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Abstract. In this paper, the possible Kronecker invariants of a matrix pencil with a prescribed quasi-regular subpencil are

determined.

Key words. Completion of matrix pencils, Quasi-regular pencils, Polynomial chains.

AMS subject classifications. 15A83, 05A17.

1. Introduction. Matrix and matrix pencils completion problems have been thoroughly studied in

the past. The General Matrix Pencil Completion Problem (GMPCP) consists of determining the possible

Kronecker invariants of a matrix pencil with a prescribed subpencil. For the motivation and most important

classical results, see e.g. [1,2,4,21,24,25,27,29–32]. There are also new insights to matrix pencils completion

problems coming from Representation Theory (see [22,28]), but still far away from the compact and explicit

form of solutions. However, these problem have been put away from the main stream of Modern Linear

Algebra, despite its connection to Control Theory and Linear Systems (both Singular and Regular), and

possible applications in engineering, see e.g. [3, 7, 20, 23, 26]. In the last decade, we have done significant

effort in bringing these problems back to light. Many new combinatorial structures and results were obtained

while trying to find the best path toward solution of GMPCP, see [5, 8–10, 13–16, 19]. The results obtained

in [8, 11,12] have made possible to obtain a solution to many important cases of GMPCP.

Overall, there are two different approaches in studying GMPCP. The minimal one is a novel approach

that deals with GMPCP by restricting the dimension of the completion. By following this approach, we have

used up all its force and solved minimal case completion of GMPCP in [8]. The other, classical approach

consists in restricting the number of invariants, i.e., by restricting the structure of the involved matrix

pencils. In this paper, we follow the classical approach and come close to GMPCP as possible, by studying

and solving the following problem:

Problem 1. Characterise the possible Kronecker invariants of a matrix pencil with a prescribed quasi-

regular subpencil.

In Theorem 3.1, we give a complete, explicit and constructive solution to Problem 1. In this way, we

generalize results in [1, 2, 4, 6, 9, 10, 13, 16, 22, 24, 27–31]. Indeed, for example in [9] and [13] we have solved

Problem 1 with additional restrictions on the resulting pencil – in [9], we have required that the resulting

pencil is without nontrivial homogeneous invariant factors, and in [13], we have considered it to be quasi-
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regular. In [10], we have studied and solved the minimal case of Problem 1, with restrictions on the size of

a completion. Also, in [6] and [16] Problem 1 with additional assumption on the prescribed quasi-regular

subpencil was solved – in [16], we assumed that it was without nontrivial homogeneous invariant factors,

while in [6], it was assumed to be regular. In this paper, by using powerful recent result on polynomial chains

from [12], we give a solution to Problem 1 in full generality. This solution naturally generalizes [6,9,10,13,16]

as well as many related classical results like [1, 2, 4, 24,27,29–31].

The paper is organised in four sections and one appendix. In Section 2, we give definitions and auxiliary

results that will be used in the proof of the main result. In Section 3, we write Problem 1 as a combinatorial

problem, and we give the main result of the paper (Theorem 3.1). In Section 4, we prove the main result.

Also, there is an Appendix in which we prove that partitions f and w, appearing in the main result, are well

defined.

2. Auxiliary results. Let F be an algebraically closed field. All polynomials throughout the paper

are assumed to be homogeneous polynomials from F[λ, µ], and monic with respect to λ. For details on

homogeneous polynomials see e.g. [5]. Let α1| · · · |αn be any chain of homogeneous polynomials, we assume

αi = 1, for all i < 1 and αi = 0, for all i > n. By d(αi) we denote the degree of a polynomial αi.

By a partition we mean a non increasing sequence of integers. For any integers a1 ≥ · · · ≥ as we define

a corresponding partition by a = (a1, . . . , as). Moreover, for any such sequence, we assume ai = +∞, for

i ≤ 0, and ai = −∞, for i > s. Also, for any integers c1, . . . , cr, we put
∑b

i=a ci = 0 whenever a > b.

In [16], we have introduced the concept of generalized majorization:

Definition 2.1. Let d1 ≥ · · · ≥ dm+k−s, g1 ≥ · · · ≥ gm+k, a1 ≥ · · · ≥ as be integers. Consider

partitions d = (d1, . . . , dm+k−s), g = (g1, . . . , gm+k) and a = (a1, . . . , as). If

di ≥ gi+s, i = 1, . . . ,m+ k − s,(2.1)
hj∑
i=1

gi −
hj−j∑
i=1

di ≤
j∑

i=1

ai, j = 1, . . . , s(2.2)

m+k∑
i=1

gi =

m+k−s∑
i=1

di +

s∑
i=1

ai,(2.3)

where

hj := min{i|di−j+1 < gi}, j = 1, . . . , s,

then we say that g is majorized by d and a. This type of majorization we call the generalized majorization,

and we write

g ≺′ (d,a).

