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DECOMPOSITION OF SYMPLECTIC MATRICES INTO PRODUCTS OF

SYMPLECTIC UNIPOTENT MATRICES OF INDEX 2∗
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Abstract. In this article, it is proved that every symplectic matrix can be decomposed into a product of three symplectic

unipotent matrices of index 2, i.e., every complex matrix A satisfying AT JA = J with J =

[
0 In

−In 0

]
is a product of three

matrices Bi satisfying BT
i JBi = J and (Bi − I)2 = 0 (i = 1, 2, 3).
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1. Introduction.

Decomposition of elements in a matrix group into products of matrices with a special nature (such as

unipotent matrices, involutions and so on) is a popular topic studied by many scholars. In the n× n matrix

ring Mn(F ) over a field F , a unipotent matrix of index k refers to a matrix A satisfying (A− In)k = 0. Fong

and Sourour in [4] proved that every matrix in the group SLn(C) (the special linear group over complex field

C) is a product of three unipotent matrices (without limitation on the index). Wang and Wu in [6] gave a

further result that every matrix in the group SLn(C) is a product of four unipotent matrices of index 2.

In particular, decompositions of symplectic matrices have drawn considerable attention from numerous

scholars (see [1, 3]). Set J =

[
0 In
−In 0

]
. A matrix A is called symplectic if it satisfies ATJA = J . Denote

by Sp2n(F ) the group consisting of all the 2n × 2n symplectic matrices over a field F . Some scholars have

focused on expressing an arbitrary symplectic matrix in Sp2n(F ) as a product of symplectic involutions or

symplectic unipotents. In [2], Cruz proved that every complex symplectic matrix of size greater than two is a

product of four symplectic involutions. In [7], You proved that every symplectic matrix over a commutative

ring satisfying the first stable range condition is a product of three symplectic unipotents. The contribution

of this article is that the index of unipotents may be taken to be 2. For the complex field C, we will prove that

every symplectic matrix in Sp2n(C) can be expressed as a product of three symplectic unipotent matrices of

index 2.

Our main result is the following theorem.

Theorem 1.1. Every complex symplectic matrix in Sp2n(C) can be decomposed into a product of three

symplectic unipotent matrices of index 2. Moreover, three is the smallest such number.
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2. Proof of the main result.

First, let us declare some notations frequently used in the proof. Denote by SU(k) the set of all matrices

that can be written as a product of k symplectic unipotent matrices of index 2. Denote diag(A,B) by A⊕B.

Set

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
,

where each Aij is a matrix of size m, and each Bij is a matrix of size n for i, j ∈ {1, 2}. Denote by A � B

the expanding sum of A and B, i.e., the following matrix:[
A11 ⊕B11 A12 ⊕B12

A21 ⊕B21 A22 ⊕B22

]
,

which is a matrix of size 2(m + n). We have (A � B) · (C � D) = (A · C) � (B · D). We can verify the

following remark.

Remark 2.1. Let A and B be two matrices of size m, and let C be a matrix of size n.

(a) If B is symplectically similar to A, then A ∈ SU(k) if and only if B ∈ SU(k).

(b) If A ∈ SU(k1) and C ∈ SU(k2), then A� C ∈ SU(l), where l = max{k1, k2}.

Denote by Jk(λ) the Jordan block of size k with eigenvalue λ. Abbreviate (P−1)T and (PT )−1 to P−T .

Denote by ε(k) the matrix Jk(1)

[
0k−1,k

u

]
0 Jk(1)−T

 ,
where u = [(−1)k+1, (−1)k, . . . , 1] is the last row vector of Jk(1)−T . Then ε(k) is similar to J2k(1).

Now let us present a canonical form of symplectic matrices under symplectic similarity, which is also

called the Symplectic Jordan Canonical Form of symplectic matrices (see [2, 3]). It is sufficient to prove

Theorem 1.1 for the Symplectic Jordan Canonical Form in the following lemma.

Lemma 2.2. (Cruz [2], Lemma 5) Each symplectic matrix is symplectically similar to the expanding sum

of matrices of the form Jk(λ)⊕ Jk(λ)−T (λ /∈ {0,±1}), J2k+1(λ)⊕ J2k+1(λ)−T (λ ∈ {±1}) and ±ε(k).

