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GROUP INVERSES OF MATRICESWITH PATH GRAPHS*

M. CATRALT, D.D. OLESKY*, AND P. VAN DEN DRIESSCHE

Abstract. A simple formula for the group inverse of ax22 block matrix with a bipartite digraph is given
in terms of the block matrices. This formula is used to give a graph-theoretic description of the group inverse
of an irreducible tridiagonal matrix of odd order with zero diagonal (which is singular). Relations between the
zero/nonzero structures of the group inverse and the Moore-Penrose inverse of such matrices are given. An extension
of the graph-theoretic description of the group inverse to singular matrices with tree graphs is conjectured.
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1. Introduction. For a realn x n matrix A, thegroup inverse, if it exists, is the unique
matrix A¥ satisfying the matrix equation8A” = A¥A, AA*A = A and A*AA* = A7, If Ais
invertible, themA” = A~1. It is well-known thatA* exists if and only if rankA = rankA2. For
more detailed expositions on the group inverse and its properties, see [3], [7].

We present a new formula in Section 2 for the group inverse of 2 Block matrix with
bipartite form as in (1.1) below. We use this formula to give a graph-theoretic description of
the entries of the group inverse of an irreducible tridiagonal matrix of orkler2with zero
diagonal (which has a path graph and is singular). This description, given in Section 3, is
proved using a graph-theoretic characterization of the usual inverse of a nonsingular tridiag-
onal matrix of ordek (see e.g. [11]). In Section 4, we relate our results to the zero/nonzero
structure of another type of generalized inverse, the Moore-Penrose inverse. We conclude in
Section 5 with a conjecture, which extends our graph-theoretic description of the entries of
the group inverse to a matrix with a tree graph.

Generalized inverses of banded matrices, including tridiagonal matrices, are considered
in [2] where the focus is on the rank of submatrices of the generalized inverse. Campbell and
Meyer [7, page 139] investigate the Drazin inverse (which is a generalization of the group
inverse) for a 2< 2 block matrix. Recently, special cases of this problem that have been
studied are listed in [10] and some new formulas are derived.

We first introduce some graph-theoretic notation. There is a one-to-one correspon-
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dence between x n matricesA = (a;j) and digraph©(A) = (V,E) having vertex se¥ =
{1,---,n} and arc se€k, where(i,j) € E if and only if a;j # 0. Forg> 1, a sequence

(i1,i2,i3,--- ,ig,ig+1) Of distinct vertices with arcgiy,i2), (i2,i3), -, (ig,ig+1) all in E is
called apath of length g fromiy toigy1 in D(A). Forq> 2, a sequencéiy, iz, iz, - ,ig,i1)
with iy, iz, -+ ,iq distinct and arcsiy, i2),-- - (ig,i1) in E is called ag-cycle (acycle of length

g) in D(A). A digraph is called a (directethee graph if it is strongly connected and all of its
cycles have length 2. If the digrajii{A) of a matrixAis a tree graph, then all of the diagonal
entries ofA are necessarily zero. Since a tree graph is bipartite, its vertices can be labeled so
that its associated matrix has the form

0 B
(1.1) A—{CO},

whereB € RP*("-P) C e R("P*Pandp < .

A particular example of a tree graph ispath graph on n verticesi 1,i2,-- ,in which
consists of the patp = (i1,ip, - ,in) fromiy toi, and its reversal (i.e., the path obtained by
reversing all of the arcs ip). If, for k > 1, a path graph on= 2k+ 1 vertices consists of the
path(k+ 1,1, k+2,2,---,2k k,2k+ 1) and its reversal, then we call this thipartite path
graph onn = 2k+ 1 vertices.