Notice that, if (2.3) is satisfied, then (2.2) is equivalent to the following:

(2.4)

m+k∑
i=hj+1

gi ≥
m+k−s∑

i=hj−j+1

di +

s∑
i=j+1

ai, j = 1, . . . , s.

Definition 2.2. If partitions a, d and g in Definition 2.1 satisfy (2.1), (2.4) and

(2.5)

m+k∑
i=1

gi ≥
m+k−s∑

i=1

di +

s∑
i=1

ai,
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then we say that g is weakly majorized by d and a, and we write

g ≺′′ (d,a).

Remark 2.3. We note that (2.4) for j = s, and (2.1) together imply:

m+k∑
i=hs+1

gi ≥
m+k−s∑

i=hs−s+1

di ≥
m+k−s∑

i=hs−s+1

gi+s,

i.e.,

di = gi+s, for all i = hs − s+ 1, . . . ,m+ k − s.

Let h0 := 0, then (2.2) is trivially satisfied for j = 0. In addition, if (2.5) is valid, then (2.4) is also

trivially satisfied for j = 0.

Let c = (c1, . . . , cm) and d = (d1, . . . , dm+x−s) be two partitions of nonnegative integers, and let

a = (a1, . . . , as) and b = (b1, . . . , bx) be partitions of integers.

Let Ω̄(c,d,a,b) be the following condition: there exists a partition g = (g1, . . . , gm+x) of nonnegative

integers such that

(2.6) g ≺′′ (d,a) and g ≺′′ (c,b).

We shall use this condition in our main result.

In [13], we obtained the following result:

Theorem 2.4. Let A(λ) ∈ F[λ]n×(n+m) be a quasi-regular matrix pencil. Denote by α1| · · · |αn and c1 ≥
· · · ≥ cc > cc+1 = · · · = cm = 0 its homogeneous invariant factors and column minimal indices, respectively.

Let Q(λ) ∈ F[λ](n+s)×(n+m+x) be a quasi-regular matrix pencil, s ≤ m + x. Denote by β1| · · · |βn+s and

d1 ≥ · · · ≥ dd > dd+1 = · · · = dm+x−s = 0 its homogeneous invariant factors and column minimal indices,

respectively.

There exist matrix pencils X(λ) ∈ F[λ]n×x, Y (λ) ∈ F[λ]s×(n+m), and Z(λ) ∈ F[λ]s×x, such that the

pencil [
A(λ) X(λ)

Y (λ) Z(λ)

]
is strictly equivalent to Q(λ) if and only if

c ≤ s+ d,(2.7)

βi|αi|βi+x+s, i = 1, . . . , n,(2.8)

and there exists a partition of nonnegative integers g = (g1, . . . , gm+x) satisfying:

g ≺′ (c,b),(2.9)

g ≺′ (d,a),(2.10)

where a = (a1, . . . , as) and b = (b1, . . . , bx) are given by

aj = d(Ψs−j+1)− d(Ψs−j)− 1, j = 1, . . . , s,
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bj = d(Φj−1)− d(Φj), j = 1, . . . , x,

with Ψj =
∏n+j

i=1 lcm(ψi−j , βi), j = 0, . . . , s, and Φj =
∏n

i=1 lcm(ψi, αi−j), j = 0, . . . , x, where

ψi := gcd(αi, βi+s), i = 1, . . . , n.

Also, as a direct corollary of [18, Lemma 2.4], we have the following:

Theorem 2.5. Let c = (c1, . . . , cm), d = (d1, . . . , dm+x−s), a = (a1, . . . , as), and b = (b1, . . . , bx), be

partitions such that
m+x−s∑

i=1

di +

s∑
i=1

ai =

m∑
i=1

ci +

x∑
i=1

bi.

If there exists a partition g′ = (g′1, . . . , g
′
m+x) such that

g′ ≺′′ (d,a) and g′ ≺′′ (c,b),

then there exists a partition g = (g1, . . . , gm+x) such that

(2.11) g ≺′ (d,a) and g ≺′ (c,b).

Moreover, if g′ is a partition of nonnegative integers and
∑m+x−s

i=1 di +
∑s

i=1 ai+ ≥ 0, then there exists a

partition g of nonnegative integers satisfying (2.11).

