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A GENERAL METHOD TO OBTAIN THE SPECTRUM AND LOCAL SPECTRA

OF A GRAPH FROM ITS REGULAR PARTITIONS∗
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Abstract. It is well known that, in general, part of the spectrum of a graph can be obtained from the adjacency matrix of

its quotient graph given by a regular partition. In this paper, a method that gives all the spectrum, and also the local spectra,

of a graph from the quotient matrices of some of its regular partitions, is proposed. Moreover, from such partitions, the C-local

multiplicities of any class of vertices C is also determined, and some applications of these parameters in the characterization of

completely regular codes and their inner distributions are described. As examples, it is shown how to find the eigenvalues and

(local) multiplicities of walk-regular, distance-regular, and distance-biregular graphs.
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1. Introduction. It is well known that the (adjacency) spectrum of a graph Γ does not determine, in

general, its whole structure. However, many combinatorial properties of Γ can be derived from its spectrum.

See, for example, the comprehensive textbooks of Biggs [1], Cvetković, Doob, and Sachs [6], Cvetković,

Rowlinson, and Simić [7], and Brouwer and Haemers [3]. In particular, a persisting problem is to show

whether or not a given graph is completely determined by its spectrum (see van Dam and Haemers [11]),

which has led to the following conjecture.

Conjecture 1.1. ([11]) Almost every graph is determined by its spectrum.

The table below, showing the ratio of graphs on n ≤ 12 vertices not determined by their spectrum

(‘n-DS’) to all graphs of order n, may be taken as a support of this conjecture.

n 1 2 3 4 5 6 7 8 9 10 11 12

n-DS 0 0 0 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211 0.188

Thus, there is a big area of research about trying to find, in an efficient way, the spectrum (or at least

a part of it) for infinite families of graphs. In particular, some methods to do so are known for graphs with

high symmetry and/or regularity. These include, for instance, the distance-regular graphs, Cayley graphs,

lifted graphs, etc. In contrast, much less is known about finding the so-called ‘local spectrum’ (with local

eigenvalues and multiplicities associated) of a vertex, and the ‘crossed spectrum’ (with crossed multiplici-
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ties eigenvalues associated with pairs of vertices). The theory of graph (global) spectra has applications in

computer science (for instance, in data structure and quantum computing), quantum chemistry, electrical

engineering, game theory, etc. Moreover, the local (adjacency or Laplacian) spectra have been a key concept

to derive reliable theoretical results, as the so-called ‘spectral excess theorem’ (a quasi-spectral characteri-

zation of distance-regular graphs due to Fiol and Garriga [17]), and its sequels, see, for instance, Kurihara

[24]. Besides, the knowledge of local spectra of a complex network provides essential insight into its topology

and dynamical behavior, see Moradiamani, Fiol, Jalili, Stone, Chen, and Yu [27].

Given a general graph Γ and a regular partition of its vertex set, we can obtain a smaller quotient graph

with its (adjacency) quotient matrix. The spectrum of this matrix gives us a part of the spectrum of the

original graph. In this paper, we propose a method that provides not only a part but all the spectrum, and

also the local spectra, of Γ, by using the quotient matrices of some of its regular partitions.

This paper is organized as follows. In this section, we recall the concepts of the idempotent matrix,

the local multiplicity of an eigenvalue associated with a vertex, the local spectrum of a graph, and the local

crossed multiplicity. In Section 2, we remind the definition of a regular partition and some known lemmas.

Moreover, also in this section, we give some new lemmas and the main result. Some of the previous results

are generalized in Section 3, where we deal with regular partitions and local spectra of vertex subsets. We

also describe some applications in the characterization of completely regular codes. Finally, in Section 4, we

apply our method to find the eigenvalues, (local) multiplicities, and the complete spectrum of three families

of graphs, which are walk-regular, distance-regular, and distance-biregular graphs.

1.1. Some notions of graphs and their spectra. First, let us recall some basic concepts and define

our generic notation for graphs.

Throughout this paper, Γ = (V,E) denotes a simple and connected graph with order n = |V |, size

m = |E|, and adjacency matrix A. The distance between two vertices u and v is denoted by dist(u, v),

so that the eccentricity of a vertex u is ecc(u) = maxv∈V dist(u, v), and the diameter of the graph is

D = maxu∈V ecc(u). The set of vertices at distance i, from a given vertex u ∈ V is denoted by Γi(u), for

i = 0, 1, . . . , D, and we write Γ(u) = Γ1(u) for short. The degree of a vertex u is denoted by δ(u) = |Γ1(u)|.
The distance-i graph Γi is the graph with vertex set V , and where two vertices u and v are adjacent if and

only if dist(u, v) = i in Γ. Its adjacency matrix Ai is usually referred to as the distance-i matrix of Γ and, if

Γ is distance-regular, we have Ai = pi(A), where pi, i = 0, . . . , d, are the so-called distance polynomials of

Γ. The spectrum of a graph Γ of its adjacency matrix A(= A1) is denoted by

(1.1) sp Γ = spA =
{
θ
m(θ0)
0 , θ

m(θ1)
1 , . . . , θ

m(θd)
d

}
,

where the different eigenvalues of Γ, whose set is denoted by ev Γ, are in decreasing order, θ0 > θ1 > · · · > θd,

and the superscripts stand for their multiplicities m(θi), for i = 0, . . . , d. In particular, note that m(θ0) = 1,

since Γ is connected, and m(θ0) + m(θ1) + · · · + m(θd) = n. Alternatively, if we include repetitions, the

eigenvalues of Γ are denoted by λ1 ≥ λ2 ≥ · · · ≥ λn.

