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GROUP INVERSES OF MATRICES WITH PATH GRAPHS∗

M. CATRAL†, D.D. OLESKY‡, AND P. VAN DEN DRIESSCHE†

Abstract. A simple formula for the group inverse of a 2× 2 block matrix with a bipartite digraph is given
in terms of the block matrices. This formula is used to give a graph-theoretic description of the group inverse
of an irreducible tridiagonal matrix of odd order with zero diagonal (which is singular). Relations between the
zero/nonzero structures of the group inverse and the Moore-Penrose inverse of such matrices are given. An extension
of the graph-theoretic description of the group inverse to singular matrices with tree graphs is conjectured.
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1. Introduction. For a realn×n matrix A, thegroup inverse, if it exists, is the unique
matrix A# satisfying the matrix equationsAA# = A#A, AA#A = A and A#AA# = A#. If A is
invertible, thenA# = A−1. It is well-known thatA# exists if and only if rankA = rankA2. For
more detailed expositions on the group inverse and its properties, see [3], [7].

We present a new formula in Section 2 for the group inverse of a 2×2 block matrix with
bipartite form as in (1.1) below. We use this formula to give a graph-theoretic description of
the entries of the group inverse of an irreducible tridiagonal matrix of order 2k +1 with zero
diagonal (which has a path graph and is singular). This description, given in Section 3, is
proved using a graph-theoretic characterization of the usual inverse of a nonsingular tridiag-
onal matrix of orderk (see e.g. [11]). In Section 4, we relate our results to the zero/nonzero
structure of another type of generalized inverse, the Moore-Penrose inverse. We conclude in
Section 5 with a conjecture, which extends our graph-theoretic description of the entries of
the group inverse to a matrix with a tree graph.

Generalized inverses of banded matrices, including tridiagonal matrices, are considered
in [2] where the focus is on the rank of submatrices of the generalized inverse. Campbell and
Meyer [7, page 139] investigate the Drazin inverse (which is a generalization of the group
inverse) for a 2× 2 block matrix. Recently, special cases of this problem that have been
studied are listed in [10] and some new formulas are derived.

We first introduce some graph-theoretic notation. There is a one-to-one correspon-
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dence betweenn× n matricesA = (ai j) and digraphsD(A) = (V,E) having vertex setV =
{1, · · · ,n} and arc setE, where(i, j) ∈ E if and only if ai j �= 0. For q ≥ 1, a sequence
(i1, i2, i3, · · · , iq, iq+1) of distinct vertices with arcs(i1, i2),(i2, i3), · · · ,(iq, iq+1) all in E is
called apath of length q from i1 to iq+1 in D(A). For q ≥ 2, a sequence(i1, i2, i3, · · · , iq, i1)
with i1, i2, · · · , iq distinct and arcs(i1, i2), · · · (iq, i1) in E is called aq-cycle (a cycle of length
q) in D(A). A digraph is called a (directed)tree graph if it is strongly connected and all of its
cycles have length 2. If the digraphD(A) of a matrixA is a tree graph, then all of the diagonal
entries ofA are necessarily zero. Since a tree graph is bipartite, its vertices can be labeled so
that its associated matrix has the form

(1.1) A =
[

0 B
C 0

]
,

whereB ∈ R
p×(n−p), C ∈ R

(n−p)×p andp ≤ n
2.

A particular example of a tree graph is apath graph on n verticesi 1, i2, · · · , in which
consists of the pathp = (i1, i2, · · · , in) from i1 to in and its reversal (i.e., the path obtained by
reversing all of the arcs inp). If, for k ≥ 1, a path graph onn = 2k+1 vertices consists of the
path(k + 1,1,k + 2,2, · · · ,2k,k,2k + 1) and its reversal, then we call this thebipartite path
graph onn = 2k +1 vertices.

