
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society 
Volume 35, pp. 533-542, November 2019. ela

GENERALIZED COMMUTING MAPS ON THE SET OF SINGULAR MATRICES∗

WILLIAN FRANCA† AND NELSON LOUZA†

Abstract. Let Mn(K) be the ring of all n × n matrices over a field K. In the present paper, additive mappings G :

Mn(K) → Mn(K) such that [[G(y), y], y] = 0 for all singular matrix y will be characterized. Precisely, it will be proved that

G(x) = λx + µ(x) for all x ∈ Mn(K), where λ ∈ K and µ is a central map. As an application, the description is given of

all additive maps g : Mn(K) → Mn(K) such that
m∑

k1,k2,k3=1

[[g(yk1 ), yk2 ], yk3 ] = 0 for all singular matrices y ∈ Mn(K), where

m ∈ N∗.
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1. Introduction. Let R be a ring with center Z. A mapping T : R → R is called centralizing (resp.,

commuting) on a subset H of R if [T (h), h] = T (h)h− hT (h) ∈ Z (resp., [T (h), h] = 0) for all h ∈ H. In [2],

Brešar proved, in the case that R is a prime ring, that every additive map f which is centralizing on R has

the following standard form:

(1.1) f(r) = λr + µ(r) for all r ∈ R,

where λ lies in the extended centroid C of R and µ is an additive map from R into C.

In [1], Brešar showed that if G is an additive map of a prime ring R of characteristic not 2 such that

[[G(r), r], r] = 0 for all r ∈ R, then G is commuting on R, that is, G has the form (1.1).

The first results on commuting mappings on subsets of matrices that are not closed under addition have

appeared in the papers [3, 4]. Basically, it was proved that if the characteristic of a field is zero or strictly

greater than 3, then the only possible additive maps which are either commuting on the set of invertible

matrices (resp., singular matrices) or commuting on Rk = {matrices that have rank k} (for k > 1) are the

standard ones.

The case k = 1 is exceptional. In 2013, the first author [4] provided an example of an additive map

which is commuting on R1 that does not have the standard form (1.1). Later, in 2016, Franca [9] found

the description of all additive maps which are commuting on R1. Recently, in [8], we have shown that if

we replace K with a noncommutative division ring D, then an additive map G : Mn(D) → Mn(D) that is

commuting on the set of rank-1 matrices has the standard form (1.1).

To see more results related to functional identities on some subsets which are not closed under addition,

we recommend the papers [5, 6, 7, 10, 11].
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2. The main result. Throughout this work Mn(K) will denote the ring of all n×n matrices over a field

K whose characteristic is either zero or greater than 2. We set Ω = {1, . . . , n}. For index sets Ω1,Ω2 ⊂ Ω,

we denote by A[Ω1,Ω2] the (sub)matrix of entries that lie in the rows of A indexed by Ω1 and the columns

of A indexed by Ω2. Furthermore, we represent by Ω1 the complement of Ω1 in Ω.

For each r, s ∈ Ω, we write ars to represent the (r, s)-entry of a matrix A ∈ Mn(K), where A =
n∑

r,s=1

arsErs. In this section, we fix an additive map G : Mn(K)→Mn(K). Since G(αEpq) ∈Mn(K) for each

p, q ∈ Ω, and α ∈ K, we can write G(αEpq) =

n∑
r,s=1

arsErs, where ars = G(αEpq)rs.

Now, we will state our first result:

Proposition 2.1. Let n ∈ N (n ≥ 2) and G : Mn(K) → Mn(K) be an additive map. Consider the

following elements:

(a) N = βEij;

(b) N = αEii + θEjj + βEij + γEξξ;

(c) N = βEij + αEjξ;

(d) N = Eij + Ejξ + Eξi.

Assume that [[G(N), N ], N ] = 0 for all i, j, ξ ∈ Ω, and for all α, β, θ, γ ∈ K. Then G has the form (1.1).

