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FAST VERIFICATION FOR THE PERRON PAIR OF AN IRREDUCIBLE

NONNEGATIVE MATRIX∗

SHINYA MIYAJIMA†

Abstract. Fast algorithms are proposed for calculating error bounds for a numerically computed Perron root and vector

of an irreducible nonnegative matrix. Emphasis is put on the computational efficiency of these algorithms. Error bounds for

the root and vector are based on the Collatz–Wielandt theorem, and estimating a solution of a linear system whose coefficient

matrix is an M -matrix, respectively. We introduce a technique for obtaining better error bounds. Numerical results show

properties of the algorithms.
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1. Introduction. For v ∈ Rn and M ∈ Rn×n, let vi and Mij be the ith component and (i, j) element

of v and M , respectively. For v, w ∈ Rn and M,N ∈ Rn×n, let v ≤ w and M ≤ N denote vi ≤ wi for

all i and Mij ≤ Nij for all i, j, respectively. We say M is nonnegative if M ≥ 0. We also say A ∈ Rn×n

is reducible if and only if for some permutation matrix P , the matrix PTAP is block upper triangular. If

A is not reducible, we say A is irreducible. The following, called the Perron–Frobenius theorem, states a

well-known property of irreducible nonnegative matrices.

Theorem 1 (Frobenius [1, 2]). Let A ∈ Rn×n be irreducible and nonnegative, ρ(A) be the spectral

radius of A, and λi, i = 1, . . . , n be eigenvalues of A such that |λ1| ≥ · · · ≥ |λn|. Then, the following are

true:

(a) λ1 = ρ(A) > 0.

(b) There exists an eigenvector x∗ corresponding to λ1 such that x∗ > 0.

(c) If A ≥ B ≥ 0 for B ∈ Rn×n, then λ1 ≥ ρ(B) holds, with equality holding if and only if A = B.

(d) The algebraic multiplicity of λ1 is one.

The positive eigenvalue λ1 and corresponding positive eigenvector x∗ are called the Perron root and vector,

respectively, and we call the pair (λ1, x
∗) the Perron pair. In this paper, we are concerned with the accuracy

of a numerically computed Perron pair of a nonnegative irreducible matrix.

Perron pairs have many applications. For example, the Perron pair is required in finite-state Markov

chains such as branching processes [3] and Markov rewards processes with exponential utility [4]. In informa-

tion theory, Stanczak and Boche [5] studied the relationship between Kullback–Leibler distance and a Perron

root and used it to develop power control algorithms for providing a desired quality of service. Mathematical

analysis with respect to a Perron root and vector has been extensively studied (see, e.g., [6, 7, 8]).
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The work presented herein addresses the problem of verified computations for λ1 and x∗, specifically,

computing rigorous bounds for λ1 and x∗ based on approximations. There are many verification methods

for eigenvalues and eigenvectors. For all eigenvalues, see [9, 10, 11, 12, 13, 14, 15]. For all eigenpairs,

see [16, 17, 18]. For a few specified eigenvalues, see, e.g., [19, 20, 21, 22, 23, 24, 25]. For a few specified

eigenvectors, see [26]. For computing bounds for λ1 and x∗, we can apply verification methods for a few

specified eigenpairs (e.g., [27, 28, 29, 30, 31, 32, 33, 34]), which require O(n3) operations in general. Only

Nagato and Ishii [23] have proposed a verification algorithm designed specifically for the Perron root of a

nonnegative matrix. On the other hand, it does not compute a bound for the Perron vector.

The purpose of the present paper is to propose two verification algorithms for the Perron pair of an

irreducible nonnegative matrix. Emphasis is put on the computational efficiency of these algorithms. Let λ̃

and x̃ be numerical results for λ1 and x∗, respectively. We show that a subvector of x∗ − x̃ can be regarded

as the solution of a linear system with M -matrix (see Section 4). Verification algorithms for the solution

of a linear system with M -matrix have already been proposed (e.g., [35, 36, 37, 38]). However, herein is

reported the first attempt at a verification algorithm for an eigenvector that exploits the M -matrix property.

We introduce a technique for improving the accuracy of λ̃ and x̃, reducing error bounds (see Sections 3, 5,

and 6).

This paper is organized as follows: Section 2 introduces the notation and two necessary theorems used

in this paper. Section 3 discusses methods for computing λ̃ and x̃ and improving their accuracy. Section 4

establishes a theory for computing error bounds and proposes the first algorithm. Section 5 proposes a

second algorithm that uses the improved approximations and gives better error bounds. Section 6 reports

numerical results. Finally, Section 7 highlights future work.

2. Preliminaries. For M ∈ Rn×n, let ρ(M) be the spectral radius of M , and |M | := (|Mij |). Denote

the principal submatrix of M consisting of rows and columns in µ ⊆ {1, . . . , n} by M [µ]. Analogously, let

x[µ] be the subvector of x ∈ Rn which consists of components in µ. For v ∈ Rn, let min(v) := mini(vi),

max(v) := maxi(vi), and |v| := [|v1|, . . . , |vn|]T . Let R≥0 := [0,∞), R>0 := (0,∞), Rn
≥0 := {v ∈ Rn : v ≥ 0},

Rn
>0 := {v ∈ Rn : v > 0}, Rn×n

≥0 := {M ∈ Rn×n : M ≥ 0}, and F be the set of all floating-point real numbers.