Consider a tree graphD(A), with A as in (1.1). For every pair of distinct verticesi 1

andiq+1, there is a unique path(i1, i2, · · · , iq, iq+1) from i1 to iq+1. For this path, the product
ai1,i2ai2,i3 · · ·aiq,iq+1 is called thepath product and is denoted byPA[i1 → iq+1]. All of the
cycles inD(A) are 2-cycles and a productai1,i2ai2,i1ai3,i4ai4,i3 · · ·air−1,ir air,ir−1 corresponding
to a set{(i1, i2, i1),(i3, i4, i3), · · · ,(ir−1, ir, ir−1)} of r/2 disjoint 2-cycles inD(A) is called a
matching in D(A) of sizer. If this set of 2-cycles has maximal cardinality, then the matching
is amaximal matching and the numberr is called theterm rank of A. The sum of all maximal
matchings inD(A) is denoted by∆A. The notationγ[i1, iq+1] denotes the sum of all maximal
matchings in the path subgraph ofD(A) on the verticesi 1, · · · , iq+1, and we setγ[iw, iw] = 1.
Also, γ(i1, iq+1) denotes the sum of all maximal matchingsnot on the path subgraph ofD(A)
on the verticesi1, · · · , iq+1. If there are no such maximal matchings, thenγ(i1, iq+1) = 1. It
follows from these definitions thatγ[i1, iq+1] = γ[iq+1, i1] andγ(i1, iq+1) = γ(iq+1, i1). If D(A)
is the path graph on verticesi1, · · · , in, then∆A = γ[i1, in].

For a tree graphD(A), the matrixA is nearly reducible, so the term rank ofA is equal to
the rank ofA [4, Theorem 4.5]. The following proposition shows that a necessary and suffi-
cient condition forA# to exist is that the sum of all maximal matchings inD(A) is nonzero,
i.e. ∆A �= 0. An analogous result for an arbitrary complexn×n matrix is given in [6, Lemma
2.2]. Our proof uses the fact that the group inverse ofA exists if and only if rankA = rank
A2, or equivalently, the geometric and algebraic multiplicities of the eigenvalue 0 are equal
[8, Exercise 17, page 141].

PROPOSITION1.1. Let A be an n× n matrix with a tree graph D(A). Then the group
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inverse A# exists if and only if ∆A �= 0.

Proof. Note that sinceD(A) is a tree graph,A has zero diagonal. Letp(x) = x n +
c1xn−1 + c2xn−2 + · · ·+ cn−1xn−1 + cn be the characteristic polynomial ofA. The coefficient
ct of xn−t equals(−1)t times the sum of the determinants of the principal submatrices of
A of ordert (see [5]). Thus,ct = 0 if t is odd; fort even,ct is equal to(−1)t/2 times the
sum of all matchings inD(A) of size t. Let r be the term rank, and thus the rank, ofA.
The order of the largest nonsingular submatrix inA is thenr, and there is no nonsingular
submatrix of larger order. Assume that∆A �= 0. Then the coefficient(−1)r∆A of xn−r in p(x)
is nonzero, and all coefficientsct of xn−t for t > r are zero. Thus, the algebraic multiplicity
of the eigenvalue 0 isn− r, which equalsn−rankA, the geometric multiplicity of 0. By the
preceding discussion, rankA = rank A2 and henceA# exists. Conversely, if∆A = 0, then
p(x) = xsq(x), wheres > n− r andq(x) is a polynomial. This implies that the algebraic
multiplicity of the eigenvalue 0 is strictly greater than its geometric multiplicity; thus rank
A �= rankA2 andA# does not exist.

2. Group Inverses of Matrices with Bipartite Digraphs. In the following theorem,A
has a bipartite digraph, but it is not necessarily a tree graph. Our proof of the theorem uses
the next result.

LEMMA 2.1. Let B ∈ R
p×(n−p),C ∈ R

(n−p)×p. If rank B = rank C = rank BC =
rank CB, then rank (BC)2 = rank BC, i.e., (BC)# exists. Furthermore, BC(BC)#B = B and
C(BC)#BC = C.

Proof. Let rankB = rankC = rankBC = rankCB = m. A rank inequality of Frobenius
(see [8, page 13])

rankBC + rankCB ≤ rankC + rankBCB

implies that rankBCB ≥ m. But clearly rankBCB ≤ m, hence equality holds. Similarly,
rankCBC = m. Now using the Frobenius inequality again gives

rankBCB+ rankCBC ≤ rankCB+ rankBCBC.

By a similar argument as above, rank(BC)2 = m. Thus, rank(BC)2 = rankBC, i.e., (BC)#

exists.

