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ON THE PERRON-FROBENIUS THEORY OF MV −MATRICES AND EQUIVALENT

PROPERTIES TO EVENTUALLY EXPONENTIALLY NONNEGATIVE MATRICES∗

THANIPORN CHAYSRI† AND DIMITRIOS NOUTSOS†

Abstract. Mv−matrix is a matrix of the form A = sI −B, where 0 ≤ ρ(B) ≤ s and B is an eventually nonnegative matrix. 
In this paper, Mv−matrices concerning the Perron-Frobenius theory are studied. Specifically, sufficient and necessary conditions 
for an Mv−matrix to have positive left and right eigenvectors corresponding to its eigenvalue with smallest real part without

considering or not if index0B ≤ 1 are stated and proven. Moreover, analogous conditions for eventually nonnegative matrices 
or Mv−matrices to have all the non Perron eigenvectors or generalized eigenvectors not being nonnegative are studied. Then,

equivalent properties of eventually exponentially nonnegative matrices and Mv−matrices are presented. Various numerical 
examples are given to support our theoretical findings.
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1. Introduction. The Perron-Frobenius theory was established by Perron [17] in 1907, who proved

that the dominant eigenvalue of an entry-wise positive matrix is positive and its corresponding eigenvector is

positive, and later by Frobenius [7] in 1912, who extended it to irreducible nonnegative matrices. Since then

the well-known Perron-Frobenius theory was studied by many researchers. Extensions and generalizations to

the Perron-Frobenius theory were given by Friedland [6], Eschenbach and Johnson [5], Tarazaga et al. [18],

Naqvi and McDonald [12], Maroulas et al. [11], Johnson and Tarazaga [9], Le and McDonald [10], Elhashash

and Szyld [4], Gao [8], etc.

In 2006, Noutsos [13] extended the Perron-Frobenius theory by introducing the definitions of the Perron-

Frobenius property and the strong Perron-Frobenius property and connected matrices having these properties

with eventually positive and eventually nonnegative matrices. Later in 2012, this theory was extended into

complex matrices by Noutsos and Varga [15].

The class of M−matrices is that of matrices of the form A = sI −B, where B is entrywise nonnegative

(B ≥ 0) and 0 ≤ ρ(B) ≤ s. Pseudo M−matrices are of the form A = sI − B, where 0 < ρ(B) < s

and B being an eventually positive matrix. They were introduced by Johnson and Tarazaga [9] in 2004.

Next, the term Mv−matrix was introduced and studied by Olesky et al.[16] in 2006 for matrices of the form

A = sI−B, where 0 ≤ ρ(B) ≤ s and B is an eventually nonnegative matrix. Finally, the class of generalized

M−matrices or GM−matrices was studied by Elhashash and Szyld [3] in 2008 and contains matrices of the

form A = sI − B, where 0 < ρ(B) ≤ s and both B,BT possess the Perron-Frobenius property. From the

definitions above, the class of M−matrices is a subclass of Mv−matrices and the class of pseudo M−matrices

is also a subclass of Mv−matrices; however, an M−matrix may not be a pseudo M−matrix. The class of

Mv−matrices is also a subclass of GM−matrices because, for every B eventually nonnegative, both B and

BT possess the Perron-Frobenius property (see [13, Theorem 2.3]).
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Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society 
Volume 35, pp. 424-440, September 2019. 

425 Perron-Frobenius Theory of Mv−matrices and Eventually Exponentially Nonnegative Matrices

Extensions of M−matrices are applied in many fields such as in mathematics (iterative methods, dis-

cretizations of differential operators), economics (gross substitutability, stability of a general equilibrium and

Leontief’s input-output analysis in economic systems), optimization, Markov chains in the field of probability

theory and operation research like queuing theory, engineering (control theory) and also biology (population

dynamics).

Many equivalent properties that characterize M -matrices were stated and proven by many researchers.

In the book of Berman and Plemmons [1], over than 70 such properties are presented not all of which are

valid for Mv−matrices. In this paper, we study the Mv−matrices in connection with the Perron-Frobenius

theory. Specifically, sufficient conditions for an Mv−matrix with index0B ≤ 1 to have positive left and

right eigenvectors corresponding to its eigenvalue with smallest real part are studied. Also, sufficient and

necessary conditions are proven without considering that index0B ≤ 1. Then analogous properties of such

class of matrices having all non Perron eigenvectors and generalized eigenvectors not being nonnegative

are presented and proven. Finally, we give equivalent properties of eventually exponentially nonnegative

matrices and Mv−matrices.

This work is organized as follows: In Section 2, we present the main notation that is used in this paper

as well as some definitions and preliminary results. In Section 3, we present the main result of the Perron-

Frobenius theory for Mv−matrices. In Section 4, we apply the result from the previous section to prove

the equivalent properties of eventually exponentially nonnegative matrices and Mv−matrices. Finally, in

Section 5, we summarize all our results. We also give various numerical examples to confirm our theoretical

findings.

2. Notation, definitions and preliminaries. Let A ∈ Rn,n be a square matrix and let λi ∈ C be

the eigenvalues of A. Then,

• σ(A) := {λ1, λ2, . . . , λn} is called the spectrum of the matrix A;

• ρ(A) := max
i=1(1)n

|λi| is called the spectral radius of the matrix A;

• λ is called a dominant eigenvalue of the matrix A if |λ| = ρ(A);

• λ ∈ σ(A) is called the strictly dominant eigenvalue of the matrix A if |λ| > |µ|, ∀µ ∈ σ(A), µ 6= λ;

• indexλ(A) denotes the degree of λ as a root of the minimal polynomial of the matrix A.

Let A ∈ Rn,n be a square matrix partitioned as

(2.1)

[
A11 A12

A21 A22

]
.

Then, by [
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]
we denote a block matrix of Ak partitioned conformably to (2.1).