The proof of the Proposition 2.1 will be divided in a series of technical lemmas in order to make it more

transparent. From now on, let G be a mapping as in Proposition 2.1.

Before starting the proofs, we will make a short and relevant observation:

Remark 2.2. Notice that [[G(N), N ], N ] = 0 is equivalent to [G(N), N ] is in the centralizer of N .

Lemma 2.3. G(βEii) is diagonal for each i ∈ Ω and β ∈ K.

Proof. This is clear for β = 0. Let us assume β 6= 0. Take N = βEii (N has the form (a) for i = j).

Remember that each matrix M in the centralizer of N has M [{i}, i] = 0 and M [i, {i}] = 0. Take r, t ∈ Ω,

and s ∈ {i}. Recall that [G(N), N ] belongs to the centralizer of N , that is, [G(N), N ] = ξiiEii +

n∑
k,l=1
k,l 6=i

ξklEkl.

So,

ErsG(N)Eit = Ers[G(N)Eii − EiiG(N)]Eit = Ers[G(N), N ]Eit

= Ers

ξiiEii +

n∑
k,l=1
k,l 6=i

ξklEkl

Eit =

 n∑
l=1
l 6=i

ξslErl

Eit = 0.

Hence,

ErsG(N)Eit = 0.
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Therefore,

G(βEii)[{i}, {i}] = 0 for all i ∈ Ω.

By a similar argument, we see that

G(βEii)[{i}, {i}] = 0 for all i ∈ Ω.

Next, take j ∈ {i} and consider N1 = βEii + βEjj (N1 has the form (b)). Remember that each matrix

M in the centralizer of N1 has M [{i, j}, {i, j}] = 0 and M [{i, j}, {i, j}] = 0. Since, [G(N1), N1] lies in the

centralizer of N1, we have

G(βEii + βEjj)jk = 0 for all k ∈ {i, j}.

Using that the off diagonal entries of G(βEjj) in the j-th row (resp., j-th column) are zero, and that

G is additive, we conclude that the (j, k) entry of G(βEii) is equal to zero whenever k ∈ {i, j}. Combined

with the above, and allowing j vary over {i}, we conclude that G(βEii) is a diagonal matrix.

Lemma 2.4. Let i ∈ Ω and j ∈ {i}. Then, G(βEij) is the sum of a diagonal matrix and a multiple of

Eij.

Proof. This is clear if β = 0. Let us take α ∈ K \ {0, β}. Set N = αEii + αEjj + βEij (using (b)). It

can be derived directly from the equation [[G(βEij), βEij ], βEij ] = 0 that G(βEij)ji = 0. So, if n = 2 we

have established the claim. Otherwise, take s, t ∈ {i, j}. Remember that each matrix M in the centralizer

of N has M [{i, j}, {i, j}] = 0, M [{i, j}, {i, j}] = 0, Mji = 0 and Mii = Mjj .

So,

[G(N), N ] = aijEij +

n∑
k=1

akkEkk +
∑

k,l∈{i,j}

aklEkl.(2.2)

On the other hand, taking into account that G(αEii) and G(αEjj) are diagonal, we have

[G(N), N ] = [G(αEii), βEij ] + [G(αEjj), βEij ] + [G(βEij), αEii] + [G(βEij), αEjj ]

+ [G(βEij), βEij ]

= εEij + [G(βEij), αEii] + [G(βEij), αEjj ] + [G(βEij), βEij ],

for some ε ∈ K. After multiplying [G(N), N ] by Eit on the left, we arrive at

Eit[G(N), N ] = α (EitG(βEij)Eii) + α (EitG(βEij)Ejj) + β (EitG(βEij)Eij)

= α (G(βEij)tiEii +G(βEij)tjEij) + βG(βEij)tiEij

= Eit[G(N), N ]
(2.2)
= attEit +

∑
l∈{i,j}

atlEil.

Then, after comparing the two last lines in the above equality, we conclude that

G(βEij)ti = G(βEij)tj = 0 for all t ∈ {i, j}.
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On the other hand, after multiplying [G(N), N ] by Esi on the right and proceeeding similarly as we did

before, we see that

[G(N), N ]Esi = −α(EiiG(βEij)Esi + EjjG(βEij)Esi)− β(EijG(βEij)Esi)

= −α(G(βEij)isEii +G(βEij)jsEji)− βG(βEij)jsEii

(2.2)
= assEsi +

∑
k∈{i,j}

aksEki.

So,

G(βEij)is = G(βEij)js = 0 for all s ∈ {i, j}.

Therefore,

G(βEij)[{i, j}, {i, j}] = 0, G(βEij)[{i, j}, {i, j}] = 0, and G(βEij)ji = 0.(2.3)

Now, take ξ ∈ {i, j}, γ ∈ K \ {α, 0} and consider N1 = αEii + αEjj + βEij + +γEξξ. The additivity

of G combined with (2.3) and the previous lemma allow us to conclude that G(N1)[{i, j}, {i, j}] = 0,

G(N1)[{i, j}, {i, j}] = 0, and G(N1)ji = 0. In particular, G(N1)i,ξ = G(N1)j,ξ = G(N1)ξ,i = G(N1)ξ,j = 0.

Now, we will show that G(N1)kξ = G(N1)ξl = 0 for all k, l ∈ {i, j, ξ}. Indeed, note that G(N1) can be

written as the following:

G(N1) =

n∑
k=1

akkEkk + aijEij +
∑

k,l∈{i,j}

aklEkl.

Then,

[G(N1), N1] = [G(N1), αEii] + [G(N1), αEjj ] + [G(N1), βEij ] + [G(N1), γEξξ]

= [aijEij , αEii] + [aijEij , αEjj ] +
n∑
k=1

[akkEkk, βEij ]

+
∑

k,l∈{i,j}

[aklEkl, γEξξ]

= −αaijEij + αaijEij + β(aii − ajj)Eij +
∑

k,l∈{i,j}

[aklEkl, γEξξ]

= β(aii − ajj)Eij + γ

 ∑
k∈{i,j}

akξEkξ −
∑

l∈{i,j}

aξlEξl

 .

Remember that [G(N1), N1]
[
{ξ}, {ξ}

]
= 0 and [G(N1), N1]

[
{ξ}, {ξ}

]
= 0, since [G(N1), N1] belongs to

the centralizer of N1. Then, G(N1)kξ = G(N1)ξl = 0 for all k, l ∈ {i, j, ξ}.

Hence, all off-diagonal entries in row or column ξ of G(N1) are equal to zero. As G(αEii), G(αEjj)

and G(γEξξ) are diagonal and G is additive, we conclude that all off-diagonal entries in row or column ξ of

G(βEij) are zero. Now, letting ξ vary over {i, j} the claim is established.
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Lemma 2.5. Let i ∈ Ω and j ∈ {i}. Then, there is a field element λij not depending on β such that

G(βEij) is the sum of a scalar matrix and λijβEij. Besides λij = λji.

Proof. Let α, β ∈ K∗ and consider N = βEij + αEji (using (c) with ξ = i). By the additivity of G and

the previous lemma, we conclude that

G(N) = G(βEij) +G(αEji) =

n∑
k=1

akkEkk + aijEij + ajiEji.

So,

[G(N), N ] = [G(N), βEij ] + [G(N), αEji]

=

n∑
k=1

[akkEkk, βEij ] + [aijEij , βEij ] + [ajiEji, βEij ] +

n∑
k=1

[akkEkk, αEji]

+ [aijEij , αEji] + [ajiEji, αEji]

= β(aii − ajj)Eij + ajiβ(Ejj − Eii) + α(ajj − aii)Eji + αaij(Eii − Ejj).

Therefore,

0 = [[G(N), N ], βEij + αEji] = [[G(N), N ], βEij ] + [[G(N), N ], αEji]

= β{ajiβ(−2Eij) + α(ajj − aii)(Ejj − Eii) + αaij(2Eij)}
+ α{β(aii − ajj)(Eii − Ejj) + ajiβ(2Eji) + αaij(−2Eji)}.

So,

2β(−ajiβ + αaij)Eij = 0,

and

2βα(ajj − aii)Ejj = 0.

Thus, αG(N)ij = βG(N)ji and G(N)ii = G(N)jj for all α, β ∈ K∗, where N = = βEij + αEji. Once

again, using the previous lemma and the additivity of G, we see

αG(βEij)ij = βG(αEji)ji for all α, β ∈ K∗,(2.4)

and

G(βEij)ii +G(αEji)ii = G(βEij)jj +G(αEji)jj for all α, β ∈ K∗.(2.5)

Fix α ∈ K∗ and let β vary over K∗ in (2.4). Then,

G(βEij)ij
β

=
G(αEji)ji

α
= λij , for all β ∈ K∗, where λij ∈ K.

Hence, G(βEij)ij = βλij ∀ β ∈ K∗. Similarly, we conclude that G(αEjj)ji = αλji for all α ∈ K∗. Besides,

λij = λji (note that these equalities hold for α = 0 and β = 0).
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From (2.5), we obtain that G(βEij)ii − G(βEij)jj = G(αEji)jj − G(αEji)ii for all α, β ∈ K∗. Fixing

α ∈ K∗, and letting β vary over K∗, we see that

G(βEij)ii −G(βEij)jj = v, for all β ∈ K∗, where v ∈ K.

Take β1, β2 ∈ K∗ such that β1 + β2 ∈ K∗. Note

v = G((β1 + β2)Eij)ii −G(β1 + β2)Eij)jj

= G(β1Eij)ii +G(β2Eij)ii −G(β1Eij)jj −G(β2Eij)jj

= v + v = 2v.

Thus,

G(βEij)ii = G(βEij)jj for all β ∈ K∗.(2.6)

Now, we will show that all diagonal entries of G(βEij) are equal. Indeed, consider N1 = βEij + αEjξ,

where ξ ∈ {i, j}. By the previous lemma and the first part of this proof, we can infer that G(N1) =
n∑
k=1

akkEkk + λijβEij + λjξαEjξ, where λij (resp., λjξ) does not depend on β (resp., α). Observe that

[G(N1), N1] = [G(N1), βEij ] + [G(N1), αEjξ]

=

n∑
k=1

[akkEkk, βEij ] + [λijβEij , βEij ] + [λjξαEjξ, βEij ]

+

n∑
k=1

[akkEkk, αEjξ] + [λijβEij , αEjξ] + [λjξαEjξ, αEjξ]

= β(aii − ajj)Eij + α(ajj − aξξ)Ejξ + αβ(λij − λjξ)Eiξ.

So,

0 = [[G(N1), N1], N1] = [β(aii − ajj)Eij + α(ajj − aξξ)Ejξ + αβ(λij − λjξ)Eiξ, N1]

= α(ajj − aξξ)[Ejξ, βEij ] + λβ(λij − λjξ)[Eiξ, βEij ] + β(aii − ajj)[Eij , αEjξ]
+ αβ(λij − λjξ)[Eiξ, αEjξ]

= α(aξξ − ajj)βEiξ + β(aii − ajj)αEiξ.

Thus, (aii − ajj) = (ajj − aξξ). Hence, G(N1)ii − G(N1)jj = G(N1)jj − G(N1)ξξ. This last equality

yields

(G(βEij)ii +G(αEjξ)ii)− (G(βEij)jj +G(αEjξ)jj)

= (G(βEij)jj +G(αEjξ)jj)− (G(βEij)ξξ +G(αEjξ)ξξ) .