For the second part, the equalityBC(BC)#BC = BC implies thatBC(BC)#x = x for all
vectorsx in R (BC), the range ofBC. Now, R (BC) ⊆ R (B) so the assumption rankBC =
rank B implies thatR (BC) = R (B). Thus,BC(BC)#x = x for all x in R (B) and therefore,
BC(BC)#B = B. Similarly,(BC)T (BC)T #y = y for all y in R ((BC)T ) and the rank assumptions
imply thatR ((BC)T ) = R (CT ). Thus,yT (BC)#(BC) = yT for all y in R (CT ) and therefore,
C(BC)#(BC) = C.
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THEOREM 2.2. Let A =
[

0 B
C 0

]
, where B ∈ R

p×(n−p), C ∈ R
(n−p)×p and p ≤ n

2 .

Then the group inverse A# of A exists if and only if rank B = rank C = rank BC = rank CB. If
A# exists, then

(2.1) A# =
[

0 (BC)#B
C(BC)# 0

]
.

Proof. If rankB = rankC = rankBC = rankCB, then rankB + rankC = rankBC+ rank
CB, which implies that rankA = rankA2. ThusA# exists. Conversely, ifA# exists and rank
B �= rankC, then without loss of generality suppose that rankB < rankC. Then rankA 2 =
rankBC+ rankCB ≤ 2 rankB < rankB+ rankC = rankA, which contradicts the existence
of A#. Thus, rankB = rankC, and by a similar argument, rankBC = rankCB. Hence rank
A = rankA2 implies that rankB + rankC = rankBC+ rankCB and therefore rankB = rank
C = rankBC = rankCB.

For the second part,(BC)# exists by Lemma 2.1. Denoting the right hand side of (2.1)
by G, we need only show thatAG = GA, AGA = A andGAG = G to prove thatG = A #. Since
BC(BC)# = (BC)#BC, it follows that

AG =
[

BC(BC)# 0
0 C(BC)#B

]
=

[
(BC)#BC 0

0 C(BC)#B

]
= GA. Using the equalities

established in Lemma 2.1,

AGA =
[

0 BC(BC)#B
C(BC)#BC 0

]
=

[
0 B
C 0

]
= A, and

GAG =
[

0 (BC)#BC(BC)#B
C(BC)#BC(BC)# 0

]
=

[
0 (BC)#B

C(BC)# 0

]
= G.

If rank BC = rankCB = rankB = rankC = p, then thep× p matrixBC is invertible and
we obtain the following result.

COROLLARY 2.3. Using the notation of Theorem 2.2, if rank BC = rank CB = rank B =
rank C = p, then the group inverse A# exists and is given by

A# =
[

0 (BC)−1B
C(BC)−1 0

]
.

We note that in [10], formulas for the more general Drazin inverse of certain 2×2 block
matrices are given. However, the conditions there are not in general satisfied by a matrix of
form (1.1).

The following example hasBC singular but satisfying the conditions of Theorem 2.2.
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EXAMPLE 2.4. If

A =




0 0 0 a14 a15 a16

0 0 0 0 a25 0
0 0 0 0 a35 0

a41 0 0 0 0 0
a51 a52 a53 0 0 0
a61 0 0 0 0 0




=
[

0 B
C 0

]
,

then

BC =


 a14a41+ a15a51+ a16a61 a15a52 a15a53

a25a51 a25a52 a25a53

a35a51 a35a52 a35a53




and

CB =


 a41a14 a41a15 a41a16

a51a14 a51a15+ a52a25+ a53a35 a51a16

a61a14 a61a15 a61a16


 .

Note thatD(A) is a tree graph.

Here, ∆A = a14a41a25a52 + a14a41a35a53 + a16a61a25a52 + a16a61a35a53 =
(a14a41+ a16a61)(a25a52+ a35a53), the sum of maximal matchings inD(A). If ∆A �= 0, then
the matricesB,C,BC andCB all have rank 2 and by Theorem 2.2,A # exists and is given by
(2.1). Using Algorithm 7.2.1 in [7] and Maple,

(BC)# =
1

∆A




a25a52+ a35a53 −a15a52 −a15a53

−a25a51
a25a52(a14a41+a15a51+a16a61)

a25a52+a35a53

a25a53(a14a41+a15a51+a16a61)
a25a52+a35a53

−a35a51
a35a52(a14a41+a15a51+a16a61)

a25a52+a35a53

a35a53(a14a41+a15a51+a16a61)
a25a52+a35a53


 .