Let I be the identity matrix with compatible size, ◦ and ./ be element-wise multiplication and division,

respectively, and 1l := [1, . . . , 1]T with proper dimension. For c ∈ Rn and r ∈ Rn
≥0, let 〈c, r〉 denote the real

interval vector whose midpoint and radius are c and r, respectively. We write fl(·), fl4(·), and fl5(·) to denote

results of floating-point computations, where all the operations inside the parentheses are executed using the

to-the-nearest, toward -+∞, and toward -−∞ rounding modes, respectively. Let realmin be the smallest

positive normalized floating-point number (specifically realmin = 2−1022 in IEEE 754 double precision). A

real square matrix A is called a Z-matrix if Aij ≤ 0 for all i 6= j. It is clear that any Z-matrix can be

written as µI − B with B ≥ 0. A Z-matrix µI − B is called an M -matrix if µ > ρ(B). We say A has the

“M -property” if A is an M -matrix.

In the proof of Theorem 5, we will apply Theorem 2, which is called the Collatz–Wielandt theorem.

Theorem 2 (Collatz [39] and Wielandt [40]). Let A ∈ Rn×n
≥0 and x ∈ Rn

>0. It then follows that

min((Ax)./x) ≤ ρ(A) ≤ max((Ax)./x).

In Section 4, we will use the following properties of an M -matrix.

Theorem 3 (Fiedler and Pták [41]). For a Z-matrix A, the following are equivalent:
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1. A is an M -matrix.

2. A is nonsingular and A−1 ≥ 0.

3. There exists v ∈ Rn
>0 satisfying Av > 0.

3. Computing an approximation and improving its accuracy. Let λ1, x∗, λ̃, and x̃ be as in

Section 1. We are interested in verified bounds for (λ1, x
∗) based on (λ̃, x̃); however, we want to add some

remarks on how to obtain (λ̃, x̃). In Section 3.1, we thus discuss methods for computing (λ̃, x̃) and present

a procedure based on the discussion. Section 3.2 introduces a method for improving its accuracy.

3.1. Computing an approximation. Let λi be as in Theorem 1, i.e., |λ1| ≥ · · · ≥ |λn|. If the

cyclic index of A is one, then |λ2|/ρ(A) < 1 follows, so that we can compute (λ̃, x̃) via the power method

x(k+1) = Ax(k), k = 0, 1, . . . , where x(0) ∈ Rn
>0 is an initial guess. On the other hand, if the cyclic index of A

is two or more, then |λ2|/ρ(A) = 1, which means the power method does not work. One may consider that

the issue can be overcome by introducing a shift. However, introducing the shift is not generally working.

Therefore, using the power method only seems to be problematic. A stable way for computing eigenvalues

and eigenvectors in MATLAB is to call the routine eig. On the other hand, eig computes all eigenvalues

and eigenvectors, requiring large CPU times when n is large, though we need only the Perron pair. In

2007, an iterative algorithm for computing (λ̃, x̃) has been proposed in [42]. Although it requires O(n3)

operations per iteration, it is reported in [42, Section 3.5] that the iteration converges even in the problem

where the power method does not converge. However, there is a case where the iteration does not converge

(see Example 5 in Section 6).

We thus propose the following procedure:

1. Execute the power method. If it converged, then terminate.

2. Execute the iteration in [42]. If it converged, then terminate.

3. Call eig.

Let x̂ ∈ Rn be a numerical result for an eigenvector corresponding to ρ(A). Then, x̂ < 0 may occur. In such

a case, we must put x̃ = −x̂.

3.2. Improving the accuracy. Let k ∈ {1, . . . , n} satisfy x̃k = max(x̃), and x∗ ∈ Rn
>0 be the Perron

vector of A such that x∗k = x̃k. Hereafter, in this paper, let e ∈ Rn be the kth column of I and U ∈ R(n−1)×n

be I without the kth row. It is possible to improve the accuracy of λ̃ and x̃ via a Newton method applied

to a nonlinear system derived from (ρ(A)I − A)x∗ = 0. This technique is a subset of [34, Algorithm 2.1].

Since x∗k = x̃k, we correct the unknown quantities Ux∗ and ρ(A) into y ∈ Rn, i.e., we consider finding y

with yk = ρ(A) and Uy = Ux∗. Let ỹ ∈ Rn
>0 satisfy Uỹ = Ux̃ and ỹk = λ̃, and r := Ax̃ − λ̃x̃. Suppose

that x̃eT − (A− λ̃I)UTU is nonsingular. From the analysis in [34], a correction term for ỹ obtained by the

Newton method is (x̃eT − (A− λ̃I)UTU)−1r, which is the solution z∗ ∈ Rn to the linear system

(1) (x̃eT − (A− λ̃I)UTU)z∗ = r.

We cannot assert that x̃eT − (A − λ̃I)UTU is nonsingular. As Theorem 4 implies, however, we can expect

nonsingularity if λ̃ and x̃ are not too far from ρ(A) and x∗, respectively.