1.2. Projections and local spectra. For any graph with eigenvalue θi having multiplicity m(θi), its

corresponding (principal) idempotent can be computed as Ei = V iV
>
i , where V i is the n ×m(θi) matrix

whose columns form an orthonormal basis of the eigenspace Ei = Ker(A − θiI). For instance, when Γ is a

δ-regular graph on n vertices, its largest eigenvalue θ0 = δ has eigenvector j, the all-1 (column) vector, and

corresponding idempotent E0 = 1
njj

> = 1
nJ , where J is the all-1 matrix.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 446-460, July 2020.
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Alternatively, for every i = 0, 1, . . . , d, the orthogonal projection of Rn onto the eigenspace Ei is given by

the Lagrange interpolating polynomial

(1.2) Li(x) =
1

φi

d∏
j=0

j 6=i

(x− θj)

of degree d, where φi =
∏d
j=0,j 6=i(θi − θj). These polynomials satisfy Li(θi) = 1 and Li(θj) = 0 for j 6= i.

The idempotents are, then,

Ei = Li(A) =
1

φi

d∏
j=0

j 6=i

(A− θjI),

and they are known to satisfy the following properties (see, for instance, Godsil [21, p. 28]):

(a) EiEj = δijEi;

(b) AEi = θiEi;

(c) p(A) =

d∑
i=0

p(θi)Ei, for any polynomial p(x) ∈ R[x].

In particular, when p(x) = x in (c), we have the so-called spectral decomposition theorem: A =
∑d
i=0 θiEi.

The (u-)local multiplicities of the eigenvalue θi, introduced by Fiol and Garriga in [17], were defined as the

square norm of the projection of eu onto the eigenspace Ei, where eu is the unitary characteristic vector of

a vertex u ∈ V . That is,

mu(θi) = ‖Eieu‖2 = 〈Eieu, eu〉 = (Ei)uu, u ∈ V, i = 0, 1, . . . , d.

Notice that, in fact, mu(θi) = cos2 βui, where βui is the angle between eu and Eieu. The values cosβui,

for u ∈ V and i = 0, . . . , d, were formally introduced by Cvetković as the ‘angles’ of Γ (see, for instance,

Cvetković and Doob [5]).

The local multiplicities can be seen as a generalization of the (standard) multiplicities when the graph

is ‘seen’ from the ‘base vertex’ u. Indeed, they satisfy the following properties (see Fiol and Garriga [17]):

d∑
i=0

mu(θi) = 1;(1.3) ∑
u∈V

mu(θi) = m(θi), i = 0, 1, . . . , d.(1.4)

If µ0(= θ0) > µ1 > · · · > µdu represent the eigenvalues of Γ with non-null u-local multiplicity, we define

the u-local spectrum of Γ as

spu Γ =
{
µ
mu(µ0)
0 , µ

mu(µ1)
1 , . . . , µ

mu(µdu )
du

}
.

By analogy with the local multiplicities, which correspond to the diagonal entries of the idempotents,

Fiol, Garriga, and Yebra [19] defined the crossed (uv-)local multiplicities of the eigenvalue θi, denoted by

muv(θi), as

muv(θi) = 〈Eieu,Eiev〉 = 〈Eieu, ev〉 = (Ei)uv, u, v ∈ V, i = 0, 1, . . . , d.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 446-460, July 2020.

449 A General Method to Obtain the Spectrum and Local Spectra of a Graph from its Regular Partitions

(Thus, in particular, muu(θi) = mu(θi).) These parameters allow us to compute the number of walks of

length ` between two vertices u, v in the following way:

(1.5) a(`)
uv = (A`)uv =

d∑
i=0

muv(θi)θ
`
i , ` = 0, 1, . . .

Conversely, the values a
(`)
uv , for ` = 0, 1, . . . , d, determine the crossed local multiplicities muv(θi). Notice that

the coefficients of the system in (1.5) are the entries of a Vandermonde matrix, see, for example, Macon and

Spitzbart [26].