It follows that if ∆A �= 0, then from (2.1),

A# =
1
∆A

[
0 R
S 0

]
,

where

R =


 a14(a25a52+ a35a53) 0 a16(a25a52+ a35a53)

−a25a51a14 a25(a14a41+ a16a61) −a25a51a16

−a35a51a14 a35(a14a41+ a16a61) −a35a51a16




and

S =


 a41(a25a52+ a35a53) −a41a15a52 −a41a15a53

0 a52(a14a41+ a16a61) a53(a14a41+ a16a61)
a61(a25a52+ a35a53) −a61a15a52 −a61a15a53


 .
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3. A# for a Matrix with a Path Graph. Let k ≥ 1. For the path graphD(A) on n = 2k
vertices,A is nonsingular andA# = A−1 (and a graph-theoretic description of the entries of
A−1 is known; see Theorem 3.5 below). So we consider the path graphD(A) with an odd
number of vertices, for whichA is singular. Forn = 2k+1, if D(A) is the bipartite path graph,
then its associated matrixA is as in (1.1) with

(3.1) B =




a1,k+1 a1,k+2 0 0 · · · 0
0 a2,k+2 a2,k+3 0 · · · 0

0 0 a3,k+3
...

...
...

. . .
. . .

. . . 0
0 0 · · · 0 ak,2k ak,2k+1



∈ R

k×(k+1)

and

(3.2) C =




ak+1,1 0 0 · · · 0
ak+2,1 ak+2,2 0 · · · 0

0 ak+3,2
...

...

0 0
...

... 0
...

... a2k,k−1 a2k,k

0 0 · · · 0 a2k+1,k



∈ R

(k+1)×k,

where each specified entryai j is nonzero. Then rankB = rankC = k, and the entries of the
k× k tridiagonal matrixBC are as follows:

(3.3)

(BC)ii = ai,k+iak+i,i + ai,k+i+1ak+i+1,i if 1 ≤ i ≤ k
(BC)i,i+1 = ai,k+i+1ak+i+1,i+1 if 1 ≤ i ≤ k−1
(BC)i+1,i = ai+1,k+i+1ak+i+1,i if 1 ≤ i ≤ k−1
(BC)i j = 0 otherwise.

In Proposition 3.2 below, it is proved that the determinant of the matrixBC is equal to
the sum of maximal matchings inD(A). The following simple observations are used in the
succeeding proofs.

LEMMA 3.1. Let A =
[

0 B
C 0

]
with B,C as in (3.1)and (3.2), respectively, i.e., D(A)

is the bipartite path graph on 2k + 1 vertices. In D(A) and for 1≤ j ≤ k + 1, the following
relations hold.

(3.4) γ[k + j,k + j +1] = γ[k + j, j] + γ[ j,k + j +1], j �= k +1.

(3.5) PA[ j → j +1]PA[ j +1→ j] = γ[ j,k + j +1]γ[k + j +1, j +1], j �= k +1.
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(3.6) γ[k +1,k + j] = γ[ j−1,k + j]γ[k +1,k + j−1] + γ[k +1, j−1], j �= 1.

(3.7) γ[k +1, j] = γ[ j,k + j]γ[k +1, j−1], j �= 1,k +1.

(3.8) γ(i, j) = γ[k +1,k + i]γ[k + j +1,2k +1], 1≤ i < j ≤ k.

In the following, BC[ j;�] denotes the principal submatrix ofBC in rows and columns
j, · · · , �.

PROPOSITION3.2. For k≥ 1, let D(A) be the bipartite path graph on 2k+1vertices, i.e.,

A =
[

0 B
C 0

]
with B,C as in (3.1)and (3.2), respectively. Then for 1≤ t ≤ k, detBC[1;t] =

γ[k +1,k + t +1] .

Proof. We use induction ont. First note, from (3.3), that thek × k matrix BC can be
written as

(3.9)




γ[k +1,k +2] PA[1→ 2] 0 · · · 0

PA[2→ 1] γ[k +2,k +3] PA[2→ 3]
. . .

...

0 PA[3→ 2]
. . .

. . . 0
...

...
. . . γ[2k−1,2k] PA[k−1→ k]

0 · · · 0 PA[k → k−1] γ[2k,2k +1]




.

If t = 1, then detBC[1;1] = γ[k +1,k +2] = γ[k +1,k + t +1] as desired.

Now suppose that for 2≤ g ≤ k the result is true for allt ≤ g−1; thus, for example,

(3.10) detBC[1;g−1] = γ[k +1,k + g]

and

(3.11) detBC[1;g−2] = γ[k +1,k + g−1].

