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WEAK LOG-MAJORIZATION OF UNITAL TRACE-PRESERVING

COMPLETELY POSITIVE MAPS∗

PAN-SHUN LAU† AND TIN-YAU TAM†

Abstract. Let Φ : Mn → Mn be a unital trace preserving completely positive map and A ∈ Mn be a positive definite 
matrix. Weak log-majorization and weak majorization between Φ(A) and A are studied. Determinantal inequalities between 
Φ(A) and A are obtained as a consequence. By considering special classes of unital trace preserving completely positive map, 
some known matrix inequalities such as Fischer’s inequality are rediscovered. An affirmative answer to a question of Tam and 
Zhang in 2019 is given.
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1. Introduction. Let Mn, Pn and P+
n be the sets of all n× n complex matrices, positive semidefinite

matrices and positive definite matrices, respectively. A linear map Φ : Mn → Mm is positive if Φ(Pn) ⊆
Φ(Pm). Let Mk(Mn) be the space of k × k block matrices (Aij)k×k where Aij ∈Mn for 1 ≤ i, j ≤ k. For

every linear map Φ : Mn → Mm, one can have an induced map Φk : Mk(Mn) → Mk(Mm) defined as

Φk((Aij)k×k) = (Φ(Aij))k×k. A linear map Φ : Mn → Mm is completely positive if Φk is positive for all

positive integers k. The concept of completely positive maps is introduced by Steinspring [23] in studying

dilation problems of operators. In the landmark paper of Choi [6], he gave a complete characterization of

completely positive maps, that is, Φ : Mn → Mm is completely positive if and only if there are n × m

complex matrices F1, . . . , Fr such that

Φ(A) =
r∑
j=1

F ∗j AFj .(1.1)

Positive maps and completely positive maps are important concepts in operator algebra, quantum theory

and matrix inequalities, see [4, 21] and their references.

A trace preserving completely positive map Φ is completely positive such that Φ(A) and A have the

same trace. Note the study of completely positive maps arises from the development of quantum information

science. In the last few decades, fruitful results have been obtained by researchers, see [4, 10, 11, 16, 22].

Note that Φ is trace preserving if and only if the matrices F1, . . . , Fr in (1.1) satisfy
∑r
j=1 FjF

∗
j = In.

A positive linear map Φ : Mn → Mm is called unital if Φ(In) = Im. Unital positive linear maps

are significant elements for enriching theories in the study of C∗-algebra. Note that a completely positive

map Φ is unital if and only if the matrices F1, . . . , Fr in (1.1) satisfy
∑r
j=1 F

∗
j Fj = Im. Moreover, Φ is

unital if and only if its adjoint Φ∗ is trace preserving. Some subclasses of unital trace preserving completely

positive maps have been studied broadly by researchers such as mixed unitary maps and Schur product

maps [1, 8, 9, 12, 21, 26].
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For x = (x1, . . . , xn) ∈ Rn, we denote by x↓ = (x↓1, . . . , x
↓
n) the vector obtained by rearranging the entries

of x in decreasing order, i.e., x↓1 ≥ · · · ≥ x↓n. For vectors x, y ∈ Rn, x is weakly majorized by y, denoted by

x ≺w y, if

k∑
j=1

x↓j ≤
k∑
j=1

y↓j , 1 ≤ k ≤ n.(1.2)

In addition, x is majorized by y, denoted by x ≺ y, if (1.2) holds for 1 ≤ k ≤ n− 1 and equality holds when

k = n. For positive vectors x, y ∈ Rn, x is weakly log-majorized by y, denoted by x ≺w log y, if

k∏
j=1

x↓j ≤
k∏
j=1

y↓j , 1 ≤ k ≤ n.