In [12], we have studied polynomial chains. We cite here a version of Theorem 1 from [12] as will be

used in the proof of the main result:

Theorem 2.6. Let x, y and s be nonnegative integers such that y ≥ s. Let α : α1| · · · |αn and γ :

γ1| · · · |γn+s be polynomial chains. Let X1, . . . , Xx+s−1, Y1, . . . , Yy−s−1 and Z be nonnegative integers.

There exists a polynomial chain β : β1| · · · |βn+s satisfying

βi|αi|βi+x+s, i = 1, . . . , n,(2.12)

γi|βi|γi+y−s, i = 1, . . . , n+ s,(2.13)
n+s∑
i=1

d(βi) = Z,(2.14)

n+min(x+s−j,s)∑
i=1

d(lcm(αi−x−s+j , βi)) ≤ Xj , j = 1, . . . , x+ s− 1,(2.15)

n+s∑
i=1

d(lcm(βi−k, γi)) ≤ Yk, k = 1, . . . , y − s− 1(2.16)

if and only if

γi|αi|γi+x+y, i = 1, . . . , n,(2.17)

n+min(s,x+s−j+k)∑
i=1

d(lcm(αi−x−s+j−k, γi)) ≤ Xj + Yk − Z,(2.18)

for j = 0, . . . , x+ s, k = 0, . . . , y − s, such that j ≤ x or k = 0.

Here Xx+s =
∑n

i=1 d(αi), X0 = Z, Yy−s =
∑n+s

i=1 d(γi) and Y0 = Z.
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Also, we shall use the following result from [19, Lemma 10]:

Lemma 2.7. Let A(λ) ∈ F[λ](n+p)×(n+m+l) and B(λ) ∈ F[λ]l×(n+m+l) be matrix pencils, n = rankA(λ).

Let M(λ) =

[
A(λ)

B(λ)

]
and let s = rankM(λ)− rankA(λ). There exist matrix pencils X(λ) ∈ F[λ]s×(n+m+l)

and Y (λ) ∈ F[λ](l−s)×(n+m+l) such that

 A(λ)

X(λ)

Y (λ)

 is strictly equivalent to M(λ), and such that

[
A(λ)

X(λ)

]
has rank equal to n + s, and has the same row minimal indices as A(λ), and the same column minimal

indices as M(λ).

3. Main result. Let A(λ) ∈ F[λ]n×(n+m) be a quasi-regular matrix pencil, hence rankA(λ) = n.

Denote by α1| · · · |αn and c1 ≥ · · · ≥ cm its homogeneous invariant factors and column minimal indices,

respectively. Let us denote by c the number of nonzero column minimal indices of A(λ).

Let M(λ) ∈ F[λ](n+y)×(n+m+x) be a matrix pencil, with rankM(λ) = n + s. Denote by γ1| · · · |γn+s,

d1 ≥ · · · ≥ dm+x−s and r̄1 ≥ · · · ≥ r̄y−s its homogeneous invariant factors, column and row minimal indices,

respectively. Let us denote by d the number of nonzero column minimal indices of M(λ).

By the ranks of the pencils A(λ) and M(λ), we have

(3.19)

n∑
i=1

d(αi) +

m∑
i=1

ci + s =

n+s∑
i=1

d(γi) +

m+x−s∑
i=1

di +

y−s∑
i=1

r̄i.

Let us define integers f1, . . . , fs by

(3.20)

s∑
i=j+1

fi =

n+s−j∑
i=1

d(lcm(αi−s+j , γi))−
n∑

i=1

d(αi)− s+ j, j = 0, . . . , s− 1,

and integers w1, . . . , wx by

(3.21)
x∑

i=j+1

wi = max
k=0,...,y−s

[
n+s∑
i=1

d(lcm(αi−s−j−k, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

]
, j = 0, . . . , x− 1.

In Appendix, we prove that if γi|αi, i = 1, . . . , n, then f1 ≥ · · · ≥ fs ≥ −1. Also, we prove that if the

condition

(3.22)

n+s∑
i=1

d(lcm(αi−s−x−k, γi)) ≤
y−s∑

i=k+1

r̄i +

n+s∑
i=1

d(γi), k = 0, . . . , y − s

is valid, then w1 ≥ · · · ≥ wx ≥ 0. Thus, if γi|αi, i = 1, . . . , n, and (3.22) holds we have that both partitions

f = (f1, . . . , fs) and w = (w1, . . . , wx) are well defined.