Definition 2.1. A matrix A ∈ Cn,n is called reducible matrix if there exists a permutation matrix

P ∈ Rn,n such that

(2.2) PAPT =

[
A11 A12

0 A22

]
,

where A11 ∈ Cr,r, A22 ∈ Cn−r,n−r and A12 ∈ Cr,n−r, 0 < r < n. Otherwise, A is called irreducible.
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Definition 2.2. A matrix A ∈ Rn,n is called

• positive, denoted by A > 0, if A is entrywise positive;

• nonnegative, denoted by A ≥ 0, if A is entrywise nonnegative;

• primitive if A ≥ 0 and there exists a positive integer k such that Ak > 0;

• cyclic of index k > 1 if A ≥ 0 and there exists a permutation matrix P ∈ Rn,n such that PAPT is

partitioned in the form:

(2.3)


0 A12 0 · · · 0

0 0 A23 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak−1,k
A11 0 0 · · · 0

 ,

where all the diagonal blocks are square zero matrices;

• weakly cyclic of index k > 1 if there exists a permutation matrix P ∈ Rn,n such that PAPT is

partitioned as in (2.3);

• eventually nonnegative (positive), denoted by A
v
≥ 0 (A

v
> 0), if there exists an integer k0 > 0 such

that Ak ≥ 0 (Ak > 0) for all k ≥ k0; the smallest such positive integer is called the power index of

A;

• exponentially nonnegative (positive) if for all t > 0, etA =
∞∑
k=0

tkAk

k! ≥ 0 (etA > 0);

• eventually exponentially nonnegative (positive) if there exists t0 ∈ [0,∞) such that for all t > t0,

etA ≥ 0 (etA > 0). The smallest such nonnegative number is called the exponential index of A.

Definition 2.3 ([13]). A matrix A ∈ Rn,n possesses

• the Perron-Frobenius property if it has a positive dominant eigenvalue λ1 > 0 and the corresponding

eigenvector x(1) ≥ 0;

• the strong Perron-Frobenius property if it has a positive strictly dominant eigenvalue λ1 > 0, λ1 >

|λi|, i = 2, 3, . . . , n, and the corresponding eigenvector x(1) > 0.

Theorem 2.4 (Perron-Frobenius). Let A ≥ 0 be an irreducible n× n matrix. Then,

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A);

(ii) to ρ(A) there corresponds an eigenvector x > 0;

(iii) ρ(A) increases when any entry of A increases;

(iv) ρ(A) is a simple eigenvalue of A;

(v) all nonnegative eigenvectors of A are multiples of x.

Theorem 2.5 ([13], Theorem 2.3). Let A ∈ Rn,n be an eventually nonnegative matrix which is not

nilpotent. Then, both matrices A and AT possess the Perron-Frobenius property.

3. Eigenvectors of Mv−matrices. We will study the eigenvalues and eigenvectors of Mv−matrices,

e.g., matrices that are based on eventually nonnegative matrices.

Theorem 3.1. Let A be an irreducible Mv−matrix, written in the form sI−B with B
v
≥ 0, 0 ≤ ρ(B) ≤ s

and index0B ≤ 1. Then, to the smallest real eigenvalue λ1 ≥ 0 of A there correspond positive right and left

eigenvectors. Moreover, λ1 < Reλi, i = 2, 3, . . . , n.
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Proof. Suppose that µ1 = ρ(B) ≥ |µ2| ≥ · · · ≥ |µn| are the eigenvalues of B and let k0 is the power index

of B. Since B is irreducible and index0B ≤ 1, from [12, Theorem 3.4] we obtain that there exist integers

k ≥ k0 such that Bk is irreducible and nonnegative. This means, see also [2, Proposition 2.1], either:

1. Bk is a primitive matrix, for all k ≥ k0, which means that ρ(Bk) is a simple eigenvalue of Bk, for

all k ≥ k0, implying that ρ(B) is a simple one of B.

2. Bk is a nonnegative cyclic matrix of index r, for k ≥ k0, k 6= mr, m integer, implying that ρ(Bk) is

a simple eigenvalue of Bk and therefore ρ(B) is a simple one of B.

In both cases, the right and left Perron eigenvectors of Bk are positive and so are the ones of B. For the

other eigenvalues of B there hold Reµi < ρ(B) = µ1, i = 2, 3, . . . , n. Thus, for the eigenvalues of A = sI−B
there hold λ1 = s − ρ(B) < Reλi = s − Reµi, i = 2, 3, . . . , n. Obviously, to λ1 there correspond the same

right and left eigenvectors.

Example 3.2. (See [14, Example 3.11]) We consider the matrix

A = 3I −B, B =


1 1 1 1

1 1 1 1

−1 1 1 1

1 −1 1 1

 v
≥ 0.

B is an irreducible matrix with index0B = 2. All powers Bk, k ≥ 2 become reducible and Theorem 3.1

does not hold: ρ(B) = 2 is a double eigenvalue and the right and left eigenvectors are both nonnegative and

not positive.

Corollary 3.3. Let A be an irreducible symmetric Mv−matrix. Then, its smallest real eigenvalue

λ1 ≥ 0 is a simple one, and the corresponding eigenvector is positive.

Proof. In view of the symmetry, we get that index0B ≤ 1 and the assumptions of Theorem 3.1 hold

true.

We have to remark that the assumption index0B ≤ 1 is sufficient and not necessary. This is shown in

the following example.

Example 3.4. Consider

A = 3I −B, B =


0.0163 −0.2113 0.6667 0.2887 0.5163

0.183 0.5 0 1 0.6830

0.6667 0.5774 0.3335 0.5774 0.6667

0.3943 0.5 1.1547 0 −0.1057

−0.3497 0.7887 0.6667 0.2887 −0.8497


v
≥ 0.

B is irreducible with index0B = 2. However, ρ(B) = 2 is a simple eigenvalue, both right and left eigenvectors

of B are positive: x = y = (0.2887 0.5 0.5774 0.5 0.2887)T . Bk is a positive matrix for k ≥ 4,

B4 =


0.7622 2.56 3.4887 2.06 0.2622

1.4047 4.2504 5.7741 3.7504 0.9047

2.3339 4.6201 5.6683 4.6201 2.3339

3.2144 3.7506 3.465 4.2506 3.7144

2.5717 2.0598 1.1792 2.5598 3.0717

 .
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The following theorem shows the equivalent conditions for irreducible Mv-matrices which may have

positive right and left eigenvectors corresponding to the smallest eigenvalue.