(Note thatBC[1;0] is vacuous and detBC[1;0] = 1.) Letting t = g and expanding the deter-
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minant about the last row ofBC[1;g],

detBC[1;g] = γ[k + g,k + g+1]detBC[1;g−1]

− PA[g−1→ g]PA[g → g−1]detBC[1;g−2]

= (γ[k + g,g]+γ[g,k + g+1])γ[k +1,k +g]

− γ[g−1,k + g]γ[k + g,g]γ[k +1,k +g−1] by (3.4), (3.5), (3.10)

and(3.11)

= γ[g,k + g+1]γ[k +1,k + g] + γ[g,k + g]γ[k +1,g−1] by (3.6)

= γ[g,k + g+1]γ[k +1,k + g] + γ[k +1,g] by (3.7)

= γ[k +1,k + g+1] by (3.6).

COROLLARY 3.3. For k ≥ 1, let D(A) be the bipartite path graph on 2k + 1 vertices,

i.e., A =
[

0 B
C 0

]
with B,C as in (3.1) and (3.2), respectively. Then detBC = γ[k + 1,

2k +1] = ∆A.

In the following,W (i) (respectivelyW (i;),W (; j)) denotes the submatrix obtained from
a matrixW by deleting both row and columni (respectively rowi, column j).

COROLLARY 3.4. For k ≥ 1, let D(A) be the bipartite path graph on 2k + 1 vertices,

i.e., A =
[

0 B
C 0

]
with B,C as in (3.1)and (3.2), respectively. For 1≤ i ≤ k, let D(A(i)) be

the associated digraph obtained by deleting vertex i from D(A). Then B(i;)C(; i) = BC(i),

detBC(1) = γ[k +2,2k +1],
detBC(k) = γ[k +1,2k]

and

detBC(i) = γ[k +1,k + i]γ[k + i+1,2k +1], i �= 1,k.

Proof. These results follow from the structure ofB andC, and the fact thatD(A(1)),
D(A(k)) can be re-labeled to be bipartite path graphs on 2k − 1 vertices (along with one
isolated vertex), whileD(A(i)) for i �= 1,k consists of two disjoint path graphs that can be
re-labeled to be bipartite path graphs on 2i−1 and 2(k− i)+1 vertices.

For ∆A �= 0, Proposition 3.6 below gives the entries of(BC)−1 in terms of path products
and matchings inD(A). The proof uses the following theorem, stated for tree graphs in [9]
and for general digraphs in [11], which we restate here for digraphsD(W ) with tridiagonal
W .
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THEOREM 3.5. [9, 11]Let W be an n×n nonsingular tridiagonal matrix with digraph
D(W ), and let W−1 = (ωi j). Then

(3.12) ωii =
detW (i)
detW

,

and

(3.13) ωi j =
1

detW
(−1)�PW [i → j]detW (i, · · · , j),

where � is the length of the path from i to j, W (i) is the matrix obtained from W by deleting row
and column i, and W (i, · · · , j) is the matrix obtained from W by deleting rows and columns
corresponding to the vertices on the path from i to j.

In the next two results, we setPA[i → i] = 1 andγ(i, i) = γ[k+1,k+ i]γ[k+ i+1,2k+1].

PROPOSITION3.6. Let A =
[

0 B
C 0

]
with B,C as in (3.1)and (3.2), respectively, and

assume that ∆A �= 0. Then (BC)−1 = (βi j) exists and is given by

(3.14) βi j =
1

∆A
(−1)i+ jPA[i → j]γ(i, j).

Proof. From Corollary 3.3, detBC = ∆A and the assumption∆A �= 0 implies that(BC)−1

exists. We apply Theorem 3.5 to the tridiagonal matrixBC as in (3.9). Let 1≤ i, j ≤ k.

If i = j, then by Corollary 3.4,

β11 =
γ[k +2,2k +1]

∆A
, βkk =

γ[k +1,2k]
∆A

,

and

βii =
γ[k +1,k + i]γ[k + i+1,2k +1]

∆A
, for i �= 1 ork,

which agree with (3.14).

If i < j, with i �= 1 and j �= k, then removing the vertices on the path(i, · · · , j) in D(A)
results in two disjoint path graphs on verticesk + 1, · · · ,k + i andk + j + 1, · · · ,2k + 1, re-
spectively. As these can be re-labeled to be bipartite path graphs, Proposition 3.2 gives

detBC(i, · · · , j) = detBC[1;i−1]detBC[ j +1;k]
= γ[k +1,k + i]γ[k + j +1,2k +1].