2. Regular partitions and local spectra of vertices. Let Γ = (V,E) be a graph with adjacency

matrix A. A partition π = (V1, . . . , Vm) of its vertex set V is called regular (or equitable) whenever, for any

i, j = 1, . . . ,m, the intersection numbers bij(u) = |Γ(u) ∩ Vj |, where u ∈ Vi, do not depend on the vertex

u but only on the subsets (usually called classes or cells) Vi and Vj . In this case, such numbers are simply

written as bij , and the m ×m matrix B = (bij) is referred to as the quotient matrix of A with respect to

π. This is also represented by the quotient (weighted) graph π(Γ) (associated with the partition π), with

vertices representing the cells, and there is an edge with weight bij between vertex Vi and vertex Vj if and

only if bij 6= 0. Of course, if bii > 0, for some i = 1, . . . ,m, the quotient graph π(Γ) has loops.

The characteristic matrix of (any) partition π is the n ×m matrix S = (sui) whose i-th column is the

characteristic vector of Vi, that is, sui = 1 if u ∈ Vi, and sui = 0 otherwise. In terms of this matrix, we have

the following characterization of regular partitions (see Godsil [21]).

Lemma 2.1. ([21]) Let Γ = (V,E) be a graph with adjacency matrix A, and vertex partition π with

characteristic matrix S. Then, π is regular if and only if there exists an m × m matrix C such that

SC = AS. Moreover, C = B, the quotient matrix of A with respect to π.

Using the above lemma, it can be proved that spB ⊆ spA. Moreover, we have the following result by

the authors [9].

Lemma 2.2. ([9]) Let Γ be a graph with adjacency matrix A. Let π = (V1, . . . , Vm) be a regular partition

of Γ, with quotient matrix B. Then, the number of `-walks from any vertex u ∈ Vi to all vertices of Vj is

the ij-entry b
(`)
ij of B`.

Now we have the next result, which can be seen as a special case of Lemma 2.2 (see Godsil [21, Cor.

3.3] for the case when V1 = Vj = {u}).

Lemma 2.3. Let Γ be a graph with adjacency matrix A, and π = (V1, . . . , Vm) a regular partition of Γ

with quotient matrix B. If V1 = {u}, then the number of `-walks from vertex u to a vertex v ∈ Vj, for

j = 1, . . . ,m, only depends on j:

(2.6) (A`)uv = a
(`)
j =

1

|Vj |
(B`)1j .

Proof. To prove that the number of `-walks between u and v ∈ Vj is a constant, we use induction on `.

The result is clearly true for ` = 0, since B0 = I, and for ` = 1 because of the definition of B. Suppose that

the result holds for some ` > 1. Then, the set of walks of length `+ 1 from u to v ∈ Vj is obtained from the

set of `-walks from u to vertices w ∈ Vh adjacent to v. Then, the number of these walks is

(A`+1)uv =

m∑
h=1

∑
w∈Γ(v)∩Vh

(A`)uw =

m∑
h=1

bjha
(`)
h = a

(`+1)
j ,
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as claimed.

Alternatively, a more direct proof is to realize that, by Lemma 2.2, we can compute in two ways the

number of `-walks between (the vertices of) Vi and Vj . Namely, |Vi|(B`)ij = |Vj |(B`)ji and, since this holds

for any ` ≥ 0,

(2.7) |Vi|(p(B))ij = |Vj |(p(B))ji

for any polynomial p(x). Thus, in the lemma, we take the special case Vi = V1 = {u} and p(x) = x` (notice

that (B`)j1 = (A`)uv for v ∈ Vj).

Let B be a quotient (diagonalizable) m×m matrix as above, with spB =
{
τ
m(τ0)
0 , τ

m(τ1)
1 , . . . , τ

m(τe)
e

}
,

and let D be the diagonal matrix with entries the eigenvalues of B (including repetitions). Let Q be the

m×m matrix that diagonalizes B, that is, Q−1BQ = D. For i = 0, . . . , e, let V i be the m×m(τi) matrix

formed by the columns of Q corresponding to the right τi-eigenvectors of B. Let U i be the m(τi) × m

matrix formed by the corresponding rows of Q−1, which are the left τi-eigenvectors of B. Then, the i-th

idempotent of B is Ei = V iU i. Moreover, Ei can be computed as in the case of the (symmetric) adjacency

matrix by using the Lagrange interpolating polynomial Li(x) satisfying Li(τj) = δij :

Ei = Li(B) =
1

e∏
j=0

j 6=i

(τi − τj)

e∏
j=0

j 6=i

(B − τjI).

The above results yield a simple method to compute the local spectra of a vertex u in a given regular

partition or, more generally, the crossed multiplicities between u and any other vertex v. Besides, with the

union of the local spectra (applying (1.4)) of the different classes of vertices according to their corresponding

regular partitions (that is, we ‘hang’ the quotient graph from every one of the different classes of vertices),

for the very first time all the spectrum of the original graph is obtained from regular partitions. Thus, the

main result is the following.