Theorem 4. Let A ∈ Rn×n
≥0 be irreducible and x∗ be a Perron vector of A. Then, x∗eT−(A−ρ(A)I)UTU

is nonsingular for any k ∈ {1, . . . , n}.
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Proof. Let C := A−ρ(A)I and C[i,j] be the (i, j) cofactor of C. From Theorem 1 (d), we have rank(C) =

n− 1, so that rank(adj(C)) = 1. Therefore, there exist α ∈ R \ {0} and a Perron vector v ∈ Rn
>0 of AT such

that adj(C) = x∗(αv)T , which gives det(x∗eT−CUTU) = (−1)n−1
∑n

i=1 x
∗
iC[i,k] = (−1)n−1αx∗k(vTx∗) 6= 0.

We numerically solve (1) and obtain an approximate solution z ∈ Rn. Then, we can expect λ̃+ zk and

x̃ + UTUz are more accurate than λ̃ and x̃, respectively. In order to obtain effective z, it is necessary to

compute r in extended precision.

4. Verification theory. Let λ̃ and x̃ be as in Section 1. We present Theorem 5, which gives an error

bound for λ̃.

Theorem 5. Let A ∈ Rn×n
≥0 , x̃ ∈ Rn

>0, λ̃ ∈ R>0, r := Ax̃ − λ̃x̃, and ε := max(|r|./x̃). It then follows

that |λ̃− ρ(A)| ≤ ε.

Proof. Define y := (Ax̃)./x̃. Then, ri = (yi − λ̃)x̃i, so that |yi − λ̃| ≤ maxj |rj |/|x̃j | = ε for all i.

Theorem 2 moreover shows min(y) ≤ ρ(A) ≤ max(y). Hence, |λ̃− ρ(A)| ≤ maxj |yj − λ̃| ≤ ε.

Remark 6. Let λ := max(y), λ := min(y), ω := (λ + λ)/2, δ := (λ − λ)/2, λ4 := fl4((λ + λ)/2),

λ5 := fl5((λ+λ)/2), δ4 := fl4(λ4−λ), and δ5 := fl4(λ−λ5). From Theorem 2, we have ρ(A) ∈ 〈λ4, δ4〉
and ρ(A) ∈ 〈λ5, δ5〉, so that

ρ(A) ∈ 〈λ∗, δ∗〉, where λ∗ :=

{
λ4 (if δ4 ≤ δ5)

λ5 (otherwise)
, and δ∗ := min(δ4, δ5).

This is an alternative way for enclosing ρ(A). Moreover, δ∗ ≤ ε follows if λ/2 ≤ λ ≤ 2λ; otherwise the

enclosure is wide. Its proof given in the following is due to the reviewer. If the assumption is true, then

Sterbenz’ lemma implies λ− λ ∈ F and δ = fl((λ− λ)/2) ∈ F. We distinguish two cases.

1. If λ+ λ ∈ F, then λ∗ = λ4 = λ5 = ω ∈ F, and δ∗ = δ4 = δ5 = δ implies

ε− δ∗ = max
i
|yi − λ̃| − δ = max(λ− λ̃, λ̃− λ)− δ = |ω − λ̃| ≥ 0.

2. If λ + λ /∈ F, then ω is the midpoint of two adjacent floating-point numbers. Denote by η the

difference to its neighbors. Then, λ4 = ω + η and λ5 = ω − η.

(a) If λ̃ ≥ ω, then λ̃ ∈ F implies λ̃ ≥ λ4, δ4 = λ4 − λ = δ + η ∈ F, and

ε− δ∗ ≥ ε− δ4 = max(λ− λ̃, λ̃− λ)− δ − η = λ̃− (λ+ δ + η) = λ̃− λ4 ≥ 0.

(b) If λ̃ < ω, then, similarly, λ̃ ≤ λ5, δ5 = λ−λ5 = δ+η ∈ F, and ε−δ∗ ≥ ε−δ5 = λ−(λ̃+δ+η) =

λ5 − λ̃ ≥ 0.

In Algorithm 11, therefore, we compute δ∗ as an error bound.

One may consider that computing ε is unnecessary. When we use an accurate dot product algorithm

(e.g., the INTLAB [43] routine Dot_), however, there is a case where a numerically obtained ε is smaller

than a numerically obtained δ∗. This is because ε contains the residual r, and |ri|, i = 1, . . . , n are small

quantities computed from relatively large quantities. Therefore, calculating r with the accurate dot product

algorithm gives smaller |ri|. In contrast, the quantities λ and λ are not small in general, so that calculating

them with the accurate algorithm is not advantageous. Although δ∗ is a small quantity computed from

relatively large quantities, we can compute it only after the calculations of λ and λ are completed. When the
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calculations of λ and λ are completed, the computation of δ∗ involves only few operations. Consequently,

it is difficult to make the accurate dot product algorithm advantageous in the calculation of δ∗. Let ε̂ be ε

obtained via the accurate algorithm. We thus design Algorithm 12 such that the minimum of δ∗ and ε̂ is

adopted as an error bound.

We next consider computing an error bound for x̃. Let k ∈ {1, . . . , n} satisfy x̃k = max(x̃), x∗ ∈ Rn
>0

be a Perron vector of A such that x∗k = x̃k, and µ := {1, . . . , n} \ {k}. Since UTU coincides with I except

(UTU)kk = 0, we have x∗ = x̃ke+ UTUx∗ and x̃ = x̃ke+ UTUx̃, so that x∗ − x̃ = UTU(x∗ − x̃). Thus, we

estimate an upper bound for |U(x∗ − x̃)| = |(x∗ − x̃)[µ]|.