Now we can give the main result:

Theorem 3.1. Let A(λ) ∈ F[λ]n×(n+m) be a quasi-regular matrix pencil and M(λ) ∈ F[λ](n+y)×(n+m+x)

be a matrix pencil, as above. There exist matrix pencils X(λ) ∈ F[λ]n×x, Y (λ) ∈ F[λ]y×(n+m), and Z(λ) ∈
F[λ]y×x, such that the pencil

(3.23)

[
A(λ) X(λ)

Y (λ) Z(λ)

]
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is strictly equivalent to M(λ) if and only if

(i) c ≤ d+ s,

(ii) γi|αi|γi+x+y, i = 1, . . . , n,

(iii)

n+s∑
i=1

d(lcm(αi−s−x−k, γi)) ≤
y−s∑

i=k+1

r̄i +

n+s∑
i=1

d(γi), k = 0, . . . , y − s,

(iv) Ω̄(c,d, f ,w) holds.

Remark 3.2. Once [11] is published, the condition Ω̄(c,d, f ,w) in Theorem 3.1 can be replaced with

its explicit form Ω(c,d, f ,w) given in [11].

3.1. Properties of the pencil (3.23) and its subpencils. Since A(λ) is a quasi-regular matrix

pencil, so is the pencil

(3.24)
[
A(λ) X(λ)

]
∈ F[λ]n×(n+m+x)

and its rank equals n. Moreover, since the rank of (3.23) is n + s, by Lemma 2.7 we have that the pencil

(3.23) is strictly equivalent to the pencil  A(λ) X(λ)

Y1(λ) Z1(λ)

Y2(λ) Z2(λ)

 ,
where the subpencil

(3.25)

[
A(λ) X(λ)

Y1(λ) Z1(λ)

]
∈ F[λ](n+s)×(n+m+x)

is such that its rank is exactly n + s, i.e., it is quasi-regular and its column minimal indices coincide with

the column minimal indices of (3.23) (d1 ≥ · · · ≥ dm+x−s).

Let us denote the homogeneous invariant factors of (3.25) by β1| · · · |βn+s.

Next, let us consider the completion of A(λ) up to (3.25). It is a completion from a quasi-regular up to

a quasi-regular matrix pencil, so we can apply Theorem 2.4:

A completion from A(λ) up to (3.25) is possible if and only if there exists a partition of nonnegative

integers g = (g1, . . . , gm+x) satisfying conditions (2.7)-(2.10). We note that from the ranks of the involved

matrix pencils we also have

(3.26)

n∑
i=1

d(αi) +

m∑
i=1

ci + s =

n+s∑
i=1

d(βi) +

m+x−s∑
i=1

di.

By the definition of the general majorization, (2.9) is equivalent to

(3.27) ci ≥ gi+x, i = 1, . . . ,m,

(3.28)

m+x∑
i=hj+1

gi −
m∑

i=hj−j+1

ci ≥
x∑

i=j+1

bi, j = 0, . . . , x,
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and

(3.29)

m+x∑
i=1

gi =

m∑
i=1

ci +

x∑
i=1

bi,

where hj := min{i|ci−j+1 < gi}, j = 1, . . . , x, and h0 := 0.

By the definition of bi’s, if (2.8) is satisfied, then we have that

x∑
i=j+1

bi =

n+s∑
i=1

d(lcm(αi−j−s, βi))−
n+s∑
i=1

d(βi), j = 0, . . . , x− 1.

Hence, (3.28) becomes

(3.30)

n+s∑
i=1

d(lcm(αi−j−s, βi)) ≤
m+x∑

i=hj+1

gi −
m∑

i=hj−j+1

ci +

n+s∑
i=1

d(βi)

for all j = 0, . . . , x. Also, (3.29) becomes

(3.31)

m+x∑
i=1

gi =

m∑
i=1

ci +

n+s∑
i=1

d(lcm(αi−s, βi))−
n+s∑
i=1

d(βi).

Analogously, by the definition of the general majorization, (2.10) is equivalent to

(3.32) di ≥ gi+s, i = 1, . . . ,m+ x− s,

(3.33)

m+x∑
i=vj+1

gi −
m+x−s∑

i=vj−j+1

di ≥
s∑

i=j+1

ai, j = 0, . . . , s,

and

(3.34)

m+x∑
i=1

gi =

m+x−s∑
i=1

di +

s∑
i=1

ai,

where vj := min{i|di−j+1 < gi}, j = 1, . . . , s, and v0 := 0.

By the definition of ai’s, if (2.8) is satisfied, then we have that

s∑
i=j+1

ai =

n+s−j∑
i=1

d(lcm(αi−s+j , βi))−
n∑

i=1

d(αi)− s+ j, j = 0, . . . , s− 1.