Theorem 2.4. Let Γ be a graph with adjacency matrix A and set of different eigenvalues ev Γ =

{θ0, θ1, . . . , θd}. Let π = (V1, . . . , Vm) be a regular partition of Γ, with V1 = {u}. Let B be the quotient

matrix of π, with set of different eigenvalues evB = {τ0, τ1, . . . , τe} ⊆ ev Γ. Let Li(x) and Li(x) be the La-

grange interpolating polynomials satisfying Li(θj) = δij for i, j = 0, . . . , d, and Li(τj) = δij for i, j = 0, . . . , e,

respectively. Let Ei = Li(A) and Ei = Li(B) be the corresponding idempotents. Then, for every vertex

v ∈ Vj, the crossed uv-local multiplicity of θi is

muv(θi) =
1

|Vj |
(Li(B))1j , i = 0, 1, . . . , d,(2.8)

or, alternatively,

muv(θi) =

{
1
|Vj | (Ei)1j if θi ∈ evB,

0 otherwise.
(2.9)

Proof. Let Li(x) =
∑d
r=0 ζrx

r. Then, for every v ∈ Vj and i = 0, 1, . . . , d, and using Lemma 2.3, we
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have

muv(θi) = (Ei)uv = (Li(A))uv =

d∑
r=0

ζr(A
r)uv

=
1

|Vj |

d∑
r=0

ζr(B
r)1j =

1

|Vj |
(Li(B))1j ,

which proves (2.8). To prove (2.9), note first that, by the spectral decomposition theorem, Br =
∑e
i=0 τ

r
i Ei.

Then, by Lemma 2.3, the numbers of `-walks from u to v ∈ Vj are

a(`)
uv =

1

|Vj |

e∑
i=0

τ `i (Ei)1j , ` = 0, . . . , d,

which, as already commented, determine the local multiplicities because of the system of equations

d∑
i=0

θ`imuv(θi) = a(`)
uv , ` = 0, . . . , d.

But a (the) solution of this system is obtained when the multiplicities muv(θi), for i = 0, . . . , d, are given by

(2.9), as claimed.

In particular, notice that this result allows us to compute the u-local spectrum of Γ as

(2.10) spu Γ =
{
τ
mu(τ0)
0 , τ

mu(τ1)
1 , . . . , τmu(τe)

e

}
,

where τi ∈ evB and mu(τi) = (Ei)11, for i = 0, . . . , e.

Let us show an example.

Example 2.5. Let ∆ = Γ + u be the cone of a k-regular graph on n vertices, where the ‘new’ vertex u

is joined to all vertices of Γ. Then, ∆ has a regular partition with quotient matrix

B =

(
0 n

1 k

)
and eigenvalues θ0 = 1

2 (k +
√
k2 + 4n) and θ1 = 1

2 (k −
√
k2 + 4n). (Notice that the first expression can

be rewritten as k = θ0 − n
θ0

, in agreement with the results of Dalfó, Fiol, and Garriga [10].) Thus, the

idempotents of B turn out to be E0 = (B − θ1I)/(θ0 − θ1) and E1 = (B − θ0I)/(θ1 − θ0). Consequently,

Theorem 2.4 implies that the local u-spectrum of ∆ is

spu ∆ =

{
1

2

(
k +

√
k2 + 4n

)mu(θ0)

,
1

2

(
k −

√
k2 + 4n

)mu(θ1)
}
,

where mu(θ0) = 1
2 (1− k/

√
k2 + 4n) and mu(θ1) = 1

2 (1 + k/
√
k2 + 4n).

Another simple consequence of our main result is obtained for simple eigenvalues of B.

Corollary 2.6. Let Γ be a graph with adjacency matrix A and a set of different eigenvalues ev Γ =

{θ0, θ1, . . . , θd}, π = (V1, . . . , Vm) a regular partition of Γ with V1 = {u}, B the quotient matrix of π with
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a set of different eigenvalues evB = {τ0, τ1, . . . , τe} ⊆ ev Γ, and Ei and Ei the corresponding idempotents.

Suppose that, for some i, θi ∈ evA∩evB has multiplicity 1. Let ui = (ui1, . . . , uim) and vi = (v1i, . . . , vim)>

be the left and right eigenvectors of B, respectively, corresponding to the eigenvalue θi. Then, for every vertex

v ∈ Vj, the crossed uv-local multiplicity of θi in Γ is

(2.11) muv(θi) =
1

|Vj |
v1iuij
〈ui,vi〉

, j = 1, . . . ,m.

Proof. Let Q be a matrix that diagonalizes B. If, for some constants α and β, we have that αui and

βvi are the corresponding row of Q−1 and column of Q, respectively, then (Q−1Q)ii = 1 implies that

αβ = 〈ui,vi〉−1. Thus, (Ei)1j = (αvi · βui)1j =
v1iuij

〈ui,vi〉 (where ‘·’ stands for the matrix product), and the

result follows from (2.9).

Alternatively, if ui and vi are already taken from the corresponding row and column of Q−1 and Q,

respectively, then α = β = 1, and (2.11) can be simply written as

(2.12) muv(τi) =
1

|Vj |
(Q−1)ij(Q)1i, j = 1, . . . ,m.