If i = 1, then detBC(i, · · · , j) = detBC[ j + 1;k] = γ[k + j + 1,2k + 1]; if j = k, then
detBC(i, · · · , j) = detBC[1;i−1] = γ[k+1,k+ i]. For alli < j, the(i, j) entryβi j of (BC)−1 is
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computed, using Theorem 3.5, with the path product in (3.13) taken from the digraphD(BC).
From (3.9), the path productPBC[i → j] is given by the productPA[i → i + 1]PA[i + 1 →
i + 2] · · ·PA[ j −1 → j] of j − i path products in the path graphD(A). This path product is
equal toPA[i → j]. It follows from (3.13) and the above that

βi j =
1

∆A
(−1) j−iPA[i → j]γ[k +1,k + i]γ[k + j +1,2k +1]

=
1

∆A
(−1)i+ jPA[i → j]γ(i, j) by (3.8).

The proof for the casei > j can be obtained by switching the roles ofi and j in the above
argument, completing the proof fori �= j.

The next theorem is the main result of this section.

THEOREM 3.7. Let A =
[

0 B
C 0

]
be a matrix of order 2k +1 with B,C as in (3.1)and

(3.2), respectively. Assume that ∆A �= 0. Then the group inverse A# = (αi j) exists and

(3.15) α i j =




1
∆A

(−1)sPA[i → j]γ(i, j) if the path inD(A) from i to j is of length

2s+1 with s ≥ 0,

0 otherwise.

Proof. The assumption∆A �= 0 together with Corollary 3.3 imply that rankBC = k.
In addition,CB is a tridiagonal matrix of orderk + 1 with a nonzero superdiagonal. Thus,
rankCB ≥ k and since rankCB ≤ rankB = k, it follows that rankCB = k. Hence, rankB =
rankC = rankBC = rankCB = k, and by Corollary 2.3, the group inverseA # exists with entries
αi j given by

(3.16) α i j =




((BC)−1B)i, j−k if (i, j) ∈ {1, · · · ,k}×{k +1, · · · ,2k +1},
(C(BC)−1)i−k, j if (i, j) ∈ {k +1, · · · ,2k +1}×{1, · · · ,k},

0 otherwise.

Let (i, j) ∈ {1, · · · ,2k +1}×{1, · · · ,2k +1}. Note thatD(A) is the bipartite path graph
on 2k+1 vertices. The path fromi to j is of even length if and only if(i, j) is in {1, · · · ,k}×
{1, · · · ,k} or {k +1, · · · ,2k +1}×{k +1, · · · ,2k +1}. It follows from (3.16) thatα i j = 0 if
the path fromi to j is of even length or ifi = j. Now assume that the path fromi to j is of
odd length. Then either(i, j) ∈ {1, · · · ,k}× {k + 1, · · · ,2k + 1} or (i, j) ∈ {k + 1, · · · ,2k +
1}×{1, · · · ,k}.
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Suppose that(i, j) ∈ {1, · · · ,k}×{k+1, · · · ,2k+1}, and setj ′ = j−k. Then from (3.16)
and (3.14),

αi j = ((BC)−1B)i j′ =
1

∆A

k

∑
m=1

(−1)i+mPA[i → m]γ(i,m)am j.

Hence forj = k +1,

αi,k+1 =
1

∆A
(−1)i+1PA[i → 1]γ(i,1)a1,k+1

=
1

∆A
(−1)i+1PA[i → k +1]γ(i,k +1).

Since(−1)i+1 = (−1)i−1 and the path inD(A) from i to k + 1 has length 2(i− 1)+ 1, the
theorem is true forj = k + 1. Similarly, the theorem is true forj = 2k + 1, so suppose that
j �= k +1,2k +1. Then

αi j =
1

∆A
(−1)i+ j′(PA[i → j′]γ(i, j′)a j′ j −PA[i → j′ −1]γ(i, j′ −1)a j′−1, j).

Suppose that 1≤ i < j′ = j− k ≤ k. Then

αi j =
1

∆A
(−1)i+ j′PA[i → j](γ(i, j′)γ[ j′, j]−γ(i, j′ −1))

=
1

∆A
(−1) j′−i−1PA[i → j]γ(i, j).

