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KREIN SPACES NUMERICAL RANGES AND
THEIR COMPUTER GENERATION∗

N. BEBIANO† , J. DA PROVIDÊNCIA‡ , A. NATA§ , AND G. SOARES¶

Abstract. Let J be an involutive Hermitian matrix with signature (t, n− t), 0 ≤ t ≤ n, that is,

with t positive and n− t negative eigenvalues. The Krein space numerical range of a complex matrix

A of size n is the collection of complex numbers of the form ξ∗JAξ
ξ∗Jξ

, with ξ ∈ Cn and ξ∗Jξ �= 0. In

this note, a class of tridiagonal matrices with hyperbolical numerical range is investigated. A Matlab

program is developed to generate Krein spaces numerical ranges in the finite dimensional case.
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1. Introduction. Throughout, Mn denotes the algebra of n × n matrices over
the field of complex numbers. Let J be an involutive Hermitian matrix with signature
(t, n−t), 0 ≤ t ≤ n, that is, with t positive and n−t negative eigenvalues. Consider Cn

as a Krein space with respect to the indefinite inner product [ξ, η] = η∗Jξ, ξ, η ∈ Cn.

The J−numerical range of A ∈Mn is denoted and defined by:

WJ (A) =
{
[Aξ, ξ]
[ξ, ξ]

: ξ ∈ C
n, [ξ, ξ] �= 0

}
.

Considering J the identity matrix of order n, In, this concept reduces to the well
known classical numerical range, usually denoted by W (A). The numerical range of
an operator defined on an indefinite inner product space is currently being studied
(see [11] and references therein). For WJ (A), A ∈ Mn, the following inclusion holds:
σ(A) ⊂WJ (A), where σ(A) denotes the set of the eigenvalues ofA with J−anisotropic
eigenvectors, that is, eigenvectors with nonvanishing J−norm. We denote by σ±(A)
the sets of the eigenvalues of A with associated eigenvectors ξ such that ξ∗Jξ = ±1.
Compactness and convexity are basic properties of the classical numerical range. In
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contrast with the classical case, WJ (A) may be neither closed nor bounded. On
the other hand, WJ (A) may not be convex, but it is the union of two convex sets
WJ (A) =W+

J (A) ∪W−
J (A), where

W+
J (A) =

{
[Aξ, ξ]
[ξ, ξ]

: ξ ∈ C
n, [ξ, ξ] > 0

}

and

W−
J (A) =

{
[Aξ, ξ]
[ξ, ξ]

: ξ ∈ C
n, [ξ, ξ] < 0

}
.

Since the Krein space numerical range is in general neither bounded nor closed, it is
difficult to generate an accurate computer plot of this set. For A ∈ Mn and n > 2,
the description of WJ (A) is complicated, and so it is of interest to have a code to
produce graphical representations. The case n = 2 is treated by the Hyperbolical
Range Theorem [1] which states the following: if A ∈M2 has eigenvalues α1 and α2,
J = diag(1,−1) and 2Re (α1α2) < Tr(A[∗]A) < |α1|2 + |α2|2, where A[∗] = JA∗J,
then WJ (A) is bounded by a nondegenerate hyperbola with foci at α1 and α2, and
transverse and nontransverse axis of length

√
Tr(A[∗]A)− 2Re (α1ᾱ2) and

√
|α1|2 + |α2|2 − Tr(A[∗]A),

respectively. For the degenerate cases, WJ (A) may be a singleton, a line, the union
of two half-lines, the whole complex plane, or the complex plane except a line. Inde-
pendently of the size, certain matrices have a hyperbolical J−numerical range.

A matrix A = (aij) ∈Mn is tridiagonal if aij = 0 whenever |i−j| > 1. Interesting
papers have been published on the classical numerical range of tridiagonal matrices
[3, 4, 12]. For complex numbers a, b, c, the tridiagonal matrix in Mn with a′s on
the main diagonal, b′s on the first superdiagonal and c′s on the first subdiagonal is
denoted by A = tridiag(c, a, b). These matrices are of Toeplitz type, because all the
entries in each diagonal are equal. Marcus and Shure [12] proved that the numerical
range of tridiag(0, 0, 1) is a circular disc centered at the origin of radius cos(π/(n+1)).
Eiermann [6] showed that the numerical range of tridiag(c, 0, b) is the elliptical disc
{cz+ bz : |z| ≤ cos(π/(n+ 1))}. Generalizations of Eiermann’s results were given by
Chien [3, 4], Chien and Nakazato [5], and Brown and Spitkovsky [2]. Likewise, there
is interest in studying Krein spaces numerical ranges of these classes.

Motivated by these investigations, in Section 2, we characterize a class of tridiago-
nal matrices with hyperbolical numerical range. In Section 3, we present an algorithm
that allows a computer plot of WJ (A). In Section 4, a Matlab program is presented
to plot Krein spaces numerical ranges for finite dimensional operators.
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2. A class of tridiagonal matrices with hyperbolical numerical range.
The proof of the next lemma is similar to the proof of Lemma 3.1 in [2] and is included
for the sake of completeness.

Lemma 2.1. Let J be I1 ⊕−I1 ⊕ · · · ⊕ I1 ⊕−I1 ⊕ I1 or I1 ⊕−I1 ⊕ · · · ⊕ I1 ⊕−I1
according to the size of the matrix J being odd or even, respectively. The J−numerical
range of an n × n tridiagonal matrix is invariant under interchange of the (j, j + 1)
and (j + 1, j) entries for any j = 1, . . . , n− 1.

Proof. Let

A =




a1 b1 0 · · · · · · 0

c1
. . . . . . . . .

...

0
. . . aj bj

. . .
...

...
. . . cj aj+1

. . . 0
...

. . . . . . . . . bn−1

0 · · · · · · 0 cn−1 an



.(2.1)

For simplicity we interchange b1 and c1. Let Â be the n × n tridiagonal matrix that
differs from A only by interchanging b1 and c1. Consider an arbitrary point z =
z∗JAz ∈ WJ (A), where z = (z1, . . . , zn)T ∈ Cn and z∗Jz = 1. We show that there
exists ẑ = (ẑ1, . . . , ẑn)T ∈ Cn such that z∗JAz = ẑ∗JÂẑ and z∗Jