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INEQUALITIES FOR SECTOR MATRICES AND POSITIVE LINEAR MAPS∗

FUPING TAN† AND HUIMIN CHEN‡

Abstract. Ando proved that if A,B are positive definite, then for any positive linear map Φ, it holds

Φ(A]λB) ≤ Φ(A)]λΦ(B),

where A]λB, 0 ≤ λ ≤ 1, means the weighted geometric mean of A,B. Using the recently defined geometric mean for accretive

matrices, Ando’s result is extended to sector matrices. Some norm inequalities are considered as well.
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1. Introduction. Let Mn be the set of n× n complex matrices. Every A ∈ Mn could be decomposed

as

A = <A+ i=A,

where A∗ means the conjugate transpose of A and <A = A+A∗

2 , =A = A−A∗

2i are called the real, imaginary

part of A, respectively. If <A is positive definite, then we say A is accretive. If both <A and =A are positive

definite, then we say A is accretive-dissipative. This class of matrices has received much attention over the

past few years; see [7, 8, 11, 14, 15, 17, 21] for example. For two Hermitian matrices A,B ∈ Mn, we write

A ≥ B (or B ≤ A) if A − B is positive semidefinite. If A,B ∈ Mn are positive definite, the weighted

geometric mean is defined as

A]λB = A1/2(A−1/2BA−1/2)λA1/2;

the weighted harmonic mean is defined as

A!λB = ((1− λ)A−1 + λB)−1,

where 0 ≤ λ ≤ 1.

In 1979, Ando [1] proved that if A,B ∈ Mn are positive definite, then for any positive linear map Φ, it

holds

Φ(A]λB) ≤ Φ(A)]λΦ(B),(1.1)

Φ(A!λB) ≤ Φ(A)!λΦ(B).(1.2)

On the other hand, Choi’s inequality (see e.g. [2, p. 41]) says that for any positive and unital linear

map Φ, it holds

Φ(A−1) ≥ Φ(A)−1,(1.3)
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where A ∈Mn is positive definite. For a survey on positive linear maps, we refer to Chapter 2 of [2].

In this article, we intend to extend (1.1), (1.2) and (1.3) to sector matrices. In the remaining part of this

section, we introduce this class of matrices and the recently defined weighted geometric mean for accretive

matrices. To our best knowledge, the connection between positive linear maps and sector matrices have not

yet been explored. Our contribution in this article shows that such a connection would be a fruitful topic to

investigate.

Define a sector Sθ on the complex plane

Sθ = {z ∈ C : <z > 0, |=z| ≤ (<z) tan θ},

where θ ∈ [0, π/2) is fixed.

Recall that the numerical range (see, e.g., [9]) of A ∈Mn is defined as the set on the complex plane

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

In [12], if W (A) ⊂ Sθ, then A is called a sector matrix. Clearly, if W (A) ⊂ Sθ, then <A is positive definite.

Therefore, a sector matrix is accretive with extra information about the specified angle θ. Some recent

studies of sector matrices can be found in [4, 5, 6, 12, 19, 20] and references therein.

The geometric mean of two accretive matrices A,B ∈Mn was first brought in by Drury [4], who defined

A]B =

(
2

π

∫ ∞
0

(sA+ s−1B)−1
ds

s

)−1
,(1.4)

in which we continue to use the standard notation just as in the positive definite matrices case. Raissouli,

Moslehian and Furuichi [18] recently defined the following weighted geometric mean of two accretive matrices

A,B ∈Mn,

A]λB =
sinλπ

π

∫ ∞
0

sλ−1(A−1 + sB−1)−1ds,(1.5)

where λ ∈ [0, 1]. It could be verified that when λ = 1/2, the formula (1.5) coincides with the formula (1.4).

The main results and their proofs are given in Section 3, after the preparation of technical lemmas in

Section 2.

2. Lemmas. The first lemma gives the closure property of sector matrices under the positive linear

map.

Lemma 1. Let Φ be a positive linear map. If A ∈ Mn with W (A) ⊂ Sθ, then W (Φ(A)) ⊂ Sθ. In

particular, if A ∈Mn is accretive, then so is Φ(A).