From Lemma 2.2, we need only prove the result for each matrix block in the Symplectic Jordan Canonical

Form to get the main result.

Let us introduce the following two lemmas first.

Lemma 2.3. (Horn and Merino [5], Theorem 20) Let P and Q be both symplectic. Then P and Q are

similar if and only if P and Q are symplectically similar.

Lemma 2.4. (Wang and Wu [6], Lemma 3.2) If T is an n× n invertible cyclic matrix (i.e., its minimal

polynomial equals its characteristic polynomial) and α1, . . . , αn are complex numbers satisfying α1 · · ·αn =

det(T ), then there exist matrices A and B such that T = AB, (A−In)2 = 0, and B is cyclic with eigenvalues

α1, . . . , αn.

Now let us begin with some examples of 2× 2 matrices.
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Lemma 2.5. A 2× 2 matrix is symplectic unipotent if and only if its determinant is 1 and its trace is 2

(i.e., its two eigenvalues are both 1).

Proof. Let A be a symplectic unipotent 2 × 2 matrix. We know that the polynomial p(x) = (x − 1)2

satisfies p(A) = 0. Therefore, the only eigenvalue of A is 1.

Conversely, if A has two eigenvalues 1, then A − I2 has two eigenvalues 0. Since the order of A is 2,

we can conclude that (A− I2)2 = 0, which shows that A is unipotent. That A is symplectic can be derived

from the fact that det(A) = 1.

Lemma 2.6. The matrix [
λ 0

0 λ−1

]
, λ 6= −1

is a product of two symplectic unipotent matrices of index 2.

Proof. Observe that [
2λ
1+λ −λ

(λ−1)2

λ(λ+1)2
2

1+λ

][
2λ
1+λ 1

− (λ−1)2

(λ+1)2
2

1+λ

]
=

[
λ 0

0 λ−1

]
and that both matrices on the left side are symplectic unipotent of index 2 by Lemma 2.5.

Lemma 2.7. The matrix [
−1 a

0 −1

]
, a 6= 0

is a product of two symplectic unipotent matrices of index 2.

Proof. Observe that [
1 0

− 4
a 1

] [
−1 a

− 4
a 3

]
=

[
−1 a

0 −1

]
and that both matrices on the left side are symplectic unipotent of index 2 by Lemma 2.5.

Lemma 2.8. The matrix −I2

(a) is a product of three symplectic unipotent matrices of index 2,

(b) is not a product of two symplectic unipotent matrices of index 2.

Proof. (a) Observe that [
1 a

0 1

] [
−1 a

0 −1

]
=

[
−1 0

0 −1

]
.

The first matrix on the left side is a symplectic unipotent matrix of index 2, while the second matrix is a

product of two by Lemma 2.7. Therefore, we have −I2 ∈ SU(3).

(b) Let A be a 2 × 2 matrix with its entries being aij(i, j ∈ {1, 2}). Supposing A ∈ SU(1), let us

determine the conditions that the entries aij satisfy.

According to Lemma 2.5, we only need to calculate the trace and determinant of A: a11 + a22 = 2,

a11a22 − a12a21 = 1. Therefore, a22 = 2− a11, a12a21 = a11a22 − 1 = −(a11 − 1)2.

If a12 = 0, A becomes a lower triangular matrix

(2.1) A =

[
1 0

a 1

]
.
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Otherwise, a12 6= 0, we set a11 = x, a12 = y, and then

(2.2) A =

[
x y

−(x−1)2

y 2− x

]
.

Matrices of the two forms (2.1) and (2.2) cover all the elements in SU(1). The matrix −I2 cannot be

written as any product of form (2.1), since the set of all the matrices of form (2.2) is isomorphic to the

additive group C. Next we will prove that −I2 cannot be written either as a product of one matrix of from

(2.1) and another of form (2.2), or as a product of two matrices of form (2.2).