Consider a tree grapb(A), with A as in (1.1). For every pair of distinct vertices
andigy 1, there is a unique pattiy, iz, - - ,ig,igr1) fromis toig,1. For this path, the product
8iy,i,8ip,i3 " Qigiq,, 1S Called thepath product and is denoted b¥afis — ig+1]. All of the
cycles inD(A) are 2-cycles and a produat, i,a,,i; 8iz,i,8is,i5 - - &, _4,ir &r,i;_, corresponding
to a set{(i1,i2,i1), (is,ia,i3), -, (ir—1,ir,ir—1)} Of r/2 disjoint 2-cycles inD(A) is called a
matching in D(A) of sizer. If this set of 2-cycles has maximal cardinality, then the matching
is amaximal matching and the numberis called theerm rank of A. The sum of all maximal
matchings irD(A) is denoted byAa. The notationyis,iq+1] denotes the sum of all maximal
matchings in the path subgraphDfA) on the verticess, - - ,ig+1, and we seyfiw, iw] = 1.
Also, y(i1,ig+1) denotes the sum of all maximal matchings on the path subgraph &f(A)
on the verticesy, - - - ,ig+1. If there are no such maximal matchings, thygin,ig.1) = 1. It
follows from these definitions thafi1,ig+1] = Ylig+1,i1] andy(i1,igr1) = Y(ig+1,i1). If D(A)
is the path graph on vertices - - - ,in, thenAa =VY[i1,in).

For a tree grapD(A), the matrixA is nearly reducible, so the term rankAfs equal to
the rank ofA [4, Theorem 4.5]. The following proposition shows that a necessary and suffi-
cient condition forA” to exist is that the sum of all maximal matchingsDfA) is nonzero,
i.e. Ap # 0. An analogous result for an arbitrary compiex n matrix is given in [6, Lemma
2.2]. Our proof uses the fact that the group invers@ ekists if and only if rankA = rank
A2, or equivalently, the geometric and algebraic multiplicities of the eigenvalue 0 are equal
[8, Exercise 17, page 141].

PrROPOSITION1.1. Let A be an n x n matrix with a tree graph D(A). Then the group
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inverse A* exists if and only if Aa # O.

Proof. Note that sinceD(A) is a tree graphA has zero diagonal. Leb(x) = x" +
XX 2 4. 4 ¢_1X" 1 4 ¢, be the characteristic polynomial &f The coefficient
¢ of X! equals(—1)! times the sum of the determinants of the principal submatrices of
A of ordert (see [5]). Thusg; = 0 if t is odd; fort even,c; is equal to(—1)!/2 times the
sum of all matchings ilD(A) of sizet. Letr be the term rank, and thus the rank, Af
The order of the largest nonsingular submatrib@ims thenr, and there is no nonsingular
submatrix of larger order. Assume thigt £ 0. Then the coefficier(t—1)"Aa of X" " in p(x)
is nonzero, and all coefficients of X"t fort > r are zero. Thus, the algebraic multiplicity
of the eigenvalue 0 ia —r, which equalsi—rankA, the geometric multiplicity of 0. By the
preceding discussion, rafk= rank A2 and henced” exists. Conversely, ifba = 0, then
p(x) = x*q(x), wheres > n—r andq(x) is a polynomial. This implies that the algebraic
multiplicity of the eigenvalue 0 is strictly greater than its geometric multiplicity; thus rank
A +# rank A2 andA* does not exist]

2. Group Inversesof Matriceswith Bipartite Digraphs. In the following theoremA
has a bipartite digraph, but it is not necessarily a tree graph. Our proof of the theorem uses
the next result.

LEMMA 2.1. Let B e RP*("™P) C e R(™P*P, |f rank B = rank C = rank BC =
rank CB, then rank (BC)? = rank BC, i.e., (BC)* exists. Furthermore, BC(BC)”B = B and
C(BC)*BC =C.

Proof. Let rankB = rankC = rankBC = rankCB = m. A rank inequality of Frobenius
(see [8, page 13))

rankBC 4 rankCB < rankC + rankBCB

implies that ranBCB > m. But clearly raniBCB < m, hence equality holds. Similarly,
rankCBC = m. Now using the Frobenius inequality again gives

rankBCB 4+ rankCBC < rankCB + rankBCBC.

By a similar argument as above, r¢B)2 = m. Thus, rankBC)? = rankBC, i.e., (BC)*
exists.