Proof. First of all, note that for any T ∈Mn,

<Φ(T ) = (Φ(T ) + Φ(T )∗)/2

= (Φ(T ) + Φ(T ∗))/2

= Φ((T + T )∗/2) = Φ(<T ),

in which the second equality is by a lemma in [2, p. 50]. That is,

<Φ(T ) = Φ(<T ).
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Similarly, we have

=Φ(T ) = Φ(=T ).

Now since W (A) ⊂ Sθ, by definition we have ±=A ≤ (tan θ)<A. Applying the map Φ to the previous

inequality gives ±Φ(=A) ≤ (tan θ)Φ(<A), equvalently, ±=Φ(A) ≤ (tan θ)<Φ(A), that is, W (Φ(A)) ⊂ Sθ, as

required.

Lemma 2. [13, Lemma 2.4] Let A ∈Mn be accretive. Then

(<A)−1 ≥ <A−1.

A reverse of Lemma 2 is as follows.

Lemma 3. [12, Lemma 3] Let A ∈Mn with W (A) ⊂ Sθ. Then

(<A)−1 ≤ (sec θ)2<A−1.

The following remarkable property about the weighted geometric mean of accretive matrices was proved

by Raissouli, Moslehian and Furuichi.

Lemma 4. [18, Theorem 2.4] Let A,B ∈Mn be accretive and let λ ∈ [0, 1]. Then

<(A]λB) ≥ (<A)]λ(<B).(2.6)

We remark that when λ = 1/2, Lemma 4 was observed in [16]. The next lemma complements Lemma 4.

Lemma 5. Let A,B ∈Mn such that W (A),W (B) ⊂ Sθ and let λ ∈ [0, 1]. Then

(cos θ)2<(A]λB) ≤ (<A)]λ(<B).

Proof. By Lemma 2, we have

<(A−1 + λB−1)−1 ≤ (<A−1 + λ<B−1)−1.

On the other hand, by Lemma 3 we have

<A−1 + λ<B−1 ≥ (cos θ)2((<A)−1 + λ(<B)−1).

Thus,

<(A−1 + λB−1)−1 ≤ (sec θ)2((<A)−1 + λ(<B)−1)−1.

Combining previous two inequalities gives

<(A]λB) =
sinλπ

π

∫ ∞
0

λt−1<(A−1 + λB−1)−1dt

≤ sinλπ

π

∫ ∞
0

λt−1(sec θ)2((<A)−1 + λ(<B)−1)−1dt

= (sec θ)2((<A)]λ(<B)).

The desired result follows.
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Recall that a norm ‖ ·‖ on Mn is unitarily invariant if ‖UAV ‖ = ‖A‖ for any A ∈Mn and for all unitary

matrices U, V ∈Mn. The next lemma is known as the Fan-Hoffman inequality in the literature.

Lemma 6. [3, p. 74] Let A ∈Mn. Then for any unitarily invariant norm ‖ · ‖,

‖<A‖ ≤ ‖A‖.

Lemma 7. [20] Let A ∈Mn such that W (A) ⊂ Sθ. Then for any unitarily invariant norm ‖ · ‖,

cos θ‖A‖ ≤ ‖<A‖.

3. Main results. We start with an extension of (1.1).

Theorem 8. Let A,B ∈Mn such that W (A),W (B) ⊂ Sθ. Then for any positive linear map Φ, it holds

(cos θ)2<Φ(A]λB) ≤ <(Φ(A)]λΦ(B)),(3.7)

where λ ∈ [0, 1].

Proof. Lemma 5 tells us that

(cos θ)2<(A]λB) ≤ (<A)]λ(<B).

Applying the positive linear map Φ to the previous inequality and by Lemma 1, we obtain

(cos θ)2<Φ(A]λB) ≤ Φ((<A)]λ(<B)).

Now we estimate

Φ((<A)]λ(<B)) ≤ Φ(<A)]λΦ(<B)

= (<Φ(A))]λ(<Φ(B))

≤ <(Φ(A)]λΦ(B)),

in which the first inequality by (1.1), the second inequality is by Lemma 4.