For the estimation, we give a representation for (x∗ − x̃)[µ]. Note that UTU(x∗ − x̃) = x∗ − x̃ and

A[µ] = UAUT . Using IU = U and Ax∗ = ρ(A)x∗ implies

(ρ(A)I −A[µ])U(x∗ − x̃) = ρ(A)U(x∗ − x̃)− UA(x∗ − x̃) = U(Ax̃− ρ(A)x̃).

Therefore, if ρ(A)I −A[µ] is nonsingular, then we obtain the representation

(2) (x∗ − x̃)[µ] = U(x∗ − x̃) = (ρ(A)I −A[µ])−1U(Ax̃− ρ(A)x̃).

In order to show nonsingularity, we prove that ρ(A)I − A[µ] is an M -matrix (see Theorem 3). The M -

property of ρ(A)I −A[µ] enables us to calculate the upper bound for |(x∗− x̃)[µ]| at low computational cost

(see Lemma 8).

Lemma 7. Let k ∈ {1, . . . , n}, µ := {1, . . . , n} \ {k}, and A ∈ Rn×n
≥0 be irreducible. Then, ρ(A)I − A[µ]

is an M -matrix.

Proof. It is obvious that ρ(A)I−A[µ] is a Z-matrix. Since A is irreducible, moreover, we have ρ(A[µ]) <

ρ(A), which completes the proof.

Let λ ∈ R>0 satisfy λ ≤ ρ(A). If we have v ∈ Rn−1
>0 such that (λI − A[µ])v > 0, then the upper bound

for |(x∗ − x̃)[µ]| can be computed efficiently. Lemma 8 is an analogue of the results in [35, 36, 37, 38].

Lemma 8. Let A ∈ Rn×n
≥0 be irreducible, λ̃ ∈ R>0, x̃ ∈ Rn

>0, v, w ∈ Rn−1
>0 , and k ∈ {1, . . . , n}. Define

r := Ax̃ − λ̃x̃, and µ := {1, . . . , n} \ {k}. Let also x∗ ∈ Rn
>0 be a Perron vector of A such that x∗k = x̃k.

Suppose λ ∈ R>0 and ε ∈ R≥0 satisfy λ ≤ ρ(A) and ε ≥ |λ̃ − ρ(A)|, respectively, and w ≤ (λI − A[µ])v.

Define s := (|r|+ εx̃)[µ], and t := (s+ max(s./w)A[µ]v)/λ. It then follows that |(x∗ − x̃)[µ]| ≤ t.

Proof. Let D := ρ(A)I and E := A[µ]. Theorem 3 and Lemma 7 show

(3) |(D − E)−1| = (D − E)−1 = D−1(I + E(D − E)−1).

From ε ≥ |λ̃− ρ(A)|, it follows that

|U(Ax̃− ρ(A)x̃)| = U |r + (λ̃− ρ(A))x̃| ≤ U(|r|+ |λ̃− ρ(A)||x̃|) ≤ U(|r|+ εx̃) = s.(4)

From λ ≤ ρ(A) and w ≤ (λI − E)v, we obtain

(D − E)−1w ≤ (D − E)−1(λI − E)v ≤ (D − E)−1(D − E)v = v.(5)
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The relations (2) to (5) and D−1 ≤ (1/λ)I prove

|(x∗ − x̃)[µ]| ≤ |(D − E)−1||U(Ax̃− ρ(A)x̃)| ≤ D−1(I + E(D − E)−1)s

= D−1(s+ E(D − E)−1(s./w ◦ w))

≤ D−1(s+ max(s./w)E(D − E)−1w) ≤ D−1(s+ max(s./w)Ev) ≤ t.

Lemma 8 gives an error bound for x̃.

Theorem 9. Let x̃, x∗, and t be as in Lemma 8, and u := UT t. If the assumptions in Lemma 8 are

true, then |x∗ − x̃| ≤ u.

Proof. As mentioned above, x∗− x̃ = UTU(x∗− x̃) follows, so that |x∗− x̃| = UT |(x∗− x̃)[µ]|. This and

Lemma 8 prove the result.

Algorithm 11 computes λ∗ and δ∗ in Remark 6 and an upper bound on u. To obtain the upper bounds

on u, we need to compute v and w in Lemma 8. We can obtain v by the following procedure:

1. Numerically solve the linear system (λI − A[µ])v∗ = b, where b ∈ Rn−1
>0 , and v∗ is the solution, via

an iterative method. Let v be the numerical solution.

2. Update v such that vi = max(vi, realmin), i = 1, . . . , n− 1.

If v is not far from v∗, then it approximately follows that

(6) (ρ(A)I −A[µ])v ≥ (λI −A[µ])v ≈ b > 0.

The choice of b is arbitrary, and a natural one is b = 1l. In Algorithm 11, we adopt the natural choice. If

λI −A[µ] is well-conditioned, then the iterative method stops after few iterations, so that v can be obtained

efficiently.