3. Regular partitions and local spectra of vertex sets. Let Γ be a graph with vertex set V . The

results of the last section can be generalized to find the so-called local multiplicities of a vertex subset C ⊂ V .

In this case, we consider the normalized characteristic vector

eC =
1√
|C|

∑
u∈C

eu.

Then, the C-local multiplicity of the eigenvalue θi is defined as

mC(θi) = ‖EieC‖2 = 〈EieC , eC〉 =
1

|C|
∑
u,v∈C

〈Eieu, ev〉

=
1

|C|
∑
u,v∈C

muv(θi), i = 0, 1, . . . , d.(3.13)

Note that the sequence of C-local multiplicities mC(θ0), . . . ,mC(θd) is, in fact, the so-called Mac Williams

transform of the vector eC ; see, for instance, Delsarte and Levenshtein [14]. Observe that, since eC is a unit

vector, we have
∑d
i=0mC(θi) = 1. Moreover, for C 6= ∅, the C-local multiplicity of θ0 is mC(θ0) = |C|/|V | >

0.

As expected, the C-local multiplicities are relevant when studying the graph from the vertex subset C.

For instance, the number a
(`)
CC of walks of length ` from (the vertices of) C to itself is given by

(3.14) a
(`)
CC =

∑
u,v

(A`)uv = |C|〈A`eC , eC〉 = |C|
d∑
i=0

mC(θi)θ
`
i .

If µ0(= θ0) > µ1 > · · · > µdC represent the eigenvalues of Γ with nonzero C-local multiplicities, then

the C-local spectrum of Γ is

spC Γ =
{
µ
mC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC

}
.
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For more details about C-local multiplicities and their applications, see Section 3.1 or Cámara, Fàbrega,

Fiol, and Garriga [4].

In our context of having a regular partition, we have the following result.

Theorem 3.1. Let Γ be a graph with adjacency matrix A and set of different eigenvalues ev Γ =

{θ0, θ1, . . . , θd}. Let π = (V1, . . . , Vm) be a regular partition of Γ. Let B be the quotient matrix of π, with

set of different eigenvalues evB = {µ0, µ1, . . . , µe} ⊆ ev Γ. Let Li(x) and Li(x) be the Lagrange interpolat-

ing polynomials satisfying Li(θj) = δij for i, j = 0, . . . , d and Li(µj) = δij for i, j = 0, . . . , e, respectively.

Let Ei = Li(A) and Ei = Li(B) be the corresponding idempotents. Then, for every class Vj, the Vj-local

multiplicity of θi is

mVj (θi) = (Li(B))jj , i = 0, 1, . . . , d,(3.15)

or, alternatively,

mVj
(θi) =

{
(Ei)jj if θi ∈ evB,

0 otherwise.
(3.16)

Proof. An immediate and known consequence of Lemma 2.1 is that, for any polynomial p(x),

(3.17) p(A)S = S p(B).

(In fact, multiplying both terms by S>, and taking into account that both resulting matrices are symmetric,

we can prove again (2.7)). Then, with p(x) = Li(x) in (3.17), we get EiS = SLi(B), whence S>EiS =

S>SLi(B) = DLi(B), where D = diag(|V1|, . . . , |Vm|) and, using (3.13),

mVj
(θi) =

1

|Vj |
∑

u,v∈Vj

muv(θi) =
1

|Vj |
(S>EiS)jj

=
1

|Vj |
(D)jj(Li(B))jj = (Li(B))jj , i = 0, 1, . . . , d,

which proves (3.15). The proof of (3.16) goes similarly as that of (2.9) by using B` =
∑e
i=0 µ

`
iEi and

a
(`)
ViVi

= |Vi|(B`)ii by Lemma 2.2.

Let us see a simple example.

Example 3.2. Let Γ = (V,E) be a k-regular graph on n vertices. Let C ⊂ V be a 1-perfect code in

Γ (where any vertex not in C is adjacent to exactly one vertex of C; see for instance Godsil [21]). Then,

|C| = n/(1 + k), and the partition V = C ∪ C is regular with quotient matrix

B =

(
0 k

1 k − 1

)
,

whose eigenvalues are µ0 = k and µ1 = −1. Then, the idempotents of B turn out to be E0 = (B+I)/(k+1)

and E1 = (B−kI)/(−1−k). Consequently, Theorem 3.1 implies that the C-local and C-local multiplicities

of Γ are

mC(k) =
1

k + 1
(= |C|/|V |), mC(−1) =

k

k + 1
,

and

mC(k) =
k

k + 1
(= |C|/|V |), mC(−1) =

k

k + 1
.
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3.1. The C-local spectra and completely regular codes. The last example is a particular case of

a completely regular code. As a generalization of this example, now we describe some applications of the

local spectrum of a vertex subset C in the characterization of such codes. This gives a further justification

for our results in this section.