Corollary 9. Let A,B ∈ Mn such that W (A),W (B) ⊂ Sθ. Then for any positive linear map Φ and

unitarily invariant norm ‖ · ‖, it holds

(cos θ)3‖Φ(A]λB)‖ ≤ ‖Φ(A)]λΦ(B)‖,(3.8)

where λ ∈ [0, 1].

Proof. By Lemma 7 and by Lemma 1, we have

cos θ‖Φ(A]λB)‖ ≤ ‖<Φ(A]λB)‖.

Then by (3.7) and Lemma 6,

(cos θ)2‖<Φ(A]λB)‖ ≤ ‖<(Φ(A)]λΦ(B))‖ ≤ ‖(Φ(A)]λΦ(B))‖.

The desired result follows.
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Corollary 10. Let A,B ∈ Mn be accretive-dissipative. Then for any positive linear map Φ and uni-

tarily invariant norm ‖ · ‖, it holds
√

2

4
‖Φ(A]λB)‖ ≤ ‖Φ(A)]λΦ(B)‖,(3.9)

where λ ∈ [0, 1].

Proof. It is easy to observe that W (e−iπ/4A) ⊂ Sπ/4, W (e−iπ/4B) ⊂ Sπ/4. Moreover, by (1.5),

(e−iπ/4A)]λ(e−iπ/4B) = e−iπ/4
sinλπ

π

∫ ∞
0

sλ−1(A−1 + sB−1)−1ds

= e−iπ/4(A]λB).

One readily finds that (3.9) follows from (3.8) by specifying θ to be equal to π/4.

Using exactly the same approach, one could state analogous results for the weighted harmonic mean, we

leave the details of the proof for the interested reader.

Theorem 11. Let A,B ∈ Mn such that W (A),W (B) ⊂ Sθ. Then for any positive linear map Φ, it

holds

(cos θ)2<Φ(A!λB) ≤ <(Φ(A)!λΦ(B)),

where λ ∈ [0, 1].

Corollary 12. Let A,B ∈ Mn such that W (A),W (B) ⊂ Sθ. Then for any positive linear map Φ and

unitarily invariant norm ‖ · ‖, it holds

(cos θ)3‖Φ(A!λB)‖ ≤ ‖Φ(A)!λΦ(B)‖,

where λ ∈ [0, 1].

Corollary 13. Let A,B ∈ Mn be accretive-dissipative. Then for any positive linear map Φ and uni-

tarily invariant norm ‖ · ‖, it holds
√

2

4
‖Φ(A!λB)‖ ≤ ‖Φ(A)!λΦ(B)‖,

where λ ∈ [0, 1].

Next, we present an extension of (1.3) and related norm inequalities.

Theorem 14. Let A ∈Mn such that W (A) ⊂ Sθ. Then for any positive unital linear map Φ, it holds

(cos θ)2<Φ−1(A) ≤ <Φ(A−1).

Proof. By Lemma 1 and Lemma 2, we have

<Φ−1(A) ≤ (<Φ(A))−1 = (Φ(<A))−1.

Now by Choi’s inequality (1.3), (Φ(<A))−1 ≤ Φ((<A)−1). Finally, by Lemma 3, we have Φ((<A)−1) ≤
(sec θ)2Φ(<A−1) = (sec θ)2<Φ(A−1). So the desired result follows.
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Similar to the proof of Corollary 9 and Corollary 10, we could present the following results.

Corollary 15. Let A ∈ Mn such that W (A) ⊂ Sθ. Then for any positive unital linear map Φ and

unitarily invariant norm ‖ · ‖, it holds

(cos θ)3‖Φ−1(A)‖ ≤ ‖Φ(A−1)‖.

Corollary 16. Let A ∈ Mn be accretive-dissipative. Then for any positive unital linear map Φ and

unitarily invariant norm ‖ · ‖, it holds
√

2

4
‖Φ−1(A)‖ ≤ ‖Φ(A−1)‖.
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