If we have v, then we can obtain w by the following procedure:

1. Compute a lower bound on (λI −A[µ])v. Let w be the result.

2. Check w > 0.

We then have w ≤ (λI − A[µ])v. If v is not far from v∗, then we can expect w > 0 from (6). However, a

case exists that the iterative method gives inaccurate v, so that w > 0 does not follow. In such a case, we

compute v again via a direct method, update w, and check w > 0 once more.

Remark 10. If the leading eigenvalues are close together, the case λ < ρ(A[µ]) may arise. If so, λI−A[µ]

is not an M -matrix, so there does not exist v ∈ Rn−1
>0 which satisfies (λI − A[µ])v > 0 (see Theorem 3).

Consequently, Algorithm 11 does not work. A similar remark applies to Algorithm 12.

Before computing λ∗, δ∗, and an upper bound on u, we need to verify that A is irreducible. If A > 0, then

the irreducibility is obvious. Otherwise, the irreducibility can be verified by some standard graph algorithm

(e.g., [44]).

Based on the discussion above, we propose Algorithm 11.

Algorithm 11. Let x̃ ∈ Rn
>0 be as in Section 1, v, w ∈ Rn−1

>0 , and λ, λ∗, and δ∗ be as in Remark 6. Let

also k ∈ {1, . . . , n} satisfy x̃k = max(x̃), and x∗ ∈ Rn
>0 be the Perron vector of A such that x∗k = x̃k. Define

r := Ax̃− λ∗x̃, µ := {1, . . . , n} \ {k}, s := (|r|+ δ∗x̃)[µ], t := (s+ max(s./w)A[µ]v)/λ, and u := UT t. This
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algorithm computes λ∗ ∈ R>0, δ∗ ∈ R≥0, and u ∈ Rn
≥0 such that δ∗ ≥ |λ∗ − ρ(A)| and u ≥ |x̃ − x∗|. The

irreducibility of A is moreover proved if successful.

Step 1. If A > 0, then go to Step 3. Otherwise, go to Step 2.

Step 2. Verify the irreducibility of A via a standard graph algorithm. If it cannot be verified, then terminate

with failure.

Step 3. Calculate λ∗ and δ∗.

Step 4. Compute v by numerically solving (λI − A[µ])v∗ = 1l via an iterative method. Update v such that

vi = max(vi, realmin), i = 1, . . . , n− 1.

Step 5. Compute a lower bound on (λI − A[µ])v. Let w be the result. If w > 0 cannot be verified, then

compute v again via a direct method, update w, and check w > 0 once more. If w > 0 cannot be

verified again, then the computation of u fails. Terminate.

Step 6. Compute an upper bound on u. Let u be the result. Terminate.

If ρ(A[µ]) < λ, then the Neumann series gives

v∗ = (λI −A[µ])−11l =
1

λ

(
I +

1

λ
A[µ] +

1

λ2
(A[µ])2 + · · ·

)
1l.(7)

We thus use fl((1l +A[µ]1l/λ)/λ) as an initial guess of the iterative method in Step 4.

5. A technique for obtaining better error bounds. We can obtain better error bounds by using

the improved approximation mentioned in Section 3.2. Let λ̃, x̃, k, x∗, r, and z be as in Section 3.2 and

ε and u be as in Theorems 5 and 9, respectively. As mentioned in Section 3.2, we can expect λ̃ + zk and

x̃+ UTUz to be more accurate than λ̃ and x̃, respectively. We store z independently from λ̃ and x̃. Then,

λ̃ + zk and x̃ + UTUz are stored as if in multiple-precision floating-point numbers. Let r̂, ε̂, and û be r,

ε, and u, respectively, where λ̃ and x̃ are replaced by λ̃ + zk and x̃ + UTUz, respectively. We compute

an upper bound on |r̂| executing an accurate dot product algorithm. In the first stage, we obtain z via an

iterative method to reduce computational cost. However, a case exists for which the iterative method gives

inaccurate z. This case occurs when the coefficient matrix of (1) is ill-conditioned. Consequently, we cannot

verify min(|r| − |r̂|) ≥ 0. In such a case, we compute z again via a direct method.

If λ̃ + zk > 0 and x̃ + UTUz > 0, then Theorems 5 and 9 applied to λ̃ := λ̃ + zk and x̃ := x̃ + UTUz

give |λ̃+ zk − ρ(A)| ≤ ε̂ and |x∗ − (x̃+UTUz)| ≤ û. Let ε and u be upper bounds on ε̂ and û, respectively.

Define λI := fl5(λ̃ + zk − ε), λS := fl4(λ̃ + zk + ε), xI := fl5(x̃ + UTUz − u), xS := fl4(x̃ + UTUz + u),

λC := fl4((λI + λS)/2), εC := fl4(λC − λI), xC := fl4((xI + xS)/2), and uC := fl4(xC − xI). Then,

|λC − ρ(A)| ≤ εC and |xC − x∗| ≤ uC follows. Since λI ≤ ρ(A), we update λ in Remark 6 such that λ = λI
if λI ≥ λ, which occurs when ε is small (cf. Remark 6).

We summarize our strategy in Algorithm 12.