As above, let C ⊂ V be a vertex subset of a graph Γ. The distance from C to a given vertex u of V

is given by dist(C, u) = minv∈C{dist(u, v)}. This definition gives us a distance partition of V where each

part Ck is the set of vertices at distance k from C. It is natural to say that the eccentricity of C is given by

εC = maxu∈V {dist(C, u)}, and it is known that if C has dC + 1 distinct C-local values, then εC ≤ dC .

We say that G is distance-regular around C, with eccentricity ε = ecc(C), if the distance partition

V = C0 ∪ C1 ∪ · · · ∪ Cε is regular, The set C is also referred to as a completely regular set or completely

regular code (see Godsil [21]). In [18] Fiol and Garriga gave the following characterization of completely

regular codes in terms of the number of vertices at (spectrally maximum) distance dC from C.

Theorem 3.3 ([18]). Let Γ = (V,E) be a regular graph on n vertices. A vertex subset C ⊂ V , with r

vertices and local spectrum spC Γ =
{
µ
mC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC

}
, is a completely regular code if and

only if the number of vertices at distance dC from C satisfies

|CdC | =
n2

r

(
dC∑
i=0

π2
0

mC(µi)π2
i

)−1

,(3.18)

where πi =
∏d
j=0 (j 6=i) |µi − µj | for i = 0, . . . , dc.

In the case when Γ is a distance-regular graph, with diameter d and spectrum as in (1.1), the above

result implies that C is a completely regular code if and only if |CdC | satisfies an expression in terms of the

(standard) spectrum of Γ and the so-called inner distribution rk, for k = 0, . . . , d, of C. That is, rk is the

mean number of vertices v in C at distance k (in Γ) from a given vertex u ∈ C:

rk =
1

|C|
∑
u∈C
|Γk(u) ∩ C| for k = 0, . . . , d.

Notice that, as commented by Godsil [21], the numbers rk determine the probability that a randomly chosen

pair of vertices from C are at distance k. Then, when Γ is a distance-regular graph, these numbers are

closely related to the C-local multiplicities. Indeed, Fiol and Garriga [20] showed that, in this case, the sets

of numbers {r0, . . . , rd} and {mC(θ0), . . . ,mC(θd))} are related to each other by the formulas

rk =

d∑
i=0

mC(θi)pk(θi) (0 ≤ k ≤ d),(3.19)

mC(θi) =
m(θi)

n

d∑
k=0

rk
pk(θi)

pk(θ0)
(0 ≤ i ≤ d),(3.20)

where p0, . . . , pd of Γ are the distance polynomials of Γ. Then, by using (3.20), (3.18) becomes

|Cd| =
n

r

 d∑
i=0

π2
0

m(θi)π2
i

(
d∑
k=0

rk
pk(θi)

pk(θ0)

)−1
−1

.(3.21)
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In fact, (3.20) is essentially equivalent to Delsarte’s identity b = aQ which gives rise to the celebrated

linear programming bound (see Delsarte [13], and Delsarte and Levenshtein [14]), based on the non-negativity

of the C-local eigenvalues. This produces upper bounds on the size of a code with a given minimum distance,

and lower bounds on the size of a design with a given strength, since it gives stronger necessary conditions

for their existence. For example, to bound the size of a code C with prescribed parameters (ε, r, δ) (where ε

is the maximum distance between some vertex of C and some vertex of V , r = |C|, and δ is the maximum

distance between vertices of C), we have r1 = · · · = rδ−1 = 0, and the linear programming problem to be

solved is the following:

(3.22)

maximizer := 1 +
∑d
i=δ ri

subject to mC(θj) ≥ 0, j = 0, 1, . . . , d;

ri ≥ 0, i = δ, . . . , d.

The same technique can be applied to deriving results about the existence of disjoint copies of some subgraph

of a (putative) distance-regular graph; see, for instance, Dalfó [8].

With respect to bounding the size of a code, some other methods have been proposed; see, for instance,

Lovász [25] and Schrijver [28]. In our context, and for the case of completely regular codes, Theorem

3.3, or its particular case of distance-regular graphs (3.21), can be seen as an improvement of Delsarte’s

linear programming method, or the mentioned methods in [25] and [28]. The reason is that Theorem 3.3

provides a necessary and sufficient condition for the existence of such codes, by using either the C-local

multiplicities or the inner distribution (in the case of distance-regular graphs). Moreover, in such a case,

and as an intermediate step, an application of our method would be to find the C-local multiplicities to get

the (possible) inner distribution from (3.19).

4. The local spectra of some families of graphs. In this section, we show that the application of

our method to obtain the local spectra and the complete spectrum of different well-known families of graphs.