Employing equation (2.6) (twice), we can deduce that G(αEjξ)ii−G(αEjξ)jj = G(βEij)jj −G(βEij)ξξ
for all α, β ∈ K∗. Repeating an earlier argument, we see that G(βEij)jj −G(βEij)ξξ = 0 for all ξ ∈ {i, j}.
Then,

G(βEij)ii
(2.6)
= G(βEij)jj = G(βEij)ξξ for all ξ ∈ {i, j}.

Hence, all diagonal entries of G(βEij) are equal.
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Lemma 2.6. Let i ∈ Ω and j ∈ {i}. Then, λij = λ, that is, λij does not depend on i and j. In particular,

G(βEij)− λβEij is a scalar matrix, where λ ∈ K.

Proof. Consider N = Eij + Ejξ + Eξi, where ξ ∈ {i, j} (using (d)). Then, G(N) = = cI + λijEij +

λjξEjξ + λξiEξi for some c ∈ K. Observe

[G(N), N ] = [G(N), Eij + Ejξ + Eξi] = λij([Eij , Ejξ] + [Eij , Eξi]) + λjξ([Ejξ, Eij ]

+ [Ejξ, Eξi]) + λξi([Eξi, Eij ] + [Eξi, Ejξ])

= λij(Eiξ − Eξj) + λjξ(−Eiξ + Eji) + λξi(Eξj − Eji)
= (λij − λjξ)Eiξ + (λξi − λij)Eξj + (λjξ − λξi)Eji.

So,

0 = [[G(N), N ], N ] = [[G(N), N ], Eij + Ejξ + Eξi]

= (λij − λjξ) ([Eiξ, Eij ] + [Eiξ, Ejξ] + [Eiξ, Eξi]) + (λξi − λij)([Eξj , Eij ]
+ [Eξj , Ejξ] + [Eξj , Eξi]) + (λjξ − λξi) ([Eji, Eij ] + [Eji, Ejξ] + [Eji, Eξi]) .

Therefore,

0 = ((λij − λjξ)− (λjξ − λξi))Eii + ((λjξ − λξi)− (λξi − λij))Ejj
+ ((λξi − λij)− (λij − λjξ))Eξξ.

Thus, we arrive in the following system
λij − 2λjξ + λξi = 0

λij + λjξ − 2λξi = 0

−2λij + λjξ + λξi = 0

.

Let A be the matrix formed by the coefficients of the above matrix, that is,

A =

 1 −2 1

1 1 −2

−2 1 1

 .

Note that after some elementary row operations, the matrix A is equivalent to the following matrix:

B =

 1 −2 1

0 1 −1

0 0 0

 .

Then, the solutions are λij = λjξ = λξi for all distinct i, j, and ξ. This implies that λij is independent

of i and j, since λij = λji (using λji = λξj = λiξ). In particular, G(βEij)− λβEij is a scalar matrix.

Lemma 2.7. Let i ∈ Ω. Then, G(αEii)− (λα)Eii is a scalar matrix, where λ ∈ K is in accordance with

Lemma 2.6.
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Proof. Let j ∈ {i}. Consider N = αEii + γEjj + βEij (using (b)), where α, β and γ ∈ K∗ with α 6= γ.

Using the previous lemmas, we know that G(N) =

n∑
k=1

akkEkk+ +λβEij . So,

[G(N), N ] = α[G(N), Eii] + γ[G(N), Ejj ] + β[G(N), Eij ]

= αλβ[Eij , Eii] + γλβ[Eij , Ejj ] + β ·
n∑
k=1

akk[Ekk, Eij ]

= −αλβEij + γλβEij + β(aii − ajj)Eij = ρEij .

Then,

[[G(N), N ], N ] = ρ[Eij , N ] = ρ(α[Eij , Eii] + γ[Eij , Ejj ])

= ρ(−αEij + γEij) = ρ(γ − α)Eij = 0.