Algorithm 12. Let λ̃, x̃, k, x∗, r, and z be as in Section 3.2, λ, λ∗, and δ∗ be as in Remark 6, and

ε and u be as in Theorems 5 and 9, respectively. Let also r̂, ε̂, and û be r, ε, and u, respectively, where λ̃

and x̃ are replaced by λ̃ + zk and x̃ + UTUz, respectively. This algorithm computes λC ∈ R>0, εC ∈ R≥0,

xC ∈ Rn
>0, and uC ∈ Rn

≥0 such that |λC−ρ(A)| ≤ εC and |xC−x∗| ≤ uC . The irreducibility of A is moreover

proved if successful.

Steps 1 and 2. Similar to those in Algorithm 11.
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Step 3. Calculate r by executing an accurate dot product algorithm. Compute z via an iterative method.

Calculate an upper bound on |r̂| utilizing the accurate dot product algorithm. If min(|r| − |r̂|) ≥ 0

cannot be verified, then compute z again via a direct method and calculate an upper bound on |r̂|
again utilizing the accurate algorithm.

Step 4. If λ̃ + zk > 0 cannot be verified, then update zk such that zk = 0. If the positiveness of some

components in x̃+ UTUz cannot be verified, update the corresponding components of z similarly.

Step 5. Calculate λ∗ and δ∗. Compute an upper bound on ε̂. Let ε be the result. If δ∗ ≤ ε, then update λ̃,

zk, and ε such that λ̃ = λ∗, zk = 0, and ε = δ∗, respectively (see Remark 6). Calculate λI , λC , and

εC as in the previous paragraph. Update λ such that λ = max(λ, λI).

Steps 6 and 7. Similar to Steps 4 and 5 in Algorithm 11, respectively.

Step 8. Compute an upper bound on û. Let u be the result. Calculate xC and uC as in the previous

paragraph. Terminate.

6. Numerical results. We used a computer with Intel Core 1.51 GHz CPU, 16.0 GB RAM, and

MATLAB R2012a with the Intel Math Kernel Library and IEEE 754 double precision. We denote the

compared algorithms as follows:

M1: combination of the procedure in Section 3.1 and Algorithm 11,

M2: combination of the procedure and Algorithm 12, and

V: combination of the procedure and INTLAB routine verifyeig.

The comparison to verifyeig is not fair because it is applicable to general real or complex, point or interval

matrices, computes inner inclusions, as well as bounds for invariant subspaces. However, lacking an algorithm

tailored specifically to the Perron pair, we use verifyeig. In Step 2 of M1 and M2, we called tarjan.m in

https://jp.mathworks.com/matlabcentral/fileexchange/50707-tarjan-e, which executes the algorithm in [44].

In M1 and M2, we adopted the MATLAB routine bicgstab as the iterative method. We used fl((1l +

A[µ]1l/λ)/λ) as the initial guess of bicgstab (cf. (7)). For A sparse, we used numerically computed in-

complete LU factors of A as a preconditioner in bicgstab. In M2, the INTLAB routine Dot_ was invoked

as the accurate dot product algorithm. See http://web.cc.iwate-u.ac.jp/∼miyajima/PP.zip for details of the

implementations, where INTLAB codes of M1, M2, and V (denoted by M1.m, M2.m, and V.m) are uploaded.

Let 〈λ̃, ε〉 and 〈x̃, u〉 contain the Perron root and vector, respectively. To assess qualities of enclosures, define

the relative radius for the root (RRR) and relative radius for the vector (RRV) as ε/|λ̃| and ‖u‖2/‖x̃‖2,

respectively. In some problems, M1 and/or M2 failed to compute u. The reason for the failure is that w > 0

could not be verified even in the second stage. In Examples 1 to 5, the routine eig within the procedure in

Section 3.1 was invoked once (see Example 5).

Example 1. We observe the RRR, RRV, and CPU times of the algorithms when A > 0. Consider the

cases where A is generated by the MATLAB code A = gallery(’cauchy’,1:n,2*(1:n));. In this case,

A > 0. The ‘cauchy’ matrix is nonsymmetric. Table 1 displays the RRR, RRV, and CPU times (s) of the

algorithms. This table shows that M1 and M2 were faster than V, and the RRR and RRV by M2 were smaller

than those by V.

Remark 13. When we used the ‘lotkin’ and ‘minij’ matrices instead, we observed tendencies similar to

those in Table 1.

Example 2. We observe properties of the algorithms when mini,j Aij = 0 and A is irreducible. Consider

the cases where A is generated by

https://jp.mathworks.com/matlabcentral/fileexchange/50707-tarjan-e
http://web.cc.iwate-u.ac.jp/~miyajima/PP.zip
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Table 1

RRR, RRV, and CPU times (s) for the ‘cauchy’ matrix.