4.1. Walk-regular graphs. Let Γ be a graph with spectrum as above. If the number of closed walks

of length ` rooted at vertex u, that is, a
(`)
uu =

∑d
i=0mu(θi)θ

`
i only depends on `, for each ` ≥ 0, then Γ is

called walk-regular (a concept introduced by Godsil and McKay [22]). In this case, we write a
(`)
uu = a(`). Note

that, since a
(2)
uu = δ(u), the degree of vertex u, a walk-regular graph is necessarily regular. Moreover, we say

that Γ is spectrum-regular if, for any i = 0, 1, . . . , d, the u-local multiplicity of θi does not depend on the

vertex u. By (1.5) and the subsequent comment, it follows that spectrum-regularity and walk-regularity are

equivalent concepts. Equation (1.5) also shows that the existence of the constants a(0), a(1), . . . , a(d) suffices

to assure walk-regularity. It is well known that any distance-regular graph, as well as any vertex-transitive

graph, is walk-regular, but the converse is not true. Other particular families of walk-regular graphs are the

so-called orbit polynomial graphs, introduced by Beezer [2], and the quotient-polynomial graphs defined in

Fiol [16]. The quotient-polynomial graphs could be thought of as the regular counterpart of orbit polynomial

graphs. In our context, distance-regular graphs, orbit polynomial graphs, and quotient-polynomial graphs are

especially interesting since their structures are described with well-established regular partitions. Moreover,

every quotient-polynomial graph generates a (symmetric) association scheme, see again [16].

Proposition 4.1. Let Γ be a walk-regular graph with n vertices, having a regular partition π = (V1, . . . ,

Vm) with V1 = {u} and quotient matrix B. Then, the spectrum of Γ is

sp Γ =
{
θ
m(θ0)
0 , θ

m(θ1)
1 , . . . , θ

m(θd)
d

}
,
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where, for every i = 0, . . . , d, θi also is an eigenvalue of B, with multiplicity

(4.23) m(θi) = n(Ei)11 = n∏d
j=0
j 6=i

(θi−θj)

(∏d
j=0

j 6=i
(B − θjI)

)
11

.

Proof. Since
∑
u∈V muu(θi) = m(θi), the (standard) multiplicity m(θi) ‘splits’ equitably among the n

vertices, giving mu(θi) = m(θi)/n. Therefore, the different eigenvalues of B coincide with those of A, and

Theorem 2.4 yields (4.23).

Let us see an example.

Example 4.2. Consider the walk-regular graph Γ, that is not distance-regular, given by Godsil [21]. This

graph, and two of its possible quotient graphs, π1(Γ) (with seven vertices) and π2(Γ) (with five vertices),

are represented in Figure 1. Then, we can obtain the whole spectrum of Γ from any of the corresponding

regular partitions, π1 or π2. For instance, the quotient matrix of π2 is

B =


0 4 0 0 0

1 1 1 1 0

0 2 0 2 0

0 1 1 1 1

0 0 0 4 0

 .

The spectrum of B related to π2(Γ) is

spπ2(Γ) =
{
θ
m(τ0)
0 , θ

m(τ1)
1 , θ

m(τ2)
2 , θ

m(τ3)
3

}
=
{

41, 22, 01,−23,
}
.

Since Γ is walk-regular, the spectrum of its quotient from a regular partition has all the different eigenvalues

of the spectrum of Γ. Now we compute the multiplicities m(θi), for i = 0, 1, 2, 3:

m(θ0) =
12

(θ0 − θ1)(θ0 − θ2)(θ0 − θ3)
((B − θ1I)(B − θ2I)(B − θ3I))11 = 1,

m(θ1) =
12

(θ1 − θ0)(θ1 − θ2)(θ1 − θ3)
((B − θ0I)(B − θ2I)(B − θ3I))11 = 3,

m(θ2) =
12

(θ2 − θ0)(θ2 − θ1)(θ2 − θ3)
((B − θ0I)(B − θ1I)(B − θ3I))11 = 3,

m(θ3) =
12

(θ3 − θ0)(θ3 − θ1)(θ3 − θ2)
((B − θ0I)(B − θ1I)(B − θ2I))11 = 5.

This gives that the spectrum of Γ is sp Γ =
{

41, 23, 03,−25
}

, as it is known to be. Note that, in this example,

we need to ‘hang’ the graph Γ from only one of its vertices.

4.2. Distance-regular graphs. In particular, when Γ is distance-regular, the distance-partition with

respect to any vertex is regular with the same quotient matrix B (see, for instance, Biggs [1] or Fiol [15]).

Moreover, since B is tridiagonal, all its eigenvalues are simple and (4.23), together with (2.11), leads to the

known formula (see Biggs [1] again)

(4.24) m(θi) = n(Ei)11 =
n

〈ui,vi〉
, j = 1, . . . ,m,

where the eigenvectors ui and vi have been chosen to have the first entry 1.
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Figure 1. Left: The walk-regular, but not distance-regular, graph Γ given by Godsil [21]. Center and right: The quotient

graphs π1(Γ) and π2(G) showing the vertices in each of the classes of the regular partitions. In boldface, there is the numbering

of the vertices in Γ, π1(Γ), and π2(Γ).