Hence, (3.33) becomes

(3.35)

n+s−j∑
i=1

d(lcm(αi−s+j , βi)) ≤
m+x∑

i=vj+1

gi −
m+x−s∑

i=vj−j+1

di +

n∑
i=1

d(αi) + s− j, j = 0, . . . , s,
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and (3.34) becomes

(3.36)

m+x∑
i=1

gi =

m+x−s∑
i=1

di +

n+s∑
i=1

d(lcm(αi−s, βi))−
n∑

i=1

d(αi)− s.

We note that if (3.26) is valid, then the righthand sides of (3.31) and (3.36) coincide, as needed.

Finally, let us consider the row completion from (3.25) up to (3.23). By Theorem 2 in [15] (see also

[14,19]), we have that this completion is possible if and only if the following conditions are valid:

γi|βi|γi+y−s, i = 1, . . . , n+ s,(3.37)

n+s∑
i=1

d(βi) =

n+s∑
i=1

d(γi) +

y−s∑
i=1

r̄i,(3.38)

k∑
i=1

r̄i ≤
k∑

i=1

b̂i, k = 1, . . . , y − s,(3.39)

where
k∑

i=1

b̂i =

y−s∑
i=1

r̄i +

n+s∑
i=1

d(γi)−
n+s∑
i=1

d(lcm(βi−k, γi)), k = 1, . . . , y − s.

Hence, (3.39) is equivalent to

(3.40)

n+s∑
i=1

d(lcm(βi−k, γi)) ≤
y−s∑

i=k+1

r̄i +

n+s∑
i=1

d(γi), k = 1, . . . , y − s.

Remark 3.3. We note that if (3.37) and (3.38) hold, the inequality (3.40) is also trivially satisfied for

k = 0.

Finally, as the result of the above analysis we conclude that our starting completion problem given

in Theorem 3.1 is equivalent to the existence of homogeneous polynomials β1| · · · |βn+s and a partition

g = (g1, . . . , gm+x) of nonnegative integers, which satisfy conditions (2.7), (2.8), (3.26), (3.27), (3.30),

(3.31), (3.32), (3.35), (3.36), (3.37), (3.38) and (3.40).

Now we pass to the proof of Theorem 3.1 given in the following section.

4. Proof of Theorem 3.1.

4.1. Necessity of the conditions (i)− (iv). Let us suppose that there exists the wanted completion.

As we have shown in Section 3.1 that is equivalent to the existence of homogeneous polynomials β1| · · · |βn+s

and a partition g = (g1, . . . , gm+x) of nonnegative integers, which satisfy conditions (2.7), (2.8), (3.26),

(3.27), (3.30), (3.31), (3.32), (3.35), (3.36), (3.37), (3.38) and (3.40).

Condition (2.7) is equal to condition (i). Conditions (2.8) and (3.37) give (ii). Conditions (2.8), (3.38)

and (3.40) give (iii).

Before proceeding with the proof of (iv), we shall write conditions (3.30), (3.35) and (3.40) in slightly

different equivalent forms, according to the notation from Theorem 2.6. Let

(4.41) Z :=

y−s∑
i=1

r̄i +

n+s∑
i=1

d(γi).
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Consider condition (3.30). By (3.38), it is equal to

(4.42)

n+s∑
i=1

d(lcm(αi−x+j−s, βi)) ≤
m+x∑

i=hx−j+1

gi −
m∑

i=hx−j−x+j+1

ci + Z, j = 0, . . . , x.

Let us denote by

(4.43) Xj :=

m+x∑
i=hx−j+1

gi −
m∑

i=hx−j−x+j+1

ci + Z, j = 0, . . . , x.

Then (4.42) becomes

(4.44)

n+s∑
i=1

d(lcm(αi−x−s+j , βi)) ≤ Xj , j = 0, . . . , x.

Next consider condition (3.35). It is equal to

(4.45)

n+x+s−j∑
i=1

d(lcm(αi−x−s+j , βi)) ≤
m+x∑

i=vj−x+1

gi −
m+x−s∑

i=vj−x−j+x+1

di +

n∑
i=1

d(αi) + s− j + x

for all j = x, . . . , x+ s. Let us denote by

(4.46) Xj :=

m+x∑
i=vj−x+1

gi −
m+x−s∑

i=vj−x−j+x+1

di +

n∑
i=1

d(αi) + s− j + x, j = x, . . . , x+ s.

Now (4.45) becomes

(4.47)

n+x+s−j∑
i=1

d(lcm(αi−x−s+j , βi)) ≤ Xj , j = x, . . . , x+ s.