M1 M2 V M1 M2 V

n RRR RRR RRR Time Time Time

RRV RRV RRV

500 4.6e–14 3.0e–16 5.6e–15 0.019 0.15 0.19

3.3e–12 3.2e–16 1.7e–14

1000 9.3e–14 2.9e–16 9.4e–15 0.086 0.36 0.46

9.2e–12 3.2e–16 3.2e–14

3000 2.9e–13 2.7e–16 2.2e–14 0.49 3.0 10

4.7e–11 3.2e–16 9.0e–14

6000 5.9e–13 2.7e–16 4.0e–14 2.3 13 91

1.3e–10 3.2e–16 1.8e–13

A = gallery(’circul’,[0;1;zeros(n-2,1)]);

A = gallery(’toeppen’,n,2,1,0,1,2);

A = gallery(’tridiag’,ones(n-1,1),zeros(n,1),[2;ones(n-2,1)]);

A = gallery(’frank’,n,K);

with K being a parameter. The ‘circul,’ ‘tridiag,’ and ‘frank’ matrices are nonsymmetric, whereas the

‘toeppen’ matrix is symmetric. Tables 2, 3, and 4 report the RRR, RRV, and CPU times (s) for the ‘circul,’

‘toeppen,’ and ‘tridiag’ matrices. Let κ be an approximate condition number of λI − A[µ] obtained by the

routine cond. Table 5 lists κ, and the RRR, RRV, and CPU times (s) of the algorithms for the ‘frank’

matrix. We see from Table 5 that M1 and M2 failed to enclose the Perron vector in many cases and were

slow. The reason for the failure is that a large κ caused an inaccurate v, so that w > 0 could not be verified.

The large κ also caused the slow execution of M1 and M2 because bicgstab required many iterations. Even

when they succeeded, the RRV was large because ‖A[µ]v/λ‖2 was large. In fact, ‖A[µ]v/λ‖2 was O(104)

and O(108) when n = 60 and K = 0 and n = 100 and K = 0, respectively.

Table 2

RRR, RRV, and CPU times (s) for the ‘circul’ matrix.

M1 M2 V M1 M2 V

n RRR RRR RRR Time Time Time

RRV RRV RRV

500 7.9e–12 2.2e–16 3.3e–16 0.13 0.15 0.16

4.6e–9 4.3e–16 3.3e–16

1000 2.9e–11 2.2e–16 3.3e–16 0.63 0.66 0.96

3.3e–8 4.4e–16 3.3e–16

2000 2.0e–12 2.2e–16 3.3e–16 3.3 4.3 6.4

4.7e–9 4.4e–16 3.3e–16

5000 4.2e–12 2.2e–16 3.3e–16 44 49 92

2.4e–8 1.7e–15 3.3e–16
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Table 3

RRR, RRV, and CPU times (s) for the ‘toeppen’ matrix.

M1 M2 V M1 M2 V

n RRR RRR RRR Time Time Time

RRV RRV RRV

500 2.1e–11 3.0e–16 3.0e–16 0.10 0.11 0.11

3.1e–7 9.4e–15 6.8e–13

1000 5.9e–16 3.0e–16 1.5e–16 0.42 0.42 0.60

3.0e–11 2.7e–16 2.7e–12

2000 7.4e–16 3.0e–16 1.5e–16 1.9 2.0 4.0

1.7e–10 2.7e–16 1.1e–11

5000 6.5e–12 3.0e–16 3.0e–16 25 26 63

9.3e–6 6.7e–13 6.8e–11

Table 4

RRR, RRV, and CPU times (s) for the ‘tridiag’ matrix.

M1 M2 V M1 M2 V

n RRR RRR RRR Time Time Time

RRV RRV RRV

500 5.6e–16 2.2e–16 2.2e–16 0.12 0.13 0.13

8.5e–11 2.7e–16 2.2e–12

1000 3.6e–13 2.2e–16 1.1e–16 0.49 0.51 0.72

2.5e–7 2.7e–16 8.7e–12

2000 1.3e–15 2.2e–16 1.1e–16 2.8 2.7 4.6

3.7e–9 1.5e–13 3.5e–11

5000 1.1e–14 2.2e–16 1.1e–16 37 38 74

1.9e–7 5.7e–16 2.2e–10

Example 3. We consider the case where eigenvalues are closely clustered around ρ(A). We generated

A by the code A = [2 e 1;e 2 1;e e 1]; with e being a parameter. Then, two eigenvalues are closely

clustered around ρ(A) for e close to 0. Let λi be defined as in Theorem 1, i.e., |λ1| ≥ · · · ≥ |λn|, and λ̃1
and λ̃2 denote numerical results for λ1 and λ2, respectively. Table 6 displays fl(|λ̃1 − λ̃2|), and the RRR,

RRV, and CPU times (s) for various e. We see that M1 and M2 are not robust when eigenvalues are closely

clustered around ρ(A).

Example 4. We observe properties of the algorithms when min(x̃)/‖x̃‖2 is small. Consider the case

where A is generated by n = 10; A = gallery(’circul’, [0;1; zeros(n-2,1)]); A(n,n) = s; with s be-

ing a parameter. As far as we tested, min(x̃)/‖x̃‖2 decreased as s increased. Table 7 reports fl(min(x̃)/‖x̃‖2),

and the RRR, RRV, and CPU times (s) for various s. We see that M1 and M2 worked well even when

min(x̃)/‖x̃‖2 is small.

Example 5. Let λ be as in Remark 6, and ρ ∈ F be a lower bound for ρ(A) obtained by V. We observe

the properties when λ is not a tight lower bound. Consider the case where A is generated by the INTLAB

code A = band(rand(n),p,p);. Then, λ tends to be nontight when n is large, or p is small. The nontight
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Table 5

RRR, RRV, and CPU times (s), and κ for the ‘frank’ matrix.