For the second part, the equalBZ(BC)*BC = BC implies thatBC(BC)#x = x for all
vectorsx in R (BC), the range oBC. Now, R (BC) C R (B) so the assumption rarBC =
rank B implies thatR (BC) = R (B). Thus,BC(BC)#x = x for all x in R (B) and therefore,
BC(BC)*B = B. Similarly, (BC)" (BC)"#y=yforallyinR ((BC)T) and the rank assumptions
imply thatR ((BC)T) =R (CT). Thus,y" (BC)#*(BC) =y' forall yin R (CT) and therefore,
C(BC)#(BC) =C. 0
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c o
Then the group inverse A¥ of A existsif and only if rank B = rank C = rank BC = rank CB. If
A? exists, then

(2.1) A = [ 0 (BC)’B ]

THEOREM2.2. Let A= [ 0B },whereBeRpX(n‘m, CeRM™P*Pand p< 5.

Proof. If rank B = rankC = rankBC = rankCB, then rankB + rankC = rankBC+ rank
CB, which implies that ranld = rankA2. ThusA* exists. Conversely, if* exists and rank
B # rankC, then without loss of generality suppose that r@k rankC. Then rankA? =
rankBC+ rankCB < 2 rankB < rankB+ rankC = rankA, which contradicts the existence
of A*. Thus, rankB = rankC, and by a similar argument, rafiC = rankCB. Hence rank
A = rankA?Z implies that rank + rankC = rankBC+ rankCB and therefore ranB = rank
C = rankBC = rankCB.

For the second par{BC)* exists by Lemma 2.1. Denoting the right hand side of (2.1)
by G, we need only show th#&G = GA, AGA = A andGAG = G to prove thaG = A*. Since
BC(BC)* = (BC)*BC, it follows that

# #
G = { BC((?C) C(Bg)#B ] = { (BCZ) BC C(Bg)#B } = GA. Using the equalities
established in Lemma 2.1, .
_ 0 BC(BCB] [0 B]
AGA = {C(BC)#BC 0 } = {C 0} = A and
_ 0 (BC)*BC(BC)*B B 0 (BC)*B B
GAG = |:C(BC)#BC(BC)# 0 ] = |:C(BC)# 0 ] = G.0

If rank BC = rankCB = rankB = rankC = p, then thep x pmatrix BC is invertible and
we obtain the following result.

COROLLARY 2.3. Using the notation of Theorem 2.2, if rank BC = rank CB = rank B=
rank C = p, then the group inverse A* exists and is given by

0 (BC)~!B

A= c(BC)~ !

We note that in [10], formulas for the more general Drazin inverse of certai Block
matrices are given. However, the conditions there are not in general satisfied by a matrix of
form (1.1).

The following example haBC singular but satisfying the conditions of Theorem 2.2.
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EXAMPLE 2.4. If

0O O O |aw as a |
0 0 0 0 axs O
A_| 0 0 0]0 as 0] _[o0B
o aus O 0 0 0 0 “|lc o’
a3 as» asz3| 0 O O
las 0 0|0 0 0
then
[ a14841+ a15851+ 16861 5852 Q15853
BC = apsasy Ap5a52  ApsAs3
L azsasy azsdsy  aA3s5ds3
and
[ asa1s 1815 e
CB = | asia14 asidis5+ aspdzs+as3azs  as1d16
L 9114 961215 a61a16

Note thatD(A) is a tree graph.

Here, Aa =

a14841825852 + A14a41835A53 + A16861825852 + Q16861835853

223

(a14841 + a16861) (25852 + azsas3), the sum of maximal matchings M(A). If Aa # 0, then
the matriced3,C, BC andCB all have rank 2 and by Theorem 2&¥ exists and is given by