Theorem 3.5. Let A be an irreducible Mv−matrix, written in the form sI−B with B
v
≥ 0, 0 ≤ ρ(B) ≤ s.

Then, the following statements are equivalent:

(i) There exists α > 0 such that B + αI
v
≥ 0.

(ii) B + αI
v
> 0 for all α > 0.

(iii) The smallest real eigenvalue λ1 ≥ 0 of A is simple, to λ1 correspond positive right and left eigenvec-

tors and λ1 < Reλi, i = 2, 3, . . . , n.

Proof. (ii)⇒ (i): Holds trivially.

(ii) ⇒ (iii): Since B + αI
v
> 0 for all α > 0, it has positive right and left eigenvectors and obviously

statement (iii) holds true.

(iii) ⇒ (ii): Since the right and left eigenvectors of λ1 are positive, so are the Perron eigenvectors of

B and therefore of B + αI for all α > 0. Since B
v
≥ 0 and λ1 is simple, for the eigenvalues of B there

hold ρ(B) = µ1 ≥ |µ2| ≥ |µ3| ≥ · · · ≥ |µn| and µ1 > Reµ2. For any α > 0, the eigenvalues of B + αI are

µi +α, i = 1, 2, 3, . . . , n. Then, |µ2 +α|2 = (Reµ2 +α)2 + (Imµ2)2 = (Reµ2)2 + 2αReµ2 +α2 + (Imµ2)2 =

|µ2|2 + 2αReµ2 +α2 < µ2
1 + 2αµ1 +α2 = (µ1 +α)2. Thus, µ1 +α > |µ2 +α| which means that B +αI and

BT + αI have the strong Perron-Frobenius property, implying that, [13, Theorem 2.2], B + αI
v
> 0.

To complete the proof, we only need to show (i) implies (iii). Suppose (i) holds. Then we distinguish

two cases.

Case 1: index0B ≤ 1 or index0(B + αI) ≤ 1.

Then, Bk ≥ 0 or (B + αI)k ≥ 0 remains irreducible for all k = rm + 1 ≥ k0, where r is the index

of cyclicity of B (r = 1 if B is primitive) and k0 = max {k0(B), k0(B + αI)}. This means that the right

and left Perron eigenvectors of Bk or (B + αI)k are positive. But these eigenvectors are also the Perron

eigenvectors of B. Therefore, statement (iii) holds true.

Case 2: index0B ≥ 2 and index0(B + αI) ≥ 2.

Let r0 = index0(B), rα = index0(B+αI), k0 is the power index of B and kα the power index of B+αI.

If Bk is an irreducible matrix for some k ≥ k0 or (B + αI)k is irreducible for some k ≥ kα, then, obviously

B has positive right and left Perron vectors and statement (iii) holds true. Thus, we suppose that Bk and

(B + αI)k are reducible matrices for all k ≥ k0 and k ≥ kα, respectively. First, we will prove that Bk and

(B + αI)k do not have the same Frobenius normal form. Looking for a contradiction, we suppose these two

matrices have the same Frobenius normal form. For simplicity, we assume that Bk and (B+αI)k are in their

reducible form: Bk =

[
B

(k)
11 B

(k)
12

0 B
(k)
22

]
and (B+αI)k =

[
(Bα)

(k)
11 (Bα)

(k)
12

0 (Bα)
(k)
22

]
, where B

(k)
11 , (Bα)

(k)
11 ∈ Rm,m

and B
(k)
22 , (Bα)

(k)
22 ∈ Rn−m,n−m. On the other hand, we have that

(3.4) (B + αI)k = αkI +

(
k

1

)
αk−1B +

(
k

2

)
αk−2B2 + · · ·+Bk.

For each row index i = m+1,m+2, . . . , n and column index j = 1, 2, . . . ,m that correspond to zero entries
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of both matrices, relation (3.4) takes the form

(3.5)
(
(B + αI)k

)
ij

=

(
k

1

)
αk−1bij +

(
k

2

)
αk−2(B2)ij + · · ·+

(
k

r0 − 1

)
αk−r0+1(Br0−1)ij = 0,

for all k ≥ max{r0, kα}.

Taking r0 − 1 successive values of k; i.e., k, k + 1, . . . , k + r0 − 2, we get the linear system

(3.6)

(
k
1

)
αk−1bij +

(
k
2

)
αk−2(B2)ij + · · · +

(
k

r0−1
)
αk−r0+1(Br0−1)ij = 0,(

k+1
1

)
αkbij +

(
k+1
2

)
αk−1(B2)ij + · · · +

(
k+1
r0−1

)
αk−r0+2(Br0−1)ij = 0,

...
...

...
...(

k+r0−2
1

)
αk+r0−3bij +

(
k+r0−2

2

)
αk+r0−4(B2)ij + · · · +

(
k+r0−2
r0−1

)
αk−1(Br0−1)ij = 0,

considering as unknown vector:
(
bij (B2)ij · · · (Br0−1)ij

)T
. The coefficient matrix is a Vandermonde

type matrix, and thus, it is a nonsingular one. Obviously, this system has the unique solution of zeros. This

means that bij = 0, and this happens for all i = m+ 1,m+ 2, . . . , n and j = 1, 2, 3, . . . ,m. Thus, the matrix

B is a reducible matrix which constitutes a contradiction.

Now we consider the matrix

(3.7) C(k) = Bk + (B + αI)k

for some k ≥ max{r0, rα, k0, kα}. This matrix is a nonnegative irreducible one, since otherwise Bk and

(B + αI)k should have the same reducible form and we arrive at the same contradiction. Since C(k) is

a polynomial of B, it has the same eigenvectors of B, Thus, the Perron right and left eigenvectors of B

are those of C(k), which are positive vectors, proving the validity of statement (iii), and the proof is

complete.