In other words, x = (x1, . . . , xn) is weakly log-majorized by y = (y1, . . . , yn) if and only if the vector log(x) =

(log x1, . . . , log xn) is weakly majorized by the vector log(y) = (log y1, . . . , log yn). Weak majorization and

majorization are powerful tools in studying matrix inequalities [3, 27]. Besides they have been widely applied

in different areas such as number theory, statistics, numerical analysis, etc. see [13]. For any n×n Hermitian

matrices A andB, we say that A ≥ B if A−B ∈ Pn. Moreover, we denote by λ(A) = (λ1(A), . . . , λn(A)) ∈ Rn

where λ1(A), . . . , λn(A) are eigenvalues of A (including multiplicities). For A,B ∈ Pn, we write A ≺ B if

λ(A) ≺ λ(B). We define A ≺w B and A ≺w log B accordingly.

The connection between majorization of Hermitian matrices and unital trace preserving completely

positive maps is given by Uhlmann; see Proposition 2.2 below. Therefore, one may expect that techniques

and tools in majorization can be applied to obtain or re-obtain insightful matrix inequalities for unital trace

preserving completely positive maps. This is the main objective of this paper. In fact, by the works of

Ando, Bhatia, Choi, and other researchers, one expects that the completely positive map is a powerful tool

to study positive definite matrices and corresponding matrix inequalities; see [3] and its references.

In this paper, we focus on unital trace preserving completely positive maps Φ : Mn →Mn. In Section 2,

we study the weak log-majorization between A ∈ P+
n and Φ(A). We then strengthen the result to the sum of

A
pj
j for positive definite matrices Aj and real numbers pj , j = 1, . . . ,m. We will consider some special classes

of unital trace preserving completely positive maps and answer in the affirmative an open problem in [24].

In Section 3, we apply the weak log-majorization obtained in Section 2 to study determinantal inequalities

on positive semidefinite matrices. Similar inequalities have been studied by Nayak [18] under the context

of von Neumann algebras and Fuglede-Kadison determinant. Some new inequalities are obtained as well as

some known inequalities in [5, 20, 24]. In Section 4, we will make some remarks on the results obtained in

Section 2.

2. Weak log-majorization. We start with the following lemma.

Lemma 2.1. Let A,B ∈ P+
n and let B ≺ A, i.e., λ(B) ≺ λ(A). Then,

(a) B−1 ≺w log A
−1;

(b) I +B−1 ≺w log I +A−1.

Proof. Note that for x = (xi), y = (yi) ∈ Rn, if x ≺ y, then (f(xi)) ≺w (f(yi)) for any convex

function f : R→ R, see [27, Theorem 10.12]. Hence, (a) and (b) follow from the convexity of the functions

f(x) = log x−1 and g(x) = log(1 + x−1), respectively.
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The following result is one implication of a larger theorem known as Uhlmann’s theorem [2], see also

[11, Theorem 3.6].

Proposition 2.2. ([2]) Let A ∈ Pn and Φ : Mn →Mn be a unital trace preserving completely positive

map. Then Φ(A) ≺ A.

Combining Lemma 2.1 and Proposition 2.2, we have the following.

Theorem 2.3. Let A ∈ P+
n and let Φ : Mn →Mn be a unital trace preserving completely positive map.

Then,

(a) Φ(A)−1 ≺w log A
−1;

(b) I + Φ(A)−1 ≺w log I +A−1.

The following result is known and necessary for us to improve Theorem 2.3; see [4, Proposition 2.7.1

and Exercise 2.7.2].

Proposition 2.4. Let A ∈ P+
n and let Φ : Mn →Mn be a unital positive map. Then,

Φ(A)p ≤ Φ(Ap), where p ∈ [−1, 0] ∪ [1, 2],

and

Φ(A)p ≥ Φ(Ap), where p ∈ [0, 1].

We are ready to present our main result.

Theorem 2.5. Let A1, . . . , Am ∈ P+
n and let Φ : Mn → Mn be a unital trace preserving completely

positive map. Then, for p1, . . . , pm ∈ [−1, 0],

m∑
j=1

Φ(Aj)
pj ≺w log

m∑
j=1

Apj ,

and

I +

m∑
j=1

Φ(Aj)
pj ≺w log I +

m∑
j=1

Apj .