Note that for j = x the definitions of Xx from (4.43) and (4.46) coincide. Also, we note that X0 = Z,

and Xx+s =
∑n

i=1 d(αi).

Finally, let us denote by

(4.48) Yk :=

y−s∑
i=k+1

r̄i +

n+s∑
i=1

d(γi), k = 0, . . . , y − s.

By Remark 3.3, (3.40) becomes

(4.49)

n+s∑
i=1

d(lcm(βi−k, γi)) ≤ Yk, k = 0, . . . , y − s.

Note that Y0 = Z, and Yy−s =
∑n+s

i=1 d(γi).
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Hence, (4.44), (4.47) and (4.49), together with (2.8), (3.37), (3.38) and (4.41), by Theorem 2.6 give that

the following is valid:

γi|αi|γi+x+y, i = 1, . . . , n,(4.50)

n+min(s,x+s−j+k)∑
i=1

d(lcm(αi−x−s+j−k, γi)) ≤ Xj + Yk − Z,(4.51)

for j = 0, . . . , x+ s, k = 0, . . . , y − s, such that j ≤ x or k = 0.

Due to restriction on the indices j and k (j ≤ x or k = 0), condition (4.51) can be split into

(4.52)

n+x+s−j∑
i=1

d(lcm(αi−x−s+j , γi)) ≤ Xj , j = x, . . . , x+ s,

and

(4.53)

n+s∑
i=1

d(lcm(αi−x−s+j−k, γi)) ≤ Xj + Yk − Z, j = 0, . . . , x, k = 0, . . . , y − s.

Before proceeding we note that (4.52) for j = x coincide with (4.53) for j = x and k = 0.

From the definition of Xj , j = x, . . . , x+ s, condition (4.52) is equal to

(4.54)

m+x∑
i=vj−x+1

gi −
m+x−s∑

i=vj−x−j+x+1

di ≥
n+x+s−j∑

i=1

d(lcm(αi−x−s+j , γi))−
n∑

i=1

d(αi)− s+ j − x,

for j = x, . . . , x+ s. The last is equal to

(4.55)

m+x∑
i=vj+1

gi −
m+x−s∑

i=vj−j+1

di ≥
n+s−j∑
i=1

d(lcm(αi−s+j , γi))−
n∑

i=1

d(αi)− s+ j, j = 0, . . . , s.

Since the condition (ii) is valid, from the definition of the weak generalized majorization, and by the

definition (3.20) of f = (f1, . . . , fs), we have that (3.32) and (4.55) are equivalent to

(4.56) g ≺′′ (d, f).

As for condition (4.53), by the definition of Xj , j = 0, . . . , x and Yk, k = 0, . . . , y − s, it is equal to

(4.57)

m+x∑
i=hx−j+1

gi −
m∑

i=hx−j−x+j+1

ci ≥
n+s∑
i=1

d(lcm(αi−x−s+j−k, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

for all j = 0, . . . , x, k = 0, . . . , y − s.

The last is equal to

(4.58)

m+x∑
i=hj+1

gi −
m∑

i=hj−j+1

ci ≥ max
k=0,...,y−s

[
n+s∑
i=1

d(lcm(αi−s−j−k, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

]
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for all j = 0, . . . , x.

Since the condition (iii) is valid, from the definition of the weak generalized majorization, and by the

definition (3.21) of w = (w1, . . . , wx), we have that (3.27) and (4.58) are equivalent to

(4.59) g ≺′′ (c,w).

Finally, (4.56) and (4.59) give (iv) as wanted.

4.2. Sufficiency of the conditions (i)− (iv) . Let us suppose that conditions (i)− (iv) are valid. We

are left with proving the existence of homogeneous polynomials β1| · · · |βn+s and a partition of nonnegative

integers g = (g1, . . . , gm+x) which satisfy conditions (2.7), (2.8), (3.26), (3.27), (3.30), (3.31), (3.32), (3.35),

(3.36), (3.37), (3.38) and (3.40).

First note that (i) coincide with (2.7). Next, we have that condition (iv) implies the existence of a

partition g′ = (g1, . . . , gm+x) of nonnegative integers such that

(4.60) g′ ≺′′ (c,w)

and

(4.61) g′ ≺′′ (d, f).

By the definition of the weak generalized majorization, together with the definition of w from (3.21),

we have that (4.60) is equivalent to

(4.62) ci ≥ g′i+x, i = 1, . . . ,m,

and

(4.63)

m+x∑
i=h′j+1

g′i −
m∑

i=h′j−j+1

ci ≥
n+s∑
i=1

d(lcm(αi−s−j−k, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

for all j = 0, . . . , x, k = 0, . . . , y − s, where h′j := min{i|ci−j+1 < g′j}, j = 1, . . . , x, h′0 := 0.