(2.1). Using Algorithm 7.2.1 in [7] and Maple,

5852 + azsas3 —aysas2 —ay5a53
(BC)# - i —asa A25352(A14241 115851 +216361)  A25853(A1441 1315851 +16361)
- An 5951 a25852+a35853 a25a52+a35853
—agsas a35352(A1421 215851 +16061)  B35853(8148411815851+216861)
35951 5852-+835853 a5a52-+a35853
It follows that if Aa # 0, then from (2.1),
A* — 1]0R
M| S 0|’
where
a14(apsas2 + azsas3) 0 a16(azsas2 + azsas3)
R= —ap5351a14 ags(asdul + a16a61) —ap5a51816
—ag5a5114 ags(ai4au1 + a16a61) —agsas1816
and
as1(agsasy + agsas3) —a41815852 —a41815853
S = 0 asp(ai4au1 + an6ds1)  as3(@14841+ A16861)
ap1(a5852 + azsas3) —ae1a15052 —ap1a15053
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3. A? for aMatrix with a Path Graph. Letk > 1. For the path grapB(A) onn = 2k
vertices A is nonsingular and* = A~1 (and a graph-theoretic description of the entries of
A~1is known; see Theorem 3.5 below). So we consider the path dgdéahwith an odd
number of vertices, for whicAis singular. Fon=2k+ 1, if D(A) is the bipartite path graph,
then its associated matriis as in (1.1) with

[ ag k+1
0
(3.1 B = 0
| O
and
I Akt11
k421
0
(3.2) C =
0
| O

aj k+2

R k+2 Rk+3

0 azks
0

0 0
a2 O
A+3,2

0

0

0

0 0
0 0
0
0 akak &Kokl |
0
0
0
Axhk—1  Akk
0 ak+ik |

c ka (k+1)

e RH)xk

where each specified entay; is nonzero. Then rank = rankC = k, and the entries of the

k x k tridiagonal matrixBC are as follows:

(BC)ii = Qkpidkyi T A krir1kpivyi F1 <1 <K
(3.3) (BC)iji+1 = &ikti+18k+it1itl if 1< | <k-1

(BCisi = @iikyir18kitli if1<i<k-1

(BC)ij =0 otherwise

In Proposition 3.2 below, it is proved that the determinant of the m&@ixs equal to
the sum of maximal matchings ID(A). The following simple observations are used in the

succeeding proofs.

LEMMA 3.1.Let A= [

0 B
c o

} with B,C asin (3.1)and (3.2), respectively, i.e.,, D(A)

is the bipartite path graph on 2k + 1 vertices. In D(A) and for 1 < j < k+ 1, the following

relations hold.

(3.4)

(3.5)

YK+, k+j+1] = yk+j,j] + Ylj,k+j+1], j #k+ 1

Pali = j+1JPalj+1—j] = Vi, k+]j+2yk+j+1j+1], j#k+1
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(3.6)  vk+L1k+j] = y[i—-Lk+jlyk+1k+j-1] + yk+1,j-1], j#1
(3.8) VG, 1) = Vik+ LK+ilyk+j+1,2k+1], 1<i<j<k

In the following, BC[j; ¢] denotes the principal submatrix BC in rows and columns
j7 e ae'

PROPOSITION3.2. For k> 1, let D(A) bethebipartite path graph on 2k + 1 vertices, i.e,
0 B

A= [ C o
yik+1,k+t+1].

] with B,C asin (3.1)and (3.2), respectively. Thenfor 1 <t <k, detBC[1;t] =

Proof. We use induction om. First note, from (3.3), that thie x k matrix BC can be
written as

Vk+1,k+2  Pal—2] 0 0
Pal2—1  yk+2,k+3] Pa2— 3]
(3.9) 0 Pa[3— 2] 0
Vi2k—1,2K  Palk—1—K
I 0 0 Palk —k—1] y[2k2k+1] |

If t =1, then deBC[1;1] = y[k+ 1,k+ 2] = y[k+ 1,k+t + 1] as desired.

Now suppose that for 2 g < kthe result is true for all < g— 1, thus, for example,

(3.10) deBC[1;g—1] = yk+1,k+g]
and
(3.11) deBC[1;0—2] = ylk+1,k+g—1].