Proof. Let p1, . . . , pm ∈ [−1, 0]. By Proposition 2.4, we have

Φ
(
A
−pj
j

)
≤ Φ (Aj)

−pj ⇒ Φ
(
A
−pj
j

)−1
≥ Φ (Aj)

pj ,

where j = 1, . . . ,m. Moreover, by the concavity of the map A 7→ Φ(A−1)−1 [4, Exercise 4.5.3], we have

Φ


 m∑
j=1

A
pj
j

−1

−1

≥
m∑
j=1

Φ
(
A
−pj
j

)−1
≥

m∑
j=1

Φ (Aj)
pj .

Replacing A by A−1 in Theorem 2.3 (a), we have Φ(A−1)−1 ≺w log A. Hence, by setting A =
∑m
j=1A

pj ,

m∑
j=1

Φ (Aj)
pj ≤ Φ


 m∑
j=1

A
pj
j

−1

−1

≺w log

m∑
j=1

Apj .

In addition, by similar argument and Theorem 2.3 (b), one can obtain the second weak log-majorization.
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One may ask if the assumptions on unital or trace-preserving in Theorem 2.5 can be dropped. However,

for trace-preserving completely positive maps Φ : Mn →Mn, Φ(A) fails to be invertible in general for some

positive definite A. On the other hand, the following example shows that Theorem 2.5 fails to hold if we

remove the trace-preserving assumption.

Example 2.6. Let A =

[
1 0

0 2

]
and Φ : M2 →M2 be defined by

Φ(X) =

([
1 0

0 0

]
X

[
1 0

0 0

]
+

[
0 0

1 0

]
X

[
0 1

0 0

])
.

One can see from (1.1) that Φ is a completely positive map and Φ(I2) = I2. However

Φ(A)−1 = I2 6≺w log

[
1 0

0 1/2

]
= A−1.

Similarly, I + Φ(A)−1 6≺w log I +A−1.

Moreover, if one considers unital trace-preserving positive maps, Theorem 2.3 fails to hold in general.

Example 2.7. Let A =

[
1 i

−i 2

]
and Φ : M2 →M2 be defined by Φ(X) = (X + Xt)/2. Clearly, Φ is

a unital trace-preserving positive map. Direct computation shows that Φ(A)−1 has eigenvalues 1/2, 1 and

A−1 has eigenvalues 0.3820, 2.6180. Hence, Φ(A)−1 6≺w log A
−1 and I + Φ(A)−1 6≺w log I +A−1.

By combining Proposition 2.2 and Proposition 2.4, we have the following weak majorization for the case

pj ∈ [−1, 0] ∪ [1, 2], j = 1, . . . ,m.

Theorem 2.8. Let A1, . . . , Am ∈ P+
n and let Φ : Mn → Mn be a unital trace preserving completely

positive map. Then, for pj ∈ [−1, 0] ∪ [1, 2], j = 1, . . . ,m,

m∑
j=1

Φ(Aj)
pj ≺w

m∑
j=1

A
pj
j .

Proof. By Proposition 2.2, we have

Φ

 m∑
j=1

A
pj
j

 ≺ m∑
j=1

A
pj
j .

Moreover, by Proposition 2.4, Φ (Aj)
pj ≤ Φ

(
A
pj
j

)
, j = 1, . . . ,m. Hence,

n∑
j=1

Φ (Aj)
pj ≤

n∑
j=1

Φ
(
A
pj
j

)
= Φ

 n∑
j=1

A
pj
j

 .

Then the result follows.

Note that weak log-majorization implies weak majorization. Hence, if pj ∈ [−1, 0] for all j = 1, . . . ,m,

then Theorem 2.8 follows from Theorem 2.5. However, the following example shows that Theorem 2.8 fails

to hold if one replaces the weak majorization by weak log-majorization. It also shows that Theorem 2.5 fails

to hold for pj > 0, j = 1, . . . ,m.
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Example 2.9. Let A =

[
3/2 0

0 1/2

]
and Φ : M2 →M2 be defined by

Φ(X) =
1

4

([
1 1

1 −1

]
X

[
1 1

1 −1

]
+

[
1 −1

1 1

]
X

[
1 1

−1 1

])
.