Since the path inD(A) from i to j has length 2( j ′ − i−1)+1, the theorem is true for all such
(i, j). Now suppose that 2≤ i, j′ ≤ k andi ≥ j′ = j− k. Then

αi j =
1

∆A
(−1)i+ j′PA[i → j](γ(i, j′)−γ(i, j′ −1)γ[ j′ −1, j])

=
1

∆A
(−1)i− j′PA[i → j]γ(i, j).

Since the path inD(A) from i to j has length 2(i− j ′)+ 1, the theorem is true for all such
(i, j), and thus for all(i, j) ∈ {1, · · · ,k}×{k +1, · · · ,2k +1}.

The proof for(i, j) ∈ {k +1, · · · ,2k +1}×{1, · · · ,k} is similar.

The next two results follow since an irreducible tridiagonal matrix with zero diagonal is
permutationally similar to the matrix in Theorem 3.7.

COROLLARY 3.8. Let A be an irreducible tridiagonal matrix of order 2k + 1 with zero
diagonal and a path graph D(A) on vertices 1, · · · ,2k + 1. Assume that ∆ A �= 0. Then the
group inverse A# exists and its entries are given by (3.15).
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COROLLARY 3.9. If in addition to the assumptions of Corollary 3.8, A is nonnegative,
then A# is sign determined. Specifically, A# = (αi j) has a diagonally-striped sign pattern with

αi j = 0 if i+ j is even
αi,i±t > 0 for t = 1,5,9, · · ·
αi,i±t < 0 for t = 3,7,11, · · · ,

where 1≤ i ≤ n and 1≤ i± t ≤ n.

4. Relation of A# with A† for Tridiagonal Matrices. It is well-known (see e.g. [3],
[7]) that if A is symmetric andA# exists, thenA# = A†, the Moore-Penrose inverse ofA. To
explore the relation between these two inverses for irreducible tridiagonal matrices with zero
diagonal (which are combinatorially symmetric), we use the following notation from [4]. Let
U = {u1, · · · ,un} andV = {v1, · · · ,vn} be disjoint sets. For ann×n matrix A = (ai j), B(A)
is the bipartite graph with verticesU ∪V and edges{(ui,v j) : ui ∈ U,v j ∈ V,ai j �= 0}. For
anyh ≥ 1 and any bipartite graphB, Mh(B) denotes the family of subsets ofh distinct edges
of B, no two of which are adjacent.

THEOREM 4.1. Let k ≥ 1 and A = (ai j) ∈ R
2k+1×2k+1 be an irreducible tridiagonal

matrix with zero diagonal and assume that ∆A �= 0. Let A# = (αi j), A† = (µi j) and 1≤ i, j ≤
2k +1.

(i) If the path from i to j in D(A) is of even length or if i = j, then α i j = µi j = 0.

(ii) If αi j �= 0, then µi j �= 0.

(iii) If γ(i, j) �= 0, then α i j �= 0 if and only if µi j �= 0.

Proof. By Corollary 3.8 and [4, Corollary 2.7],α ii = µii = 0 for all i. Let 1≤ i < j ≤
2k +1. By Corollary 3.8,

(4.1) α i j =
1

∆A
(−1)sai,i+1ai+1,i+2ai+2,i+3 · · ·a j−2, j−1a j−1, jγ(i, j)

if the path fromi to j in D(A) is of length 2s+1 with s ≥ 0, andα i j = 0 otherwise. According
to [4, Corollary 2.7],µ ji �= 0 if and only ifB(A) contains a pathp from u i to v j

p : ui → vi+1 → ui+2 → vi+3 → ··· → v j−2 → u j−1 → v j

of length 2s+1 with s ≥ 0, andMr−s−1(B(A)) has at least one element withr− s−1 edges
none of which are adjacent top, wherer = 2k is the rank ofA. Note that by the theorem
assumptions onA, if a path p from ui to v j in B(A) of length 2s + 1, with s ≥ 0, exists,
then the latter condition onMr−s−1(B(A)) and the pathp always holds. Furthermore, by [4,
Corollary 2.7], if such a path exists, thenµ ji has the same sign as

(4.2) (−1)sai,i+1ai+2,i+1ai+2,i+3 · · ·a j−1, j−2a j−1, j.