The above theorem does not hold for GM−matrices. From the definition of GM−matrices and [13] we

obtain that any GM−matrix (which is not an Mv-matrix) may have nonnegative eigenvector corresponding

to its spectral radius (see [3], Example 2.2).

The following examples show that if a matrix has index0B ≥ 2 but there exists α > 0 such that

B + αI
v
≥ 0, Theorem 3.5 is valid.

Example 3.6. Consider

A = 14I −B, B =



4 −3 15 1 2 4

1 −1 7 1 1 1

1.5 1 3 1.5 1.5 1.5

2 1 16 2 2 1

1.5 −1 1 1.5 1.5 1.5

1.5 1.5 1.5 1.5 1.5 1.5


v
≥ 0.
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B is irreducible with index0B = 2. Bk is a positive matrix for k ≥ 3,

B3 =



554 21.75 1757.25 414.5 461 519.5

233.75 10.75 756.25 178.25 196.75 218.25

254.375 34.25 756.25 197.375 216.375 239.875

543.75 42.75 1722.25 419.25 460.75 508.25

179.375 21.75 528.75 137.375 151.375 169.875

235.125 37.875 680.625 183.375 200.625 222.375


.

ρ(B) = 12.8955 is a simple eigenvalue, both right and left eigenvectors of B: (0.6137 0.2621 0.2807 0.6087

0.1965 0.2582)T and (0.2825 0.0282 0.8631 0.2168 0.2387 0.2657)T are positive since there exist α = 4,

such that B + 4I is an eventually nonnegative matrix with power index 4 ((B + αI)k > 0, ∀k ≥ 4).

Example 3.7. Consider the matrix

B =
1

155



2021 4346 3318 −8517 9414 −5835

−2810 −3895 −2225 9325 −9060 6120

2402 3642 2591 −7699 8438 −5055

−318 −628 −394 1591 −1392 1270

−877 −2272 −1536 5289 −5193 3405

−1224 −2464 −1227 6583 −5896 3815


v
≥ 0.

B is irreducible, σ(B) = {7, 5, −3, −3, 0, 0} with index0B = 2 and index−3B = 2. Bk is a positive matrix

for k ≥ 15. ρ(B) = 7 is a simple eigenvalue, both right and left eigenvectors of B: (0.3123 0.4685 0.3123

0.3123 0.3123 0.6247)T and (0.3041 0.3041 0.5744 0.4054 0.5406 0.1689)T are positive since there exists

α = 3, such that B+ 3I is an eventually nonnegative matrix with power index 23 ((B+αI)k > 0, ∀k ≥ 23).

Example 3.8. Consider the matrix

B =


0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

1 −1 1 1

−1 1 1 1

 v
≥ 0.

B is irreducible, σ(B) = {2, 1, 0, 0} with index0B = 2. The right and left eigenvectors of B corresponding

to ρ(B) are (1 1 1 1)T > 0 and (0 0 1 1)T ≥ 0, respectively. However, the left eigenvector (0 0 1 1)
T

is a

nonnegative vector. Bk is a reducible matrix for k ≥ 2,

Bk =


0.5 0.5 2k−1 − 0.5 2k−1 − 0.5

0.5 0.5 2k−1 − 0.5 2k−1 − 0.5

0 0 2k−1 2k−1

0 0 2k−1 2k−1

 .

If α > 0, then B + αI is not an eventually nonnegative matrix because (B + αI)k has the submatrix

(B + αI)
(k)
21 =

[
kαk−1 −kαk−1
−kαk−1 kαk−1

]
that always has negative entries (−kαk−1).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society 
Volume 35, pp. 424-440, September 2019. 

431 Perron-Frobenius Theory of Mv−matrices and Eventually Exponentially Nonnegative Matrices

There is no α > 0 such that B + αI
v
≥ 0. Properties (i) and (ii) of Theorem 3.5 do not hold true and

the left Perron vector of B is nonnegative and not positive.

Theorem 3.9. The eigenvectors and generalized eigenvectors corresponding to λ 6= ρ(B) of an irre-

ducible eventually nonnegative matrix B with index0B ≤ 1 are not nonnegative vectors.

Proof. Let λ 6= ρ(B) and y be a nonnegative right eigenvector corresponding to λ. Let also w > 0 be

the left eigenvector corresponding to ρ(B). Then

wTBy = ρ(B)wT y > 0 and wTBy = λwT y > 0,

which means that λ = ρ(B) and constitutes a contradiction.

Let ys be a nonnegative generalized eigenvector corresponding to λ 6= ρ(B) of order s. [y1 y2 · · · ys · · · yq]
is the chain of the generalized eigenspace of λ. Then, ys is an eigenvector of (B − λI)s and w is a left

eigenvector of B − λI corresponding to the eigenvalue (ρ(B)− λ)s. Hence,

wT (B − λI)sys = 0 and wT (B − λI)sys = (ρ(B)− λ)swT ys > 0,

which constitutes a contradiction.

The proof for the left eigenvector is analogous.

Remark 3.10. Theorem 3.9 could be stated equivalently as:

The eigenvectors and generalized eigenvectors corresponding to λ 6= λmin(A) of an irreducible Mv−matrix

A = sI −B with index0B ≤ 1 are not nonnegative vectors.

The assumption index0B ≤ 1 is sufficient since otherwise the matrix Bk may be reducible and the

Perron eigenvectors should be nonnegative and not positive. But this assumption is not necessary. We now

state and prove sufficient and necessary conditions in the following theorem.

Theorem 3.11. The right and left eigenvectors and generalized eigenvectors corresponding to the eigen-

value λ 6= ρ(B) of an irreducible eventually nonnegative matrix B are not nonnegative vectors iff there exists

α > 0 such that B + αI
v
≥ 0.

