA−T ), as required.
(2) → (1) Fix S ∈ Mn(C) such that SAST = A∗. Find G ∈ Mn(C) with the
property GAGT = A such that S = JG. (Of course, G = J−1S.) By assumption
G = p(AA−T ) for some real polynomial of degree less than n. For the induced
similarities on AA−T we obtain: (A)−1S = (A)−1Jp(AA−T ) for a real polynomial.
By Theorem 1.2, (A)−1S is Hermitian, and so S is a coninvolution.

Proposition 4.10 allows us to construct an example A ∈ Mn(C) such that A and
A∗ are T -congruent, AA−T is nonderogatory, but A and A∗ admit T congruences that
are not coninvolutory.

Example 2. Define A1 = H4(2i) and A2 = H4(−2i) and consider A = A1 ⊕ A2 =
H4(2i)⊕H4(−2i) ∈ M8(C). The matrix AA−T has four eigenvalues ±2i,±1/2i, and
has four 2 × 2 Jordan blocks with different eigenvalues. This implies that AA−T is
nonderogatory. Consider the 8 × 8 reversal matrix J ; J is a real coninvolution and
JAJT = A∗, as one can check.

Next define H = A1A
−T
1 ⊕ (A2A

−T
2 )2. (Note that the different exponents imply

that if you write H = p(AA−T ) then p(2i) �= p(−2i), and so p cannot be a real
polynomial.) One checks for S = JH that SAST = A∗, but S is not coninvolutory.

In the same way one can show:
Corollary 4.11. If A = H2k(µ) ⊕ H2k(µ) with µ ∈ C − R, |µ| > 1, then

AA−T is nonderogatory, but there exist T congruences between A and A∗ that are not
coninvolutory.

Which A ∈ Mn(C) has the property that AA−T is nonderogatory? Recall that
B is nonderogatory if and only if different Jordan blocks in the Jordan normal form
of B belong to different eigenvalues of B. Note that

1. Jk(0) is not invertible,
2. the T cosquare of Γ	 is nonderogatory, since Γ	Γ−T

	 is similar to J	((−1)	+1)
(see [9]),

3. the T cosquare of H2k(µ) with µ ∈ R, |u| ≥ 1, µ �= (−1)k+1 is similar to
Jk(µ)⊕ Jk(1/µ) (see [9]), so it is nonderogatory if and only if µ �= (−1)k.

We conclude that AA−T is nonderogatory if and only if the T congruence canonical
blocks contains

1. at most one block of type Γ	 and ' is odd,
2. at most one block of type Γ	 and ' is even,
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3. for each µ such that |µ| > 1 at most one block of type H2k(µ),
4. for each µ such that |µ| = 1, µ /∈ R at most one block of type H2k(µ) (or

H2k(µ)) (and so: no block of type H2k((−1)k)).

5. On *congruences between A and AT , A∗, or A.

5.1. *congruences, the general part. In [9] a canonical form for *congruence
was discovered, the so called *congruence canonical form of a matrix. There are three
types of *congruence canonical matrices: again Jn(λ) stands for an n × n Jordan

block with eigenvalue λ, H2n(µ) stands for the 2n × 2n block matrix
[

0 In

Jn(µ) 0

]
and ∆n stands for the n × n matrix:

∆n =




0 1
1 i

↗ ↗
1 i

1 i 0


 .

Theorem 5.1. [9] A square complex matrix is *congruent to a direct sum of
canonical matrices, Jk(0), λ∆n (|λ| = 1) and H2n(µ) (|µ| > 1). This *congruence
canonical form is uniquely determined up to permutations of summands.

The question whether A,B ∈ Mn(C) are *congruent can be handled in the same
way as the T congruence. In [9] the notation (A−1)∗ = A−∗ was introduced and
A−∗A (or sometimes AA−∗) was called the *cosquare of A. The question whether
nonsingular A,B ∈ Mn(C) are T congruent is partially determined by the following
result.

Proposition 5.2. [9] Let A,B ∈ Mn(C) be nonsingular. If A,B are *congruent
then their *cosquares A−∗A and B−∗B are similar (but not conversely).

The standard Proposition becomes:
Proposition 5.3. Let A ∈ Mn(C).
1. The following assertions are equivalent.

(a) A is *congruent to a symmetric matrix.
(b) A is *congruent to a symmetric matrix via a coninvolutory matrix.
(c) A is *congruent to AT via a coninvolutory matrix.