Thus, ρ(γ − α) = 0. So, ρ = β(−αλ+ γλ+ (aii − ajj)) = 0, because α 6= γ. Furthermore, since β ∈ K∗,
we see that aii + γλ = ajj + αλ.

Therefore,

G(N)ii + γλ = G(N)jj + αλ.

Let us recall that G is additive, N = αEii + γEjj + βEij , and G(βEij)ii = G(βEii)jj (by Lemma 2.6).

Hence,

G(αEii)ii +G(γEjj)ii + γλ = G(αEii)jj +G(γEjj)jj + αλ.

Then,

G(αEii)ii −G(αEii)jj − λα = G(γEjj)jj −G(γEjj)ii − γλ.

Observe that the left (resp., right) hand side of the above equation only depends on α (resp., γ). Letting

γ vary on K∗, we see H(α) = G(αEii)ii − G(αEii)jj − αλ = v, where v ∈ K. Therefore, G(αEii)ii −
G(αEii)jj − λα = 0, since H(α) is additive. So, G(αEii)ii − λα = G(αEii)jj for all α ∈ K∗ and j ∈ {i}.
And this allows us to conclude that G(αEii)jj = G(αEii)ξξ for all j, ξ ∈ {i} and α ∈ K∗. Therefore,

G(αEii)− (λα)Eii is a scalar matrix. And this completes Proposition’s 1.1 proof.

Now, we are in a position to prove our main result:

Theorem 2.8. Let K be a field whose characteristic is either zero or greater than 2, and n ≥ 4. Let

G : Mn(K)→Mn(K) be an additive map such that

[[G(y), y], y] = 0 for all singular y ∈Mn(K).

Then, there exist an element λ ∈ K and a central map µ such that

G(x) = λx+ µ(x) for each x ∈Mn(K).

Proof. The result follows immediately from Proposition 1.1, because if N has one of the froms (a), (b), (c)

or (d) then N is singular for all n ≥ 4.
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As an application, we have:

Corollary 2.9. Let m,n ∈ N∗, where n ≥ 4. Let G : Mn(K) → Mn(K) be an additive map. Let us

suppose that

(2.7)

m∑
k1,k2,k3=1

[[G(yk1), yk2 ], yk3 ] = 0

for all singular matrices y ∈ Mn(K). If the characteristic of K is either zero or greater than 3m − 2 then

G(x) = λx+ µ(x) for each x ∈Mn(K), where λ ∈ K and µ is a central map.

Proof. Let us denote by L the prime field of K. Let β ∈ L∗ and x ∈ Mn(K) be a singular matrix. It is

clear that βx is singular. Besides, note that G(βx) = βx, since G is additive. By (2.7), we have

m∑
k1,k2,k3=1

[[G(βk1xk1), βk2xk2 ], βk3xk3 ]

= β3[[G(x), x], x] +

m∑
k1,k2,k3=1
k1+k2+k3≥4

[[G(βk1xk1), βk2xk2 ], βk3xk3 ]

= β3[[G(x), x], x] + β4R4(x) + β5R5(x) + · · ·+ β3mR3m(x) = 0.

So,

[[G(x), x], x] +

3m∑
i=4

βi−3Ri(x) = 0 for all β ∈ L∗.

Since, | L |> 3m− 2, we can choose β1, β2, . . . , β3m−2 ∈ L∗ pairwise distinct. Hence,


1 β1 β2

1 · · · β
3(m−1)
1

1 β2 β2
2 · · · β

3(m−1)
2

...
...

...
...

1 β3m−2 β2
3m−2 · · · β

3(m−1)
3m−2




[[G(x), x], x]

R4(x)

R5(x)
...

R3m(x)

 =


0

0

0
...

0

 .

Therefore, from the above system, we can conclude that [[G(x), x], x] = 0 for all singular matrices

x ∈Mn(K). Now, the result follows from Theorem 2.8.
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