1 4n-1 4n-1 4n-1
4n-1 2n-1 2n

1 2n-1 2n

1 2n 8n-4 2n 1
2n 4n-2 n 1

1 n 4n-2 2n

Figure 2. The quotient graphs of the Hadamard distance-biregular graphs.

4.3. Distance-biregular graphs. Distance-biregular graphs are defined in a similar way as distance-

regular graphs. They are connected bipartite graphs in which each of the two classes of vertices has its own

intersection array. It was proved by Godsil and Shawe-Taylor [23] that all vertices in the same bipartition

class have the same intersection array. Delorme [12] gave the basic properties and some new examples of

distance-biregular graphs.

Let us give an example.

Example 4.3. A Hadamard matrix H (with entries ±1 and mutually orthogonal rows) with size 4n

gives a bipartite distance-biregular graph Hb(n) on 12n − 2 vertices. To obtain the graph Hb(n) from the

matrix H, we apply the following steps:
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1. Given the Hadamard matrix

H(4n) =


1 1 · · · 1

1
... D

1


4n×4n

,

consider the square matrix D of dimension 4n− 1.

2. Let C be the matrix C = 1
2 (D + J)(4n−1)×(4n−1) , where J is the all-1 matrix.

3. Consider the matrix

B =

(
C J −C

1> 0>

)
4n×(8n−2)

,

where 1 and 0 are the all-1 and all-0 vectors with the corresponding dimensions.

4. Finally, the adjacency matrix of the Hadamard bipartite distance-biregular graph is

A =

(
O B

B> O

)
(12n−2)×(12n−2)

.

For more information, see, for instance, Seberry Wallis [29, p. 426].

The stable sets V1 and V2 of Hb(n) have 4n and 8n− 2 vertices, respectively. For example, Hb(1) is the

subdivided complete graph K4. The quotient graphs corresponding to the regular distance-partitions with

respect to vertices in V1 and V2 are shown in Figure 2. Thus, the respective quotient matrices are

B1 =


0 2n 0 0 0

1 0 4n− 2 0 0

0 n 0 n 0

0 0 4n− 2 0 1

0 0 0 2n 0

 , B2 =


0 4n− 1 0 0

1 0 2n− 1 0

0 2n− 1 0 2n

0 0 2n 0

 ,

with (simple) eigenvalues evB1 =
{√

8n2 − 2n,
√

2n, 0,−
√

2n,−
√

8n2 − 2n
}

and evB2 = evB1\{0}. Then,

according to Theorem 2.4, we can compute all the local (crossed) multiplicities of vertices in each stable set

from the idempotents of B1 and B2. The results obtained are shown in Table 1 (for u ∈ V1) and Table 2

(for u ∈ V2), where the last row in both tables corresponds to the sums in (1.5) for ` = 0 (or, for the case

u = v, to (1.3)). Moreover, from the columns of local multiplicities (dist(u, v) = 0), we can find the (global)

multiplicities by using (1.4), which in our case becomes

m(θi) =
∑
u∈V1

mu(θi) +
∑
v∈V2

mv(θi) = (8n− 2) ·mu(θi) + 4n ·mv(θi).

Then, the complete spectrum of the Hadamard distance-biregular graph turns out to be

spHb(n) =

{√
8n2 − 2n

1
,
√

2n
4n−1

, 04n−2,−
√

2n
4n−1

,−
√

8n2 − 2n
1
}
.
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dist(u, v), u ∈ V1 0 1 2 3 4

muv(θ0) 1
16n−4

√
2

8
√

4n2−n
1

16n−4

√
2

8
√

4n2−n
1

16n−4

muv(θ1) 1
4

√
2

8
√
n

0 −
√

2
8
√
n

− 1
4

muv(θ2) 2n−1
4n−1 0 − 1

8n−2 0 2n−1
4n−1

muv(θ3) 1
4 −

√
2

8
√
n

0
√

2
8
√
n

− 1
4

muv(θ4) 1
16n−4 −

√
2

8
√

4n2−n
1

16n−4 −
√

2
8
√

4n2−n
1

16n−4∑4
i=0muv(θi) 1 0 0 0 0

Table 1

Local multiplicities, from a vertex u ∈ V1, of the Hadamard distance-biregular graph Hb(n).

dist(u, v), u ∈ V2 0 1 2 3

muv(θ0) 1
8n

√
2

8
√

4n2−n
1

8n

√
2

8
√

4n2−n

muv(θ1) 4n−1
8n

√
2

8
√
n

− 1
8n −

√
2

8
√
n

muv(θ2) 0 0 0 0

muv(θ3) 4n−1
8n −

√
2

8
√
n

− 1
8n

√
2

8
√
n

muv(θ4) 1
8n −

√
2

8
√

4n2−n
1

8n −
√

2
8
√

4n2−n∑3
i=0muv(θi) 1 0 0 0

Table 2

Local multiplicities, from a vertex u ∈ V2, of the Hadamard distance-biregular graph Hb(n).
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