Proof. In the proof of Theorem 3.5, we have proven that the Perron eigenvector of B is positive iff there

exists α > 0 such that B + αI
v
≥ 0, even if index0B ≥ 2 and index0(B + αI) ≥ 2. Thus, from Theorem 3.9,

we get our result.

Remark 3.12. As in Remark 3.10, Theorem 3.11 could be stated in an analogous way for Mv−matrices.

We now give examples which support the result of Theorem 3.11. The following example shows that

if there is no α > 0 such that B + αI
v
≥ 0, the right and left eigenvectors and generalized eigenvectors

corresponding to the eigenvalue λ 6= ρ(B) may be nonnegative.

Example 3.13. Consider the matrix

B =


1 1 0.5 0.5

1 1 0.5 0.5

1 −1 0.5 0.5

−1 1 0.5 0.5

 v
≥ 0.
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B is an irreducible matrix, σ(B) = {2, 1, 0, 0} with index0B = 2. The right and left eigenvectors of B

corresponding to ρ(B) are (1 1 0 0)
T ≥ 0 and (1 1 1 1)

T
> 0, respectively. The right and left eigenvectors

of B corresponding to 1 are (−1 − 1 1 1)
T

and (0 0 1 1)
T ≥ 0, respectively. The right and left eigenvectors

of B corresponding to 0 are (0 0 1 − 1)
T

and (−1 1 0 0)
T

, respectively.

However, the left eigenvector corresponding to λ = 1 : (0 0 1 1)
T

is a nonnegative vector. The power

of B:

Bk =


2k−1 2k−1 2k−1 − 0.5 2k−1 − 0.5

2k−1 2k−1 2k−1 − 0.5 2k−1 − 0.5

0 0 0.5 0.5

0 0 0.5 0.5


is a reducible nonnegative matrix for k ≥ 2.

If α > 0, then B + αI is not an eventually nonnegative matrix because (B + αI)k has a submatrix

(B + αI)
(k)
21 =

[
kαk−1 −kαk−1
−kαk−1 kαk−1

]
that always has negative entries (−kαk−1).

There is no α > 0 such that B + αI
v
≥ 0. The assumption of Theorem 3.11 does not hold and the left

eigenvector corresponding to the eigenvalue λ = 1 6= 2 = ρ(B) of B is a nonnegative vector.

The following example shows that the assumption index0B ≤ 1 in Theorem 3.9 is sufficient and not

necessary.

Example 3.14. Consider the matrix

B =


2 4 2 5 −1

3 2 4 4 3

1 5 −2 4 −5

1 −2 2 −1 4

2 −4 4 −2 8


v
≥ 0.

B is an irreducible matrix, σ(B) = {7.7572, 2.8635, 0, 0, −1.6207} with index0B = 2. The right

and left eigenvectors of B corresponding to ρ(B) are (0.6250 0.6735 0.3794 0.0485 0.0970)T > 0 and

(0.4692 0.2632 0.4945 0.5105 0.4532)T > 0, respectively. The eigenvectors or generalized right and left

eigenvectors corresponding to λ 6= ρ(B) of B are, respectively, as follows: the eigenvectors (0.3886 0.0581

0.5473 − 0.3305 − 0.6610)T and (−0.2212 0.4338 − 0.2465 0.3106 − 0.7782)T corresponding to 2.8635;

the eigenvectors (−0.4584 0.6845 − 0.1432 − 0.1991 0.4854)T and (−0.3756 0.3756 0 0.6676 − 0.5216)T

corresponding to 0; the generalized eigenvectors (0.5416 − 0.1301 0.4765 − 0.4115 − 0.5416)T and

(0.4973 − 0.4973 0 − 0.5044 0.5009)T corresponding to 0; the eigenvectors (−0.0107 0.2317 − 0.8077

0.2424 − 0.4848)T and (−0.2566 − 0.2869 0.8064 0.1163 0.4336)T corresponding to −1.6207 which are

not nonnegative vectors.

If α = 2, then B + 2I is an eventually nonnegative matrix with power index 6 ((B + αI)k ≥ 0, ∀k ≥ 6).

From Theorem 3.11, the eigenvectors and generalized eigenvectors corresponding to λ 6= ρ(B) of B are not

nonnegative vectors because there exists α = 2 such that B + αI
v
≥ 0.
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4. Equivalence of eventually exponentially nonnegative and Mv−matrices. Properties con-

necting eventually nonnegative matrices and eventually exponentially nonnegative matrices have been proven

in [14, Theorem 3.7] when index0B ≤ 1. In this section, we give results connecting Mv−matrices and even-

tually exponentially nonnegative matrices for every case of index0B.

First, we prove a lemma for series of the inverse of a matrix A = sI −B.

Lemma 4.1. Let A ∈ Rn,n be an invertible matrix, written in the form A = sI − B. Then, (A−1)
k

is

given in the following series form:

(4.8) (A−1)
k

=
1

sk
I+

1

sk+1

(
k

1

)
B+

1

sk+2

(
k + 1

2

)
B2+

1

sk+3

(
k + 2

3

)
B3+· · ·+ 1

sk+m

(
k +m− 1

m

)
Bm+· · · .

Proof. By induction, for k = 1, the statement is true because

(A−1)
1

=
1

s
(I − 1

s
B)−1 =

1

s
I +

1

s2
B +

1

s3
B2 +

1

s4
B3 + · · ·+ 1

sm+1
Bm + · · ·

=
1

s
I +

1

s2

(
1

1

)
B +

1

s3

(
2

2

)
B2 +

1

s4

(
3

3

)
B3 + · · ·+ 1

sm+1

(
m

m

)
Bm + · · ·

Assume (4.8) holds. Then,

(A−1)
k+1

= (A−1)
k
(A−1)

1

=

(
1

sk
I +

1

sk+1

(
k

1

)
B +

1

sk+2

(
k + 1

2

)
B2 +

1

sk+3

(
k + 2

3

)
B3 + · · ·+ 1

sk+m

(
k +m− 1

m

)
Bm + · · ·

)
×
(

1

s
I +

1

s2
B +

1

s3
B2 + · · ·+ 1

sm+1
Bm + · · ·

)
=

1

sk+1
I +

1

sk+2

((
k

1

)
+

(
k − 1

0

))
B +

1

sk+3

((
k + 1

2

)
+

(
k

1

)
+

(
k − 1

0

))
B2

+ · · ·+ 1

sk+m+1

((
k +m− 1

m

)
+

(
k +m− 2

m− 1

)
+ · · ·+

(
k

1

)
+

(
k − 1

0

))
Bm + · · ·

We have to prove that

(4.9)

(
k + i− 1

i

)
+

(
k + i− 2

i− 1

)
+ · · ·+

(
k − 1

0

)
=

(
k + i

i

)
, i = 1, 2, . . . ,m.