Also, by the definition of the weak generalized majorization, together with the definition of f from (3.20),

condition (4.61) is equivalent to

(4.64) di ≥ g′i+s, i = 1, . . . ,m+ x− s,

and

(4.65)

m+x∑
i=v′j+1

g′i −
m+x−s∑

i=v′j−j+1

di ≥
n+s−j∑
i=1

d(lcm(αi−s+j , γi))−
n∑

i=1

d(αi)− s+ j, j = 0, . . . , s,

where v′j := min{i|di−j+1 < g′j}, j = 1, . . . , s, v′0 := 0.

Equation (4.63) is equal to

(4.66)

m+x∑
i=h′x−j+1

g′i −
m∑

i=h′x−j−x+j+1

ci ≥
n+s∑
i=1

d(lcm(αi−x−s+j−k, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)
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for all j = 0, . . . , x, k = 0, . . . , y − s.

Equation (4.65) is equal to

(4.67)

m+x∑
i=v′j−x+1

g′i −
m+x−s∑

i=v′j−x−j+x+1

di ≥
n+s−j+x∑

i=1

d(lcm(αi−s+j−x, γi))−
n∑

i=1

d(αi)− s+ j − x

for all j = x, . . . , x+ s.

Let Yk be as in (4.48), and let Z be as in (4.41).

Let

(4.68) X ′j :=

m+x∑
i=h′x−j+1

g′i −
m∑

i=h′x−j−x+j+1

ci + Z, j = 0, . . . , x,

(4.69) X ′j :=

m+x∑
i=v′j−x+1

g′i −
m+x−s∑

i=v′j−x−j+x+1

di +

n∑
i=1

d(αi) + s− j + x, j = x, . . . , x+ s.

We note that X ′0(= Y0) = Z, and X ′s+x =
∑n

i=1 d(αi).

Then we write (4.66) and (4.67) together as

n+min(s,x+s−j+k)∑
i=1

d(lcm(αi−x−s+j−k, γi)) ≤ X ′j + Yk − Z,(4.70)

for j = 0, . . . , x+ s, k = 0, . . . , y − s, such that j ≤ x or k = 0.

By Theorem 2.6, conditions (ii) and (4.70) give the existence of homogeneous polynomials β1| · · · |βn+s which

satisfy

(4.71)

n+s∑
i=1

d(βi) = Z,

conditions (2.8), (3.37), (3.40),

(4.72)

n+s∑
i=1

d(lcm(αi−s−j , βi)) ≤
m+x∑

i=h′j+1

g′i −
m∑

i=h′j−j+1

ci +

n+s∑
i=1

d(βi), j = 0, . . . , x,

and

(4.73)

n+s−j∑
i=1

d(lcm(αi−s+j , βi)) ≤
m+x∑

i=v′j+1

g′i −
m+x−s∑

i=v′j−j+1

di +

n∑
i=1

d(αi) + s− j, j = 0, . . . , s− 1.

We note that (4.73) is also trivially satisfied for j = s.

Condition (4.71) is equal to (3.38), and (4.71) together with (3.19) gives (3.26).
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If denote by

(4.74)

x∑
i=j+1

b′i :=

n+s∑
i=1

d(lcm(αi−s−j , βi))−
n+s∑
i=1

d(βi), j = 0, . . . , x− 1,

and by

(4.75)

s∑
i=j+1

a′i :=

n+s−j∑
i=1

d(lcm(αi−s+j , βi))−
n∑

i=1

d(αi)− s+ j, j = 0, . . . , s− 1,

conditions (4.62) and (4.72), as well as (4.64) and (4.73), give

(4.76) g′ ≺′′ (c,b′) and g′ ≺′′ (d,a′).

Here a′ = (a′1, . . . , a
′
s) and b′ = (b′1, . . . , b

′
x).

By (3.26), we have
∑m

i=1 ci +
∑x

i=1 b
′
i =

∑m+x−s
i=1 di +

∑s
i=1 a

′
i ≥ 0. By Theorem 2.5, we have that (4.76)

implies the existence of a partition g = (g1, . . . , gm+x) of nonnegative integers such that

(4.77) g ≺′ (c,b′) and g ≺′ (d,a′).

By the definition of the generalized majorization condition (4.77) give conditions (3.27), (3.30), (3.31),

(3.32), (3.35) and (3.36), as wanted.

This finishes our proof.