(Note thatBC[1;0] is vacuous and d&C[1;0 = 1.) Lettingt = g and expanding the deter-
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minant about the last row &C|[1;q],

detBC[1;9] = vylk+9,k+g+1]detBC[1;g9— 1]

— Pa[g—1— g]Pa[g — g— 1] detBC[1;9 - 2]

= (yk+9.9/+V{g.k+9+1])yk+1k+g]
—v[g—1,k+gly[k+g,gly[k+1,k+g—1] by (3.4), (3.5), (3.10)
and(3.11)

= Yo k+g+1yk+1k+g + v[g k+glyk+1g-1] by (36)

= V[g,k+9g+1)yk+1,k+g + yk+1,9] by(3.7)

= yk+1,k+g+1 by (3.6). O

COROLLARY 3.3. For k> 1, let D(A) be the bipartite path graph on 2k + 1 vertices,

ie, A= [ g g’ ] with B,C as in (3.1) and (3.2), respectively. Then detBC = y[k + 1,
2k+ 1] = An.

In the following,W(i) (respectivelyV(i;),W(; j)) denotes the submatrix obtained from
a matrixW by deleting both row and columir(respectively row, columnj).

COROLLARY 3.4. For k> 1, let D(A) be the bipartite path graph on 2k + 1 vertices,

i.e, A= [ 0 B
’ cC o0
the associated digraph obtained by deleting vertex i from D(A). Then B(i; )C(;i) = BC(i),

] with B,C asin (3.1)and (3.2), respectively. For 1 <i <k, let D(A(i)) be

detBC(1) = yk+2,2k+1],
detBC(k) = vyk+1,2K

and

detBC(i) = yik+Lk+ilyk+i-+1,2k+1], i # 1k

Proof. These results follow from the structure BfandC, and the fact thaD(A(1)),
D(A(k)) can be re-labeled to be bipartite path graphs kr-2 vertices (along with one
isolated vertex), whil®(A(i)) for i # 1,k consists of two disjoint path graphs that can be
re-labeled to be bipartite path graphs 0r-2 and Zk—i) + 1 vertices.O

ForAa # 0, Proposition 3.6 below gives the entriesBE) ~* in terms of path products
and matchings iD(A). The proof uses the following theorem, stated for tree graphs in [9]
and for general digraphs in [11], which we restate here for digr&glié) with tridiagonal
W.
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THEOREM 3.5. [9, 11]Let W be an n x n nonsingular tridiagonal matrix with digraph
D(W), andlet W1 = (). Then

detw (i)
detw ’

(3.12) Wi =

and

1
detw

where ¢ isthelength of the path fromi to j, W(i) isthe matrix obtained fromW by deleting row
and column i, and W(i,-- - , j) is the matrix obtained fromW by deleting rows and columns
corresponding to the vertices on the path fromi to j.

(3.13) W = ——(~1)Rufi — j]detW(i, -, j),

In the next two results, we sBh[i — i] = 1 andy(i,i) = y[k+ 1, k+i]y[k+i+ 1,2k + 1].

0 B
c o
assume that Aa # 0. Then (BC) 1 = (Bjj) exists and is given by

PROPOSITION3.6.Let A= [ ] with B,C asin (3.1)and (3.2), respectively, and

1

(3.14) Bij = A—A<—1)‘+J'PA[i — jlv(i, j).

Proof. From Corollary 3.3, d8C = A and the assumptiahia # 0 implies that(BC) 1
exists. We apply Theorem 3.5 to the tridiagonal maxas in (3.9). Let < i, j <k.

If i = j, then by Corollary 3.4,

Bu — yik+2,2k+1] By — ylk+ 1, 2K]
11 — AA 5 kk — AA )
and
By — y[k+1,k+|}y[Ak+|+1,2k+1]’ fori £ 1 ork,
A

which agree with (3.14).

If i < j, withi##1andj #k, then removing the vertices on the péth--,j) in D(A)
results in two disjoint path graphs on vertides 1,--- ,k+iandk+j+1,---,2k+ 1, re-
spectively. As these can be re-labeled to be bipartite path graphs, Proposition 3.2 gives

detBC(i,---,j) = detBC[1;i —1]detBC[j+ 1;K
yik+ 1, k+ilylk+j+1,2k+1].