One can see from (1.1) that Φ is a completely positive map. Moreover, it is clear that Φ is unital and trace

preserving. Note that Φ(A) = I2. For every p > 0, we have 1 >
(
3
2

)p · ( 12)p. Hence, Φ(A)p 6≺w log A
p.

A well-known subclass of unital trace preserving completely positive maps is called mixed unitary, i.e.,

Φ : Mn →Mn,

Φ(X) =

r∑
j=1

tjU
∗
jXUj ,

where U1, . . . , Ur are unitary matrices and t1, . . . , tr are nonnegative numbers summing up to 1. They are

also known as randomized unitary channels in quantum information.

For any X ∈Mn, write

X =


X11 X12 · · · X1r

X21 X22 · · · X2r

...
...

. . .
...

Xr1 Xr2 · · · Xrr

 ,
where Xjj ∈Mnj

, n1 + · · ·+ nr = n. Let w = e2πi/r and V = In1
⊕ wIn2

⊕ · · · ⊕ wr−1Inr
. Then

Φ(X) =
1

r

r−1∑
j=0

V ∗jAV j = X11 ⊕X22 ⊕ · · · ⊕Xrr,(2.3)

is mixed unitary. Therefore, the following results are direct consequences of Theorem 2.5.

Corollary 2.10. Let Aj = (A
(j)
pq )r×r ∈ P+

n , where A
(j)
pp ∈Mnp

, pj ∈ [−1, 0], j = 1, . . . ,m. Then

m∑
j=1

(
A

(j)
11

)pj
⊕ · · · ⊕

m∑
j=1

(
A(j)
rr

)pj
≺w log

m∑
j=1

A
pj
j ,

and

I +

m∑
j=1

(
A

(j)
11

)pj
⊕ · · · ⊕

m∑
j=1

(
A(j)
rr

)pj
≺w log I +

m∑
j=1

A
pj
j .

Proof. Let Φ : Mn → Mn be defined as (2.3). Then the result follows by direct application of Theo-

rem 2.5.

By setting pj = −1 for j = 1, . . . ,m in Corollary 2.10, we have the following corollary which provides

an affirmative answer to Question 3.8 in [24].

Corollary 2.11. Let Aj = (A
(j)
pq )r×r ∈ P+

n , where A
(j)
pp ∈Mnp

, j = 1, . . . ,m. Then

m∑
j=1

(
A

(j)
11

)−1
⊕ · · · ⊕

m∑
j=1

(
A(j)
rr

)−1
≺w log

m∑
j=1

A−1j .
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By setting pj = −1 for j = 1, . . . ,m in Theorem 2.8, we have the following result which is first given in

[24, Theorem 3.7].

Corollary 2.12. Let Aj = (A
(j)
pq )r×r ∈ P+

n , where A
(j)
pp ∈Mnp

, pj ∈ [−1, 0]∪ [1, 2], j = 1, . . . ,m. Then

m∑
j=1

(
A

(j)
11

)pj
⊕ · · · ⊕

m∑
j=1

(
A(j)
rr

)pj
≺w

m∑
j=1

A
pj
j .

Proof. It follows from Theorem 2.8.

3. Determinantal inequalities. Weak log-majorization is a powerful tool to study determinantal

inequalities of positive definite matrices. In this section, we will obtain some determinantal inequalities on

unital trace-preserving completely positive maps. We start by a result of Olkin [20]. A correlation matrix is

a positive semidefinite matrix and all its diagonal entries equal to one. It is known that if X is a correlation

matrix, then the map ΦX : Mn → Mn where A 7→ A ◦X is completely positive. Here, A ◦X denotes the

Schur product of A and X. It is straightforward to see that ΦX is unital and trace preserving. The following

is a quick consequence of Theorem 2.3 on ΦX .

Proposition 3.1. Let X be a correlation matrix and A ∈ Pn. Then det(X ◦A) ≥ detA.