2. The following assertions are equivalent.
(a) A is *congruent to a real matrix.
(b) A is *congruent to a real matrix via a coninvolutory matrix.
(c) A is *congruent to A via a coninvolutory matrix.

3. A is *congruent to a Hermitian matrix if and only if A is Hermitian.

5.2. The *congruence of A and AT . We recall from the literature:
Theorem 5.4. (See [8]) Let A ∈ Mn(C). Then A and AT are *congruent via a

coninvolutory J ∈ Mn(C).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 258-283, May 2008



ELA

280 J. Vermeer

This result implies that the statement “A is *congruent to AT ” could be added
to the list in part (1) of the standard Proposition 5.3, and it also implies that the
statements in this list are not only equivalent. Each of the assertions is correct. Note
that we have obtained the first two statements in Theorem 1.9. We still have to prove
statement (3) of Theorem 1.9. Recall:
Theorem 1.9. Let A ∈ Mn(C).
3. If A is nonsingular and its *cosquare AA−∗ is nonderogatory then all S ∈ GLn(C)
such that SAS∗ = AT are coninvolutions.

Proof. Assume SAS∗ = AT . Then

(S∗)−1(A−1)∗S−1 = A−1

and so SA(A−1)∗S−1 = AT A−1. Since

AT A−1 = AA−1AT A−1 = A[A(A−1)∗]T A−1,

we obtain:

(A−1S)[AA−∗](A−1S)−1 = [AA−∗]T .

By Theorem 1.3 we conclude that A−1S is symmetric. But A−1S symmetric implies
AST = SA∗ and so AS∗ = SAT . The two identities SAS∗ = AT and S−1AS∗ = AT

imply, as A and S are nonsingular, that S = S−1, i.e., S is a coninvolution.

5.3. The *congruence of A and A∗, respectively, A and A. Theorem 5.4
implies the following lemma.

Lemma 5.5. Let A ∈ Mn(C). Then A is *congruent to A if and only if A is
*congruent to A∗.

However, A and A∗, respectively, A and A, need not be *congruent, as we can
conclude from Proposition 5.2.

Example 1. (Continuation 1). Again consider H2(2i) =
[

0 1
2i 0

]
. H2(2i) is not

*congruent to H2(2i), since the *cosquare of H2(2i)) is
[

2i 0
0 1/2i

]
, which is not

similar to
[ −2i 0

0 −1/2i

]
, the *cosquare of H2(2i).

The *cosquare of H2(2i)∗ is [ −1/2i 0
0 −2i

]
,

which is not similar to the *cosquare of H2(2i), i.e., H2(2i) is not *congruent to
H2(2i)∗. Again we note that H2(2i) is *congruent to its transpose via the reversal

matrix S0 =
[

0 1
1 0

]
.
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The next question we discuss is whether the statement “A is *congruent to A”
could be added to the equivalence in the standard Proposition 5.3, part (2). First we
note the following.

Lemma 5.6. Let A,B ∈ Mn(C) and assume that A,B are *congruent.
1. If A is *congruent to A, then B is *congruent to B.
2. If A is *congruent to A via a coninvolutory matrix, then B is *congruent to

B via a coninvolutory matrix.
3. If A is *congruent to A∗, then B is *congruent to B∗.
4. If A is *congruent to A∗ via an involution, then B is *congruent to B∗ via

an involution.
Proof. (1) and (2). If SAS∗ = B and JAJ∗ = A, then B = (SJS−1)B(SJS−1)∗.

Moreover, if J is coninvolutory, so is SJS−1.
(3) and (4). If SAS∗ = B and JAJ∗ = A∗, then B∗ = (SJS−1)B(SJS−1)∗. More-
over, if J is an involution, so is SJS−1.

What does it mean for the *congruence canonical form that A and A (or A∗) are
*congruent?

1. The matrices Jk(0) and H2m(µ) (|µ| > 1 µ ∈ R) are real, so they are *con-
gruent via the identity to their conjugates and T congruent to their transposes
via a real involution, i.e., *congruent to their conjugate transpose via a real
involution.

2. ±∆	 is *congruent to ±∆	 = ±∆	
∗ via S =diag(1,−1, 1,−1, . . .), a real

involution.
3. If λ /∈ R and |λ| = 1 then λ∆	 and λ∆	 are not *congruent. This follows

from the observation that λ∆	 = λ∆	 is *congruent to λ∆	 by (2), which is
not *congruent to λ∆	, being of different *congruence canonical form type.
And so: λ∆	 and (λ∆	)∗ are not *congruent.