If i =1, then deBC(i,---,]) = detBC[] + 1;k] = y[k+ | + 1,2k + 1]; if j =k, then
detBC(i,- -, j) = detBC[L;i — 1] = y[k+ 1,k+i]. Foralli < j, the(i, j) entryBij of (BC) Lis
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computed, using Theorem 3.5, with the path product in (3.13) taken from the diD(&a}).
From (3.9), the path produ®sc[i — j] is given by the producPali — i+ 1]Pafi +1 —
i+2]---Pa[j —1— j] of j —i path products in the path grafiA). This path product is
equal toPa[i — j]. It follows from (3.13) and the above that

Bj = A—lA(—l)j‘iPA[i — jlyk+ 1 k+ilylk+ j +1,2k+ 1]
= (DI~ jly(i.J) by (38)
A

The proof for the casie> j can be obtained by switching the roles ahdj in the above
argument, completing the proof fog£ j. O

The next theorem is the main result of this section.

g g } be a matrix of order 2k+ 1 with B,C asin (3.1)and

(3.2), respectively. Assume that A # 0. Then the group inverse A* = (a;j) existsand

THEOREM3.7.Let A= [

A—(—l)SPA[| — jly(i,j) ifthe path inD(A) fromi to j is of length
A
(3.15) ajj = 2s+1 withs> 0,

0 otherwise

Proof. The assumptiol\s # O together with Corollary 3.3 imply that rarBC = k.
In addition,CB is a tridiagonal matrix of ordek+ 1 with a nonzero superdiagonal. Thus,
rankCB > k and since rankcB < rankB =k, it follows that rankCB = k. Hence, ranB =
rankC = rankBC = rankCB = k, and by Corollary 2.3, the group inver&é exists with entries
ajj given by

((BC)_lB)iJ*k if (i,j) € {1, .k} x{k+1,---,2k+1},
(3.16) ajj = (C(BC)_l)i,kJ if (i,j) e {k+1,---,2k+1} x{1,--- K},
0 otherwise

Let(i,j) € {1,---,2k+1} x {1,---,2k+ 1}. Note thatD(A) is the bipartite path graph
on X+ 1 vertices. The path frointo j is of even length if and only ifi, j) isin {1,--- ,k} x
{1,--- ,k} or{k+1,--- ,2k+1} x {k+1,---,2k+1}. It follows from (3.16) thatt;; = O if
the path from to j is of even length or if = j. Now assume that the path franto j is of
odd length. Then eithe(i, j) € {1,--- ,k} x {k+1,---,2k+1} or (i, j) € {k+1,--- ,2k+
1} < {1,--- k}.
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Suppose thdi, j) € {1,--- ,k} x {k+1,---,2k+1}, and sef’ = j —k. Then from (3.16)
and (3.14),

_ 1 X i . _
aij = ((BC) 'B)ij = A D (Z1)TPali — mly(i, m)am;.
A m=1
Hence forj = k+1,
1 ; . .
Uikl = A—(—l)'HPA[' — 1)y(i,Dag ki1
A
= i(—1)i+1PA[i — k+1)y(i,k+1).
Ap

Since(—1)"! = (—1)"~! and the path irD(A) fromi to k+ 1 has length @ — 1) 4 1, the
theorem is true foif = k+ 1. Similarly, the theorem is true fgr= 2k+ 1, so suppose that
j #k+1,2k+ 1. Then

1

aij = — (=)™ (Pali — i'Iv(i, i")ay; — Pali — i’ = 1lv(i, i — Daj_1 ).
Ap

Supposethat¥i < j’=j—k<k. Then

o = 2=~ Pali = (i, WV 1 (0.0 - 1)

1
A
1 [T
A—A(—l) Pali — j]v(i, j)-

Since the path iD(A) fromi to j has length 2j’ —i — 1) + 1, the theorem is true for all such
(i,j). Now suppose thatZ i,j’ <kandi > j’=j—k. Then

aj = A_lA(_l)iH/PA[i—>j](y(i»j,)—V(i,j,—l)y[j,—laj])
- A—lAJ—l)‘*VPA[iany(i,J).