Proof. By Theorem 2.3 (a), (X ◦ A)−1 ≺w log A
−1. Hence, det(X ◦ A)−1 ≤ detA−1. The result then

follows.

Let X = (xij)n×n ∈ Mn be the correlation matrix, where xii = 1 for all i, and xij = 1
n(n−1) , for all

i 6= j. For any correlation matrix R ∈ Mn, Olkin [20] studied the average correlation matrix of R defined

as R̃ = X ◦R. By Proposition 3.1, we rediscover the following result of Olkin. Note that the proof of Olkin

makes use of permutation matrices and the fact that λ(A+B) ≺ λ(A) + λ(B) for Hermitian matrices A,B.

Corollary 3.2. Let R ∈ Pn be a correlation matrix and R̃ be the average correlation matrix of R.

Then det R̃ ≥ detR.

The following result is a consequence from the weak log-majorization obtained in the previous section.

Theorem 3.3. Let A1, . . . , Am ∈ P+
n and let Φ : Mn → Mn be a unital trace preserving completely

positive map. Then

det

 m∑
j=1

Φ(Aj)
pj

 ≥ det

 m∑
j=1

Apj

 for p1, . . . , pm ∈ [0, 1]

and

det

 m∑
j=1

Φ(Aj)
pj

 ≤ det

 m∑
j=1

Apj

 for p1, . . . , pm ∈ [−1, 0].

Proof. Let pj ∈ [0, 1], j = 1, . . . ,m. Theorem 2.3 (a) implies that detA ≤ det Φ(A). By Proposition 2.4,

we have

det

 m∑
j=1

Apj

 ≤ det

Φ

 m∑
j=1

A
pj
j

 = det

 m∑
j=1

Φ
(
A
pj
j

) ≤ det

 m∑
j=1

Φ (Aj)
pj

 .

The second inequality follows from Theorem 2.5.
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By standard continuity argument, one sees that the first inequality of Theorem 3.3 holds for A1, . . . , Am ∈
Pn.

In the following, we consider a class of completely positive maps called conditional expectation. It is

introduced by Umegaki [25] in the context of von Neumann algebra. Here we focus on the algebra of n× n
complex matrices Mn and a subalgebra N of Mn.

Definition 3.4. A map Φ : Mn → N ⊆Mn is called a conditional expectation if

(i) Φ is linear, positive, and unital, and

(ii) Φ(XY Z) = XΦ(Y )Z for any X,Z ∈ N and Y ∈Mn.

Note that every conditional expectation is a unital completely positive map; see [17]. Moreover, Φ(X) =

X for all X ∈ N. We can improve the preceding results for trace preserving conditional expectation

Φ : Mn → N as follows.

Theorem 3.5. Suppose Φ : Mn → N(⊆ Mn) is a trace preserving conditional expectation. Let

A1, . . . , Am ∈ P+
n and D1, . . . , Dm ∈ N. Then

det

 m∑
j=1

DiΦ(Aj)
pjD∗i

 ≥ det

 m∑
j=1

DiA
pjD∗i

 for p1, . . . , pm ∈ [0, 1]

and

det

 m∑
j=1

DiΦ(Aj)
pjD∗i

 ≤ det

 m∑
j=1

DiA
pjD∗i

 for p1, . . . , pm ∈ [−1, 0].

Proof. Note that any positive map is ∗-preserving, i.e., Φ(T ∗) = Φ(T )∗; see [4, Lemma 2.3.1]. Therefore,

if D ∈ N, then Φ(D∗) = Φ(D)∗ = D∗ which implies that D∗ ∈ N.

For pj ∈ [0, 1], j = 1, . . . ,m, by Theorem 2.3 (a) and Proposition 2.4, we have

det

 m∑
j=1

DiA
pjD∗i

 ≤ det

Φ

 m∑
j=1

DiA
pj
j D

∗
i

 = det

 m∑
j=1

DiΦ
(
A
pj
j

)
D∗i

 ≤ det

 m∑
j=1

DiΦ (Aj)
pj D∗i

 .

The second inequality can be shown similarly.