SinceA is an irreducible tridiagonal matrix with zero diagonal, it is combinatorially
symmetric (i.e.,ai j �= 0 if and only ifa ji �= 0). Thus, there is a path of length 2s+1 from i to
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j in D(A) if and only if there is a path of length 2s+1 fromu j to vi in B(A). If no such path
of odd length exists, thenα i j = µi j = 0, completing the proof of (i). Ifα i j �= 0, then by (4.1),
the path fromi to j in D(A) is of length 2s + 1 with s ≥ 0. Thus, using (4.1), (4.2) and by
combinatorial symmetry,µi j �= 0, proving (ii) and one direction of (iii). Lastly, ifγ(i, j) �= 0
andµi j �= 0, thenα i j �= 0 by a similar argument. This completes the proof of (iii) and hence
the theorem fori ≤ j. The proof fori > j is similar.

The following example illustrates that the conditionγ(i, j) �= 0 in (iii) above is necessary.

EXAMPLE 4.2. Consider the 5×5 tridiagonal matrix

A =




0 1 0 0 0
1 0 1 0 0
0 −1 0 1 0
0 0 1 0 1
0 0 0 1 0




,

having

A† =
1
3




0 2 0 −1 0
2 0 −1 0 1
0 1 0 1 0
1 0 1 0 2
0 −1 0 2 0




and

A# =




0 2 0 −1 0
2 0 1 0 −1
0 −1 0 1 0
1 0 1 0 0
0 1 0 0 0




.

Here the(4,5) and(5,4) entries ofA# are zero sinceγ(4,5) = 0, whereas the corresponding
entries ofA† are nonzero.

Theorem 4.1 shows that for an irreducible tridiagonal matrixA, the nonzero entries of
A# are a subset of the nonzero entries ofA†. However, this is not in general true for a matrix
A with D(A) bipartite, as is shown in the following example.

EXAMPLE 4.3. Consider the following 5×5 matrixA which hasD(A) bipartite, but not
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a tree graph:

A =




0 0 a13 0 a15

0 0 0 a24 0
0 a32 0 0 0

a41 0 0 0 0
a51 0 0 0 0




.

By Corollary 2.3, the(2,4) entry ofA# is −a15a51/a13a32a41, whereas by [4, Theorem 2.6],
the(2,4) entry ofA† is zero since there is no path inB(A) from u4 to v2.

5. Conjecture. We conclude with a conjecture and some related remarks. Recall that if
D(A) is a tree graph, then all diagonal entries ofA are zero.

CONJECTURE5.1. Let A be a singular matrix with a tree graph D(A), term rank r and
∆A �= 0. Suppose that there exists a path subgraph p(i, j) on vertices i, i2, · · · , i2s+1, j, where
s ≥ 0. Define

δ(i, j) =




γ(i, j) if the matrix associated withD(A) \ p(i, j)

has term rankr−2(s+1),

0 otherwise.

Then A# = (αi j) exists and its entries are given by
(5.1)

αi j =




1
∆A

(−1)sPA[i → j]δ(i, j) if the path inD(A) from i to j is of length 2s+1,

0 otherwise.

Note thatD(A) in Example 2.4 has a path of length 1 from vertex 1 to vertex 5. However,
the matrix associated withD(A) \ p(1,5) has term rank 0, whereasr−2(s+1) = 4−2= 2.
Thus, the(1,5) entry ofA# is zero.

EXAMPLE 5.2. Forn ≥ 3, consider ann×n matrix with a star graph centered at 1, i.e.,
A = (ai j) hasa1 j,a j1 �= 0, for j = 2, · · · ,n, andai j = 0 otherwise. Then from (1.1),BC = ∆A

is a scalar. Assuming that∆A �= 0, Corollary 2.3 givesA# = 1
∆A

A. Note that forj �= 1, the path
from 1 to j is of length 2s+1= 1, wheres = 0; thusr−2(s+1) = 0, which is the term rank
of the matrix associated withD(A) \ p(1, j). Henceδ(1, j) = γ(1, j) = 1. This shows that
(5.1) holds, and the conjecture is true for matrices having a star graph. Note also that for a
matrixA with D(A) a star graph, the above formula forA # and [4, Corollary 2.7] give that the
sign patterns sgn(∆AA#) and sgn((A†)T ) are identical. If, in addition,A is nonnegative, then
∆A > 0 and sgn(A#) = sgn(A) = sgn((A†)T ), which is a special case of [1, Theorem 4].
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The existence ofA# in Conjecture 5.1 follows from Proposition 1.1. In addition to ma-
tricesA that have a path or a star graph, we have verified with Maple that (5.1) of Conjecture
5.1 holds for all singular matrices with tree graphs of order 7 or less.
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