M1 M2 V M1 M2 V

n K κ RRR RRR RRR Time Time Time

RRV RRV RRV

60 0 4.9e+6 2.7e–11 2.7e–16 2.7e–16 0.036 0.049 0.010

2.3e–4 5.1e–14 2.7e–16

60 1 3.3e+14 4.2e–15 2.7e–16 2.7e–16 0.050 0.055 0.011

failed failed 1.6e–15

100 0 4.2e+10 2.5e–14 3.1e–16 1.6e–16 0.091 0.11 0.012

1.1e–3 2.1e–16 3.2e–16

100 1 1.7e+17 7.5e–15 3.1e–16 1.6e–16 0.10 0.12 0.011

failed failed 2.2e–15

200 0 4.6e+18 2.1e–14 3.0e–16 3.0e–16 0.32 0.34 0.022

failed failed 3.6e–16

200 1 1.6e+18 1.7e–14 3.0e–16 3.0e–16 0.32 0.35 0.022

failed failed 3.4e–15

500 0 6.3e+19 1.0e+0 1.0e+0 2.4e–16 1.9 2.1 0.39

failed failed 4.0e–16

500 1 4.4e+18 5.0e–12 2.4e–16 2.4e–16 1.9 2.0 0.17

failed failed 5.3e–15

Table 6

RRR, RRV, and CPU times (s), and fl(|λ̃1 − λ̃2|) in Example 3.

M1 M2 V M1 M2 V

e fl(|λ̃1 − λ̃2|) RRR RRR RRR Time Time Time

RRV RRV RRV

1.0e–8 4.0e–8 1.1e–15 4.4e–16 2.2e–16 0.0054 0.010 0.0051

3.0e–7 2.2e–15 1.6e–16

1.0e–12 4.0e–12 1.1e–12 4.4e–16 8.7e–15 0.0050 0.012 0.0080

3.9e+0 3.4e–4 5.2e–6

1.0e–15 4.4e–15 6.7e–16 4.4e–16 2.2e–16 0.0042 0.011 0.0070

failed 1.5e+0 3.5e–4

λ is caused by an inaccurate x̃. Table 8 reports fl(ρ − λ), and the RRR, RRV, and CPU times (s) for two

choices of n and p. Only when n = 1000 and p = 1, the iteration in [42] did not converge, so that eig is

called. It can be seen that M1 and M2 do not work when λ is nontight, i.e., x̃ is inaccurate.

7. Future work. As mentioned in Section 3.2, a generalization of the technique in the section is

presented in [34, Algorithm 2.1]. One may consider that [34, Algorithm 2.1] can be utilized when eigenvalues

are closely clustered around ρ(A). We denote the number of the clustered eigenvalues by ` ∈ {2, . . . , n}.
Then, [34, Algorithm 2.1] gives an accurate approximation X̃ ∈ Cn×` to a basis of invariant subspaces

corresponding to the ` eigenvalues. Therefore, span(X̃) contains an accurate approximation to the Perron

vector. However, it is not clear how to construct the approximate Perron vector from X̃. The construction

is our future work.
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Table 7

RRR, RRV, and CPU times (s), and fl(min(x̃)/‖x̃‖2) in Example 4.

M1 M2 V M1 M2 V

s fl(min(x̃)/‖x̃‖2) RRR RRR RRR Time Time Time

RRV RRV RRV

100 1.0e–18 1.4e–16 2.8e–16 1.4e–16 0.0035 0.011 0.0054

1.7e–18 3.5e–18 1.7e–18

200 2.0e–21 1.4e–16 2.8e–16 1.4e–16 0.0029 0.0085 0.0053

8.7e–19 1.7e–18 8.7e–19

300 5.1e–23 1.9e–16 3.8e–16 1.9e–16 0.0029 0.0095 0.0054

8.7e–19 8.7e–19 4.3e–19

400 3.8e–24 1.4e–16 2.8e–16 1.4e–16 0.0025 0.0091 0.0055

4.3e–19 8.7e–19 4.3e–19

500 5.1e–25 2.3e–16 2.3e–16 1.1e–16 0.0038 0.0093 0.0059

8.7e–19 8.7e–19 4.3e–19

Table 8

RRR, RRV, and CPU times (s), and fl(ρ− λ) in Example 5.

M1 M2 V M1 M2 V

n p fl(ρ− λ) RRR RRR RRR Time Time Time

RRV RRV RRV

500 5 2.7e–15 1.1e–15 3.1e–16 4.6e–16 0.15 0.17 0.13

2.6e–12 3.0e–16 3.1e–15

500 1 2.7e–15 8.4e–14 4.3e–16 2.1e–16 0.16 0.18 0.21

1.2e–10 2.5e–16 3.1e–16

1000 5 4.4e–15 1.3e–15 3.0e–16 6.0e–16 0.42 0.45 0.68

2.5e–13 2.9e–16 6.2e–15

1000 1 2.0e+0 1.0e+0 7.8e–1 2.0e–16 2.1 2.2 2.5

failed failed 5.1e–16

Lemma 8 and Theorem 9 are more complicated than Theorem 2. Establishing a simpler theory for the

verification of x∗ is also our future work.

As observed in Example 5, Algorithms 11 and 12 are sensitive to the accuracy of x̃. Hence, developing

a robust approximation method is also our future work.
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