Note that the first inequality of Theorem 3.5 holds for A1, . . . , Am ∈ Pn.

Theorem 3.6. Suppose Φ : Mn → N(⊆Mn) is a trace preserving conditional expectation. Let A ∈ P+
n

and D ∈ N. Then
det(Φ(A) +DD∗)

det(Φ(A))
≤ det(A+DD∗)

detA
.

Proof. We first assume that D is invertible. As D ∈ N,

I = Φ(I) = Φ(DD−1) = DΦ(D−1).

Hence, D−1 = Φ(D−1), that is, D−1 ∈ N. Note that

det(Φ(A) +DD∗)

det(Φ(A))
= det(I +D∗Φ(A)−1D) = det(I + Φ(D−1A(D∗)−1)−1)
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and

det(A+DD∗)

detA
= det(I +D∗A−1D) = det(I + (D−1A(D∗)−1)−1).

The result follows by Theorem 2.3 (b). If D is not invertible, then we may consider D + εI, where ε > 0.

Clearly, we have D + εI ∈ N which is always invertible for small ε. The result follows by a continuity

argument.

Now consider the mixed unitary Φ defined in (2.3). Moreover, let N = Mn1
⊕Mn2

⊕ · · · ⊕Mnr
. Then

Φ : Mn → N is a trace preserving conditional expectation. We have the following.

Corollary 3.7. Let Aj = (A
(j)
pq )r×r ∈ P+

n , where A
(j)
pp ∈ Mnp , j = 1, . . . ,m. Suppose Dj ∈ Mn1 ⊕

Mn2
⊕ · · · ⊕Mnr

, j = 1, . . . ,m. Then

det

 m∑
j=1

Di

(
A

(j)
11 ⊕ · · · ⊕A(j)

rr

)pj
D∗i

 ≥ det

 m∑
j=1

DiA
pjD∗i

 for p1, . . . , pm ∈ [0, 1]

and

det

 m∑
j=1

Di

(
A

(j)
11 ⊕ · · · ⊕A(j)

rr

)pj
D∗i

 ≤ det

 m∑
j=1

DiA
pjD∗i

 for p1, . . . , pm ∈ [−1, 0].

Proof. It follows from Theorem 3.5.

Note that the first inequality of Theorem 3.7 holds if A1, . . . , Am ∈ Pn. Corollary 3.7 is given in

[5, Theorem 1.1 and Theorem 1.2] as a generalization of Fischer’s inequality which is a particular case of

Corollary 3.7 with m = 1, p1 = 1 and D = I.

Corollary 3.8. Let A = (Apq)r×r, C = diag(C1, . . . , Cr) ∈ P+
n , where App, Cp ∈ Mnp , p = 1, . . . , r.

Then
det(A+D)

detA
≤ det(A11 + C1)

detA11
· · · det(Arr + Cr)

detArr
.

Proof. The result follows by Theorem 3.6 by setting D = C1/2 ∈ N.

Corollary 3.8 is given in [14, Theorem 1.1]; see also [18].

4. Final remarks. LetA,B ∈Mn and σ(A), σ(B) be the set of singular values ofA andB, respectively.

It is well-known that σ(A) ≺w σ(B) if and only if ‖A‖ ≤ ‖B‖ for all unitarily invariant matrix-vector norm

‖ · ‖ on Mn, see [27, Theorem 10.38]. We end with the following result.

Theorem 4.1. Let A1, . . . , Am ∈ P+
n and let Φ : Mn → Mn be a unital trace preserving completely

positive map. Then for all unitarily invariant matrix-vector norms ‖ · ‖ on Mn and p1, . . . , pm ∈ [−1, 0],∥∥∥∥∥∥
m∑
j=1

Φ(Aj)
pj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
m∑
j=1

Apj

∥∥∥∥∥∥
and ∥∥∥∥∥∥I +

m∑
j=1

Φ(Aj)
pj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥I +

m∑
j=1

Apj

∥∥∥∥∥∥ .
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Proof. The result follows by the fact that weak log-majorization implies weak majorization and Theo-

rem 2.5.
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