Since the path iD(A) fromi to j has length @ — j) + 1, the theorem is true for all such
(i,]), and thus for alli, j) € {1,--- ,k} x {k+1,---,2k+1}.

The proof for(i, j) € {k+1,---,2k+1} x {1,--- k} is similar.O

The next two results follow since an irreducible tridiagonal matrix with zero diagonal is
permutationally similar to the matrix in Theorem 3.7.

COROLLARY 3.8. Let A beanirreducible tridiagonal matrix of order 2k+ 1 with zero
diagonal and a path graph D(A) on vertices 1,---,2k+ 1. Assume that Aa # 0. Then the
group inverse A* exists and its entries are given by (3.15)
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COROLLARY 3.9. If in addition to the assumptions of Corollary 3.8, A is honnegative,
then A* issign determined. Specifically, A* = (aij) hasa diagonally-striped sign pattern with

ajj= 0 ifi+jiseven
aijwt >0 fort=1,59,--
aiji+t <0 fort=3,7,11,---,

wherel<i<nandl<itt<n.

4. Relation of A* with AT for Tridiagonal Matrices. It is well-known (see e.g. [3],
[7]) that if A is symmetric and\* exists, therA” = AT, the Moore-Penrose inverse &f To
explore the relation between these two inverses for irreducible tridiagonal matrices with zero
diagonal (which are combinatorially symmetric), we use the following notation from [4]. Let
U ={ug, - ,un} andV = {vy,--- ,vn} be disjoint sets. For amx n matrixA = (a;j), B(A)
is the bipartite graph with verticé$ UV and edgeg (uj,vj) : u € U,v; € V,aj # 0}. For
anyh > 1 and any bipartite grapB, M,(B) denotes the family of subsets loflistinct edges
of B, no two of which are adjacent.

THEOREM 4.1. Let k> 1 and A = (a;j) € R**+1x2+1 pe an irreducible tridiagonal
matrix with zero diagonal and assume that Aa # 0. Let A* = (ajj), AT = (4j) and 1 < i, j <
2k+1.

(i) Ifthepathfromito j in D(A) isof evenlengthor ifi = j, thenaj = pj = 0.
(i) Ifaijj # 0, then pij #O.
(iii) 1fy(i,j) #0,then ajj # 0if and only if pj # 0.

Proof. By Corollary 3.8 and [4, Corollary 2.74i =i =0 foralli. Let1<i< j <
2k+ 1. By Corollary 3.8,

1 .
(4.1) aijj = A—A(—1)Sai,i+1ai+1,i+zai+2,i+3'"aj—z,j—laj—l,jy(h )

if the path fromi to j in D(A) is of length 2+ 1 with s> 0, anda;; = 0 otherwise. According
to [4, Corollary 2.7] ;i # 0 if and only if B(A) contains a patp from u; to v;

p: U — Vi1 — Uiy2 = Vis3 — - = Vj_2 = Uj_1 = V]

of length Z+ 1 with s> 0, andM,_s_1(B(A)) has at least one element with- s— 1 edges
none of which are adjacent {§ wherer = 2k is the rank ofA. Note that by the theorem
assumptions or, if a path p from u; to v; in B(A) of length Z+1, with s > 0, exists,
then the latter condition oM, _s_1(B(A)) and the pattp always holds. Furthermore, by [4,
Corollary 2.7], if such a path exists, thgp has the same sign as

(4.2) (—1)%j 118042 +18i42,+3" - j—1,j—28j -1,

SinceA is an irreducible tridiagonal matrix with zero diagonal, it is combinatorially
symmetric (i.e.a;j # 0 if and only ifaji # 0). Thus, there is a path of lengts-2 1 fromi to
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j in D(A) if and only if there is a path of lengtts2- 1 fromuj tov; in B(A). If no such path

of odd length exists, themj; = pj; = 0, completing the proof of (i). lé&j; # 0, then by (4.1),
the path fromi to j in D(A) is of length 2+ 1 with s> 0. Thus, using (4.1), (4.2) and by
combinatorial symmetryy;; # 0, proving (ii) and one direction of (iii). Lastly, ¥(i,j) # 0
andy;j # 0, thenai; # 0 by a similar argument. This completes the proof of (iii) and hence
the theorem for < j. The proof fori > j is similar. O

The following example illustrates that the conditign j) # 0 in (iii) above is necessary.

ExAMPLE 4.2. Consider the & 5 tridiagonal matrix

0O 1 0 0 O
1 0 1 0 O
A=|0 -1 0 1 0],
0 0 1 0 1
0O 0 0 1 0
having
0 2 0-1 0
/2 0-1 021
Al = 3 0 1 0 1 0
1 0 1 o0 2
0 -1 0 2 0
and
0 2 0 -1 0
2 0 1 0 -1
Af=]10 -1 0 1 0
1 01 0 O
0O 1 0 0 O

Here the(4,5) and(5,4) entries ofA” are zero sincg(4,5) = 0, whereas the corresponding
entries ofA" are nonzero.

Theorem 4.1 shows that for an irreducible tridiagonal maiixhe nonzero entries of
A are a subset of the nonzero entrieAdf However, this is not in general true for a matrix
Awith D(A) bipartite, as is shown in the following example.

ExAMPLE 4.3. Consider the following & 5 matrixA which hasD(A) bipartite, but not
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atree graph:

0 0 | a3 0 a5

0 0] 0 a4 O

A = 0 azo 0 0 0
a7 0| O 0 0

a; 0|0 0O O

By Corollary 2.3, thg2,4) entry of A¥ is —ay5851/a13832841, Whereas by [4, Theorem 2.6],
the (2,4) entry of Al is zero since there is no pathB{A) from ug to vy.

5. Conjecture. We conclude with a conjecture and some related remarks. Recall that if
D(A) is a tree graph, then all diagonal entriesAddre zero.

CONJECTURES.1. Let A be a singular matrix with a tree graph D(A), termrank r and
A # 0. Suppose that there exists a path subgraph p(i, j) on verticesi, iz, -+ ,izst1, j, where
s> 0. Define

y(i,j) if the matrix associated witB(A) \ p(i, j)
o(i, j) = has term rank — 2(s+ 1),

0 otherwise

Then A* = (aij) exists and its entries are given by

(5.1)
Ai(—l)SPA[i — j]8(i,j) ifthe path inD(A) fromi to j is of length 2+ 1,
GIJ = A
0 otherwise

Note thatD(A) in Example 2.4 has a path of length 1 from vertex 1 to vertex 5. However,
the matrix associated with(A) \ p(1,5) has term rank O, whereas-2(s+ 1) =4—-2=2.
Thus, the(1,5) entry of A¥ is zero.

ExXAMPLE 5.2. Forn > 3, consider am x n matrix with a star graph centered at 1, i.e.,
A= (&j) hasayj,aj1 # 0, for j = 2,--- ,n, anda;; = 0 otherwise. Then from (1.1BC = Aa
is a scalar. Assuming thai # 0, Corollary 2.3 gived\* = iAA. Note that forj £ 1, the path
from 1toj is of length 24+ 1= 1, wheres = 0; thusr — 2(s+ 1) = 0, which is the term rank
of the matrix associated with(A) \ p(1,j). Henced(1,j) =y(1,j) = 1. This shows that
(5.1) holds, and the conjecture is true for matrices having a star graph. Note also that for a
matrix A with D(A) a star graph, the above formula #&¥ and [4, Corollary 2.7] give that the
sign patterns sgidaA*) and sgii(AT)T) are identical. If, in additionA is nonnegative, then
Aa > 0 and sgiA¥) = sgr(A) = sgn((A")T), which is a special case of [1, Theorem 4].



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 17, pp. 219-233, April 2008

Group Inverses of Matrices with Path Graphs 233

The existence oA* in Conjecture 5.1 follows from Proposition 1.1. In addition to ma-
tricesA that have a path or a star graph, we have verified with Maple that (5.1) of Conjecture
5.1 holds for all singular matrices with tree graphs of order 7 or less.
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