For this, we use induction:

For i = 1, we have
(
k
1

)
+
(
k−1
0

)
= k + 1 =

(
k+1
1

)
, thus (4.9) holds true.

Suppose that (4.9) holds true for i = j, we prove it for i = j + 1:(
k + j

j + 1

)
+

(
k + j − 1

j

)
+

(
k + j − 2

j − 1

)
+ · · ·+

(
k

1

)
+

(
k − 1

0

)
=

(
k + j

j + 1

)
+

(
k + j

j

)
=

(k + j)(k + j − 1) · · · k
(j + 1)!

+
(k + j)(k + j − 1) · · · (k + 1)

j!

=
(k + j)(k + j − 1) · · · (k + 1)

j!

(
k

j + 1
+ 1

)
=

(k + j)(k + j − 1) · · · (k + 1)

j!

k + j + 1

j + 1
=

(
k + j + 1

j + 1

)
,
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and the proof is complete.

Theorem 4.2. Let B ∈ Rn,n be an eventually nonnegative matrix. Let A ∈ Rn,n, of the form A = sI−B,

is the associated Mv−matrix and 0 ≤ ρ(B) < s. Then, the following statements are equivalent:

(i) There exists α > 0 such that (B + αI)
v
≥ 0.

(ii) B is an eventually exponentially nonnegative matrix.

(iii) A−1
v
≥ 0.

Proof. Statement (i) means that there exists kα > 0 such that (B + αI)
k ≥ 0 for all k ≥ kα. Let B has

power index k0 and we choose k > max{k0, kα}. Then,

(B + αI)
k

= αk

(
I +

(
k

1

)(
B

α

)
+

(
k

2

)(
B

α

)2

+ · · ·+
(

k

k0 − 1

)(
B

α

)k0−1
+

(
k

k0

)(
B

α

)k0
+ · · ·+

(
k

k

)(
B

α

)k)
≥ 0.(4.10)

Statement (ii) means that there exists t0 > 0 such that etB ≥ 0 for all t > t0. Thus,

etB = I + tB +
t2

2!
B2 +

t3

3!
B3 + · · ·+ tk0−1

(k0 − 1)!
Bk0−1 +

tk0

k0!
Bk0 + · · · ≥ 0.(4.11)

Statement (iii) means that there exists m0 > 0 such that (A−1)
m ≥ 0 for all m > m0. Taking into

account the expansion proven in Lemma 4.1 we get that

(A−1)
m

=
1

sm

(
I +

(
m

1

)(
B

s

)
+

(
m+ 1

2

)(
B

s

)2

(4.12)

+ · · ·+
(
m+ k0 − 2

k0 − 1

)(
B

s

)k0−1
+

(
m+ k0 − 1

k0

)(
B

s

)k0
+ · · ·

)
≥ 0.

We observe that in (4.10), we have a polynomial in B which should be nonnegative, while in (4.11) and

(4.12) we have series expansions in B to be nonnegative. Since B
v
≥ 0, the first k0 terms may have negative

entries in all cases. These entries should be the same for the three cases, because all the coefficients in the

powers of B are positive.

Case 1: B is irreducible and index0B ≤ 1.

Suppose first that B is not a weakly cyclic matrix. Then, both right and left Perron vectors of B are

positive, and thus, B should be eventually positive and the validity of (i) is guaranteed from Theorem 3.5.

This means that the last k−k0+1 terms dominate the first k0 ones in order to eliminate the negative entries.

We observe that in statement (ii) we can choose a large enough t such that the (k0 + 1)st term (monomial

in t of degree k0) should dominate all the previous sum (polynomial in t of degree k0 − 1). Thus, (i)⇒ (ii)

is proven. We observe also that in statement (iii) we can choose large enough m such that the (k0 + 1)st

term should dominate all the previous sum, since the coefficient of this term is a polynomial in m of degree

k0 while the coefficients of the previous terms, are polynomials in m of smaller degrees. Thus, (i)⇒ (iii) is

proven.
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The proof in the opposite directions is exactly the same. Indeed, the validity of (ii) means that the

series of (k0 + 1)st term and thereafter, dominates the first sum. Then we can choose a large enough k such

that the (k0 + 1)st term of polynomial (4.10) should dominate all the previous sum, proving that (ii)⇒ (i).

Similarly, we prove that (ii)⇒ (iii), (iii)⇒ (i) and (iii)⇒ (ii).

In the case where B is a weakly cyclic matrix of index r, we consider r sums of (4.10), taking in each

sum the terms of modulus r, i.e.,

αk

((
k

i

)(
B

α

)i
+

(
k

r + i

)(
B

α

)r+i
+

(
k

2r + i

)(
B

α

)2r+i

+ · · ·

)
, i = 0, 1, . . . , r − 1.

Each term in this sum has the same cyclic structure. Analogously, we consider r subseries of (4.11) and

(4.12) taking in each subseries the powers of modulus r, as in (4.10). Then, the proof follows the same steps

as before, connecting each polynomial of (4.10) with each subseries of (4.11) and (4.12) having the same

cyclic structure.

Case 2: B is irreducible and index0B ≥ 2.