Case (1): If

−I2 =

[
−1 0

0 −1

]
=

[
1 0

a 1

]
·

[
x y

−(x−1)2

y 2− x

]
,

then by comparing the (1,1)-entry, we get x = −1, by comparing the (2,1)-entry, we get y = −4/a, and by

comparing the (2,2)-entry, we get x = 5, a contradiction.

The proof of

−I2 6=

[
x y

−(x−1)2

y 2− x

]
·
[

1 0

a 1

]
for any a, x, y is similar.

Case (2): We will prove −I2 cannot be written as a product of two matrices of form (2.2). Set

B =

[
p q

−(p−1)2

q 2− p

]

and C = A ·B. Then, we have

C =

[
xp− y(p−1)2

q xq + y(2− p)
−p(x−1)2

y + (x−2)(p−1)2

q − q(x−1)2

y + (2− x)(2− p)

]
.

If we require c12 = c21 = 0, we can deduce that p = x, q = x−2
x y. Under this condition, we have c11 =

(c22)−1 = x
2−x , which can never equal −1.

Now we begin to deal with the Jordan blocks in the Symplectic Jordan Canonical Form.

Lemma 2.9. Jk(1)⊕ Jk(1)−T ∈ SU(2).

Proof. For each natural number k, we define two k × k matrices:

Rk = [ 1 1
0 1 ]⊕ [ 1 1

0 1 ]⊕ · · · ⊕ [ 1 1
0 1 ] , Sk = [1]⊕ [ 1 1

0 1 ]⊕ [ 1 1
0 1 ]⊕ · · · ⊕ [ 1 1

0 1 ]⊕ [1], if k is even,

Rk = [ 1 1
0 1 ]⊕ [ 1 1

0 1 ]⊕ · · · ⊕ [ 1 1
0 1 ]⊕ [1], Sk = [1]⊕ [ 1 1

0 1 ]⊕ [ 1 1
0 1 ]⊕ · · · ⊕ [ 1 1

0 1 ] , if k is odd.

One checks that (RS)⊕ (RS)−T = (R⊕R−T )(S⊕S−T ). It is similar to Jk(1)⊕Jk(1)−T by calculating

the rank of RS − I. Since R ⊕ R−T ∈ SU(1), S ⊕ S−T ∈ SU(1). According to Lemma 2.3, we have

Jk(1)⊕ Jk(1)−T ∈ SU(2).

Lemma 2.10. Jk(λ)⊕ Jk(λ)−T (λ 6= 0) is a product of three symplectic unipotent matrices of index 2.
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Proof. Case (1): If λk 6= −1, according to Lemma 2.4, we have the decomposition:

Jk(λ) = UB,

where B is similar to Jk−1(1)⊕ [λk]. Therefore,

Jk(λ)⊕ Jk(λ)−T = (U ⊕ U−T ) · (B ⊕B−T ),

where B ⊕B−T is symplectically similar to

(Jk−1(1)⊕ [λk])⊕ (Jk−1(1)−T ⊕ [λ−k]) =
(
(Jk−1(1)⊕ Jk−1(1)−T ) � ([λk]⊕ [λ−k])

)
.

According to Lemma 2.6, [λk] ⊕ [λ−k] belongs to SU(2). According to Lemma 2.9, Jk−1(1) ⊕ Jk−1(1)−T

belongs to SU(2). Thus, B⊕B−T ∈ SU(2) by Remark 2.1. Since U ⊕U−T is a symplectic unipotent matrix

of index 2 itself, Jk(λ)⊕ Jk(λ)−T can be decomposed into a product of three symplectic unipotent matrices

of index 2 in this case.

Case (2): If λk = −1, let a be an arbitrary complex number other than ±1. Using Lemma 2.4, we can

similarly conclude that:

Jk(λ)⊕ Jk(λ)−T = (U ⊕ U−T ) · (B ⊕B−T ),

where B ⊕B−T is symplectically similar to

(Jk−2(1)⊕ [a]⊕ [−a−1])⊕ (Jk−1(1)−T ⊕ [a−1]⊕ [−a])

=
(
(Jk−2(1)⊕ Jk−2(1)−T ) � ([a]⊕ [a−1]) � ([−a−1]⊕ [−a])

)
.

According to Lemma 2.6, [a]⊕ [a−1] and [−a−1]⊕ [−a] belong to SU(2). According to Lemma 2.9, Jk−2(1)⊕
Jk−2(1)−T ∈ SU(2). Thus, by Remark 2.1, B ⊕B−T ∈ SU(2). Therefore, Jk(λ)⊕ Jk(λ)−T ∈ SU(3).

By Lemma 2.10, we have the following corollary for the second kind of Jordan blocks of the Symplectic

Jordan Canonical Form in Lemma 2.2.

Corollary 2.11. J2k+1(λ)⊕J2k+1(λ)−T (λ ∈ {±1}) is a product of three symplectic unipotent matrices

of index 2.

Lemma 2.12. ε(k) is a product of three symplectic unipotent matrices of index 2.

Proof. Denote by Eij the matrix with the unique nonzero entry equal to 1 in the position (i, j). We can

write ε(k) = (Jk(1)⊕Jk(1)−T )·P , where P =

[
Ik Ekk
0 Ik

]
∈ SU(1). According to Lemma 2.9, Jk(1)⊕Jk(1)−T

belongs to SU(2). Thus, ε(k) ∈ SU(3).

Lemma 2.13. −ε(k) is a product of three symplectic unipotent matrices of index 2.

Proof. Case (1): k is even. Suppose that k = 2m. Set

S = B � · · ·�B︸ ︷︷ ︸
m

, where B = J2(−1)−1 ⊕ J2(−1)T .

By Lemma 2.7, B ∈ SU(2). By Remark 2.1 (b), S ∈ SU(2). Set

T = I2 � C � · · ·� C︸ ︷︷ ︸
m−1

�J2(1), where C = J2(1)⊕ J2(1)−T .
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By Remark 2.1 (b), T ∈ SU(1). Let R = ST . Then R ∈ SU(3), since S ∈ SU(2) and T ∈ SU(1).

Now we claim that −ε(k) is similar to R. Observing that −ε(k) has only one eigenvalue −1, and that

rank(−ε(k) + I) = 2k− 1, we can deduce that −ε(k) is similar to J2k−1(−1) (not necessarily symplectically

similar). Similarly, R also satisfies these conditions, therefore similar to J2k−1(−1) as well (not necessarily

symplectically similar as well). Thus, we can conclude that the two symplectic matrices −ε(k) and R are

similar. According to Lemma 2.3, we can draw the conclusion that the two matrices are symplectically

similar. Since R ∈ SU(3), −ε(k) ∈ SU(3) as well by Remark 2.1 (a).

Case (2): k is odd. Suppose that k = 2m+ 1. Set

S = B � · · ·�B︸ ︷︷ ︸
m

�J2(−1)−1, where B = J2(−1)−1 ⊕ J2(−1)T .

By Lemma 2.7 and Remark 2.1 (b), S ∈ SU(2). Set

T = I2 � C � · · ·� C︸ ︷︷ ︸
m

, where C = J2(1)⊕ J2(1)−T .

According to Remark 2.1 (b), T ∈ SU(1). Let R = ST . By using R, the proof when k is odd is almost

identical to that when k is even.

Now we can prove our main result.

Proof of Theorem 1.1. An arbitrary symplectic matrix A is symplectically similar to the canonical

form in Lemma 2.2. According to Remark 2.1, we only need to prove the result for each matrix block in

Lemma 2.2. The conclusion that Jk(λ) ⊕ Jk(λ)−T (λ /∈ {0,±1}) ∈ SU(3) is proved in Lemma 2.10. That

J2k+1(λ) ⊕ J2k+1(λ)−T (λ ∈ {±1}) ∈ SU(3) is given in Corollary 2.11. That ±ε(k) ∈ SU(3) is proved

respectively in Lemma 2.12 and Lemma 2.13. Hence, every complex symplectic matrix can be decomposed

into a product of three symplectic unipotent matrices of index 2 and from Lemma 2.8 (b) we can conclude

that three is the smallest such number, since −I2 cannot be decomposed into a product of two symplectic

unipotent matrices of index 2.
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