Appendix. The following lemma is a simple generalization of [17, Lemma 2]:

Lemma 4.1. Let ᾱ : ᾱ1| · · · |ᾱn and γ̄ : γ̄1| · · · |γ̄m be two chains of monic polynomials. Let

(4.78) πj(ᾱ, γ̄) =

n+j∏
i=min(1,j+1)

lcm(ᾱi−j , γ̄i), j ≤ m− n

and let

(4.79) σj(ᾱ, γ̄) =
πj(ᾱ, γ̄)

πj−1(ᾱ, γ̄)
, j ≤ m− n.

Then

σj(ᾱ, γ̄) | σj+1(ᾱ, γ̄), j ≤ m− n− 1.

In this section, we shall prove that the integers f1, . . . , fs defined by (3.20) as well as the integers

w1, . . . , wx defined by (3.21) are both non-increasing, thus defining partitions f = (f1, . . . , fs) and w =

(w1, . . . , wx).

Let γi|αi, i = 1, . . . , n. By using definitions (4.78) and (4.79), from (3.20) we have

fj =

n+s−j+1∑
i=1

d(lcm(αi−s+j−1, γi))−
n+s−j∑
i=1

d(lcm(αi−s+j , γi))− 1 = d(σs−j+1(α, γ))− 1
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for all j = 1, . . . , s− 1, and

fj+1 =

n+s−j∑
i=1

d(lcm(αi−s+j , γi))−
n+s−j−1∑

i=1

d(lcm(αi−s+j+1, γi))− 1 = d(σs−j(α, γ))− 1

for all j = 1, . . . , s− 1. Thus, by Lemma 4.1, we get fj ≥ fj+1, j = 1, . . . , s− 1, as wanted.

Let the condition (iii) from Theorem 3.1 be valid, i.e., let (3.22) be satisfied.

From (3.21), we have

(4.80)

x∑
i=j

wi = max
k=0,...,y−s

[
n+s∑
i=1

d(lcm(αi−s−j−k+1, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

]

for all j = 1, . . . , x. Let us denote by

F (j, k) :=

n+s∑
i=1

d(lcm(αi−s−j−k+1, γi))−
y−s∑

i=k+1

r̄i −
n+s∑
i=1

d(γi)

for all j = 1, . . . , x, and k = 0, . . . , y − s.

For any j = 1, . . . , x, let kj ∈ {0, . . . , y − s} be such that

(4.81)

x∑
i=j

wi =

n+s∑
i=1

d(lcm(αi−s−j−kj+1, γi))−
y−s∑

i=kj+1

r̄i −
n+s∑
i=1

d(γi) = F (j, kj),

i.e., for every j = 1, . . . , x, we have

(4.82) F (j, kj) ≥ F (j, k), k = 0, . . . , y − s.

For every j = 1, . . . , x− 1, we have

wj =

x∑
i=j

wi −
x∑

i=j+1

wi = F (j, kj)− F (j + 1, kj+1)

≥ F (j, kj+1)− F (j + 1, kj+1) =

n+s∑
i=1

d(lcm(αi−s−j+1−kj+1
, γi)−

n+s∑
i=1

d(lcm(αi−s−j−kj+1
, γi)

= d(π−s−j+1−kj+1(γ, α))− d(π−s−j−kj+1(γ, α)) = d(σ−s−j+1−kj+1(γ, α)).(4.83)

Also, for every j = 1, . . . , x− 2, we have

wj+1 =

x∑
i=j+1

wi −
x∑

i=j+2

wi = F (j + 1, kj+1)− F (j + 2, kj+2)

≤ F (j + 1, kj+1)− F (j + 2, kj+1)

=

n+s∑
i=1

d(lcm(αi−s−j−kj+1 , γi)−
n+s∑
i=1

d(lcm(αi−s−j−1−kj+1 , γi)

= d(σ−s−j−kj+1(γ, α)).
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Moreover, by condition (3.22) for k = kx, we have

wx =

n+s∑
i=1

d(lcm(αi−s−x−kx+1, γi))−
y−s∑

i=kx+1

r̄i −
n+s∑
i=1

d(γi)

≤
n+s∑
i=1

d(lcm(αi−s−x−kx+1, γi))−
n+s∑
i=1

d(lcm(αi−s−x−kx , γi))

= d(σ−s−x+1−kx
(γ, α)).

Therefore, for all j = 1, . . . , x− 1, we have

(4.84) wj+1 ≤ d(σ−s−j−kj+1
(γ, α)).

By applying Lemma 4.1, (4.83) and (4.84) give wj ≥ wj+1 for all j = 1, . . . , x− 1, as wanted.
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