Suppose first that (i) holds true. Then, from Theorem 3.5 we obtain that both the right and left Perron

vectors of B are positive. Thus, there exists k0 such that Bk is irreducible and Bk ≥ 0 for all k ≥ k0. Then,

to prove (i)⇒ (ii) and (i)⇒ (iii) we follow the same arguments as in case 1.

Now suppose that (ii) holds true. Then, from (4.11), since B is irreducible, etB is irreducible even if we

consider that Bk maybe reducible for all k ≥ r0 (r0 = index0B). Otherwise, supposing etB is reducible, we

arrive at the same contradiction following the proof of case 2 in Theorem 3.5, where in (3.5) we consider the

associated terms of
(
etB
)
ij

instead of
(

(B + αI)
k
)
ij

, and system (3.6) is taken by choosing different values

of t. Thus, etB , and therefore B, has positive right and left Perron vectors. Now, following the same steps

as in the proof of case 1, we prove that (ii)⇒ (i) and (ii)⇒ (iii).

Finally, we suppose that (iii) holds true. Then, from (4.12), following the same steps previously, we

obtain that (A−1)
m

is irreducible and thus, (iii)⇒ (i) and (iii)⇒ (ii).

Case 3: B is reducible.

For simplicity, and without loss of generality, suppose that B is in its Frobenius normal form

(4.13) B =


B11 B12 · · · B1q

B22 · · · B2q

. . .
...

Bqq

 ,

where Bii, i = 1, 2, . . . , q are square irreducible matrices or 1× 1 zero ones. Since B
v
≥ 0, we have that

(4.14) Bk =


Bk11 B

(k)
12 · · · B

(k)
1q

Bk22 · · · B
(k)
2q

. . .
...

Bkqq

 ≥ 0,
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for all k ≥ k0. If Bii is 1 × 1 zero matrix then so is Bkii, ∀k ≥ 0. Thus, ((B + αI)k)ii = αk > 0 for

relation (4.10). For relation (4.11), we have etB = I+
∞∑
j=1

(tB)j

j! , thus (etB)ii = 1 > 0, and for relation (4.12),

(A−1)
m

= 1
sm

(
I +

∞∑
j=1

(
m+j−1

j

)(
B
s

)j)
, we get ((A−1)m)ii = 1

sm > 0.

If Bii is irreducible, Bii
v
≥ 0, then we follow the proof of case 1, if index0Bii ≤ 1 or of case 2, if

index0Bii ≥ 2, where we consider the matrix Bii in the places of B. Thus, the proof of theorem concerning

the diagonal blocks is complete.

We consider the (i, j) off diagonal block, i < j. Then, (4.10) gives us

((B + αI)k)ij = αk

((
k

1

)(
Bij
α

)
+

(
k

2

)(
B

(2)
ij

α2

)
+ · · ·+

(
k

k

)(
B

(k)
ij

αk

))
,

(4.11) presents

(etB)ij = tBij +
t2

2!
B

(2)
ij + · · ·+ tk0

k0!
B

(k0)
ij + · · · ,

while (4.12)

((A−1)m)ij =
1

sm

((
m

1

)(
Bij
s

)
+

(
m+ 1

2

)(
B

(2)
ij

s2

)
+ · · ·+

(
m+ k0 − 1

k0

)(
B

(k0)
ij

sk0

)
+ · · ·

)
.

Let Bij ∈ Rin,jn . We consider the (µ, ν) entry of Bij , 1 ≤ µ ≤ in, 1 ≤ ν ≤ jn. Then, the sequence of

matrices
{
B

(k)
ij

}∞
k=1

defines a sequence of real number for the associated (µ, ν) entries:

{(
B

(k)
ij

)
µ,ν

}∞
k=1

.

For simplicity, we symbolize this sequence by {bk}∞k=1. From the fact that B
v
≥ 0, we have that bk ≥ 0,

∀k ≥ k0. Relations (4.10), (4.11) and (4.12) for this entry, are given us

(
((B + αI)k)ij

)
µ,ν

= αk−1
(
k

1

)
b1 + αk−2

(
k

2

)
b2 + · · ·+

(
k

k

)
bk,

(
(etB)ij

)
µ,ν

= tb1 +
t2

2!
b2 + · · ·+ tk0

k0!
bk0 + · · · ,

and (
((A−1)m)ij

)
µ,ν

=
1

sm+1

(
m

1

)
b1 +

1

sm+2

(
m+ 1

2

)
b2 + · · ·+ 1

sm+k0

(
m+ k0 − 1

k0

)
bk0 + · · · .

Suppose first that {bk}∞k=1 is the zero sequence: bk = 0, ∀k ≥ 1, then the relations above give all zeros.

Thus, the equivalence of the three statements of the Theorem, concerning this entry, is trivially proven.

Let bk = 0 for all k > k1 > 0. The validity of statement (i) means that bk1 > 0 and k is chosen large

enough, such that the last nonzero term αk−k1
(
k
k1

)
bk1 dominates all the previous sum. Then, the same hold
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true for the terms tk1

k1!
bk1 and 1

sm+k1

(
m+k1−1

k1

)
bk1 for large enough t and m, respectively. This is because

the k1 terms are polynomials in k, in t or in m, respectively, of degree k1, while all the previous sums are

polynomials of smaller degree.

Finally, suppose that bk has nonzero entries as k tends to infinity. Then, we choose k1 > k0 such that

bk1 > 0. We follow the same argument of the previous case, for such k1, to prove the equivalence of (i), (ii)

and (iii), for the associated entry.

Applying the same argument for any entry of Bij , and every off-diagonal block, the theorem is

proven.

The following examples show the validity of Theorem 4.2 for all cases.

Example 4.3. Consider the Mv−matrix

A = 7I −B, B =


3 2 −1 −2

1 2 5 −1

1 3 1 3

1 −1 1 1

 .
ρ(B) = 5.9389 and B is an irreducible eventually nonnegative matrix with power index 8 and index0B = 0.

The right and left Perron eigenvectors are (0.3251 0.7714 0.5467 0.0203)T and (0.4452 0.6676 0.5950

0.0459)T , respectively.