4. H2m(µ) (|µ| > 1 µ /∈ R) is not *congruent to its conjugate, since H2m(µ) =
H2m(µ) is of a different *congruence canonical form type. And so: H2m(µ)
and H2m(µ)∗ are not *congruent.

We conclude:
Corollary 5.7. Let A ∈ Mn(C). The following assertions are equivalent.
1. A is *congruent to A (or A∗).
2. A is *congruent to a direct sum of matrices of the following type

(a) Jk(0),
(b) ∆	 or −∆	,
(c) H2m(µ) (|µ| > 1, µ ∈ R),
(d) H2m(µ)⊕ H2m(µ) (|µ| > 1, µ /∈ R),
(e) λ∆	 ⊕ λ∆	, (|λ| = 1, λ /∈ R).

(Note that type (e) uses the *congruence of λ∆	 and λ∆	.)
We prove Theorem 1.10. Recall:

Theorem 1.10. Let A ∈ Mn(C). The following assertions are equivalent.
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3. A and A are *congruent,
4. A and A are *congruent via a coninvolution,
5. A and A∗ are *congruent,
6. A and A∗ are *congruent via an involution.
Proof. Note that once we have established the equivalence of (3), (4), (5) and (6),

the standard Proposition 5.3 implies the equivalence of the rest of the assertions of
Theorem 1.10 of section 1.
(3) ↔ (5). This is Lemma 5.5.
(3) → (4) and (3) → (5) By Corollary 5.7 we obtain that if A and A (or A∗) are
*congruent, a *congruence canonical form of A becomes a direct sum of matrices of
the 5 types described in Corollary 5.7. By Lemma 5.6 it suffices to show that each
of these basic types is *congruent to its conjugate via a coninvolution, respectively,
is *congruent to its conjugate transposes via an involution.

We already have seen the first 3 types to be *congruent with their conjugate via
a coninvolution, respectively, to be *congruent with their conjugate transpose via a
real involution.

In the proof of Theorem 1.8, part (2), we have shown that type 4, H2m(µ) ⊕
H2m(µ), is T congruent to its conjugate (respectively, conjugate transpose) via a real
involution, and so these are *congruent via a real involution.

Finally, type 5: λ∆	 ⊕λ∆	, (|λ| = 1, λ /∈ R) is *congruent to its conjugate (= its

conjugate transpose) via the real involution J =
[

0 I	

I	 0

]
(4) → (3) and (5) → (4) are trivial.
The following proof of (5) → (6) might be interesting. If A is *congruent to A∗ then
the equivalence of (3), (4) and (5) and the standard Proposition 5.3, part (2) imply
that JAJ∗ = R ∈ Mn(R), for some coninvolution J . And so, Theorem 4.4 implies
that there exists a real involution S such that SRST = RT . Therefore,

SJAJ∗ST = RT = R∗ = JA∗J∗ ⇒ (J−1SJ)A(J∗ST (J∗)−1) = A∗.

Thus (J−1SJ)A(J−1SJ)∗ = A∗, since S ∈ Mn(R). We observe that J−1SJ is an
involution.

In the same way as in section 4.3 on T congruences, one can show the following:
Every ∗congruence SAS∗ = A∗ induces a similarity

(A−∗S)AA−∗(A−∗S)−1 = (AA−∗)∗.

Lemma 5.8. Let A ∈ Mn(C) and assume that A and A∗ are *congruent. The
following assertions are equivalent for any nonsingular S such that SAS∗ = A∗.

1. S is an involutory *congruence between A and A∗.
2. A−∗S is a Hermitian similarity between AA−∗ and (AA−∗)∗.
Therefore, we obtain the following equivalence.
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Lemma 5.9. Let A ∈ Mn(C) and assume that AA−∗ is nonderogatory. Assume
J is an involutory *congruence between A and A∗. For any ∗congruence S such that
SAS∗ = A∗ the following assertions are equivalent.

1. S is involutory.
2. S = Jp(AA−∗), where p is a real polynomial.
Finally we mention that there exists no A ∈ Mn(C) with the property that

all *congruences between A and A∗ are involutions. Indeed, if JAJ∗ = A∗ is a
*congruence between A and A∗, so is αJ , provided |α| = 1. But αJ need not be an
involution.

Dedication. This article is dedicated to the three brothers, Hans (Sr), Jan and
Robert Vermeer, and is written in the hope that they too will meet again.
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