If α = 2, then B+2I is an eventually nonnegative matrix with power index 11 ((B+αI)k ≥ 0, ∀k ≥ 11).

From Theorem 4.2, the matrix

A−1 =


0.3042 0.1993 0.1014 −0.0839

0.2483 0.5420 0.4161 0.0350

0.1958 0.3007 0.3986 0.0839

0.0420 −0.0070 0.0140 0.1608


is an eventually nonnegative matrix, (A−1)

k ≥ 0, ∀k ≥ 3.

Also, the matrix B is an eventually exponentially nonnegative matrix. Choosing t = 1.8275, we get

etB =


7536.4060 11383.9671 10170.9115 796.2579

18034.4030 26999.1535 24064.8506 1877.0609

12781.4358 19145.2405 17045.1966 1290.6572

468.1169 723.8724 623.3201 0.0124

 > 0.

Example 4.4. Consider the Mv−matrix

A = 8I −B, B =


6 2 −2 5 −1

2 4 1 1 2

2 4 1 −1 3

−3 1 2 −4 1

−3 1 2 −4 1

 .
B is an irreducible eventually nonnegative matrix with power index 8 and σ(B) = {6.6286, 3.4354, 0, 0,

− 2.064} with index0B = 2. The right and left Perron eigenvectors are (0.4311 0.6396 0.6301 0.0630

0.0630)T and (0.5254 0.7679 0.1213 0.2026 0.2802)T , respectively, even if index0B = 2.
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If α = 1, then B + I is an eventually nonnegative matrix with power index 8 ((B + αI)k ≥ 0, ∀k ≥ 8).

From Theorem 4.2, the matrix

A−1 =


0.3988 0.2262 −0.0238 0.1793 0.0231

0.2202 0.4881 0.0714 0.0766 0.1496

0.2262 0.3571 0.1905 0.0551 0.1592

−0.0476 0.0476 0.0476 0.0476 0.0476

−0.0476 0.0476 0.0476 −0.0774 0.1726


is an eventually nonnegative matrix, (A−1)

k ≥ 0, ∀k ≥ 4.

The matrix B is also an eventually exponentially nonnegative matrix. Choosing t = 1.1925, we get

etB =


809.6378 1078.1401 134.7511 359.9745 348.2426

1084.3121 1617.5316 266.1097 403.9465 603.3538

1078.1401 1591.0872 257.4735 407.0276 588.6072

72.1968 164.3321 46.0677 1.0062 85.2909

72.1968 164.3321 46.0677 1.0062 85.2909

 > 0.

Example 4.5. Consider the reducible Mv−matrix

A = 7I −B, B =



4 3 1 −1 −2 1

5 −2 4 4 2 −4

0 0 2 3 1 2

0 0 1 3 2 1

0 0 1 −1 −2 −1

0 0 1 −1 −2 −2


.

ρ(B) = 5.8990 and B is an eventually nonnegative matrix with power index 18 and the right and left Perron

eigenvectors are (0.8499 0.5348 0 0 0 0)T and (0.5270 0.2002 0.5559 0.5801 0.0920 0.1679)T , respectively.

The block matrix B11 =

[
4 3

5 −2

]
is an irreducible eventually nonnegative matrix with power index 4 and

B22 =


2 3 1 2

1 3 2 1

1 −1 −2 −1

1 −1 −2 −2

 is also an irreducible eventually nonnegative matrix with power index 18 and

σ(B22) = {4.4051,−3.4051, 0, 0}, with index0B22 = 2.

If α = 5, then B + 5I is an eventually nonnegative matrix with power index 8 ((B + αI)k ≥ 0, ∀k ≥ 8).

From Theorem 4.2, the matrix

A−1 =



0.75 0.25 0.4456 0.3696 −0.0045 0.1128

0.4167 0.25 0.3927 0.4049 0.0836 0.0581

0 0 0.2562 0.1625 0.0491 0.0695

0 0 0.0771 0.2819 0.062 0.0416

0 0 0.0181 −0.0121 0.1126 −0.0098

0 0 0.0159 −0.0106 −0.0265 0.1164


is an eventually nonnegative matrix, (A−1)

k ≥ 0, ∀k ≥ 5.
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The matrix B is also an eventually exponentially nonnegative matrix. Choosing t = 1.0584, we get

etB =



414.9039 157.5727 349.3079 327.0651 30.9242 90.9654

262.6211 99.7586 261.8324 267.2673 39.594 76.0199

0 0 49.6756 70.932 22.2564 23.3148

0 0 37.1674 56.5734 18.406 17.3476

0 0 1.989 1.6553 0.6663 0.7247

0 0 1.5059 1.5061 0.0002 1.0002


≥ 0.

5. Summary. To study the eigenvectors of an Mv−matrix, we categorize into Mv−matrices with

index0B ≤ 1 and Mv−matrices with index0B > 1 and we obtain results as follows:

1. For an irreducible Mv−matrix with index0B ≤ 1, to the smallest real eigenvalue λ1 ≥ 0 of A there

correspond positive right and left eigenvectors.

2. We gave equivalent statements for Mv−matrices with index0B > 1 to have positive right and left

Perron eigenvectors.

3. For an irreducible eventually nonnegative matrix B with index0B ≤ 1, its eigenvectors and gener-

alized eigenvectors corresponding to λ 6= ρ(B) are not nonnegative vectors.

4. For an irreducible eventually nonnegative matrix B (with index0B ≤ 1 or index0B > 1), its right

and left eigenvectors and generalized eigenvectors corresponding to λ 6= ρ(B) are not nonnegative

vectors iff there exists α > 0 such that B + αI
v
≥ 0.

Finally, we gave and proved equivalent properties of eventually exponentially nonnegative and Mv−ma-

trices.

It is trivial from the definition of GM−matrices and [13] that any GM−matrix (which is not an Mv-

matrix) may have nonnegative eigenvector corresponding to its spectral radius. Hence, Theorems 3.1 and

3.5 do not hold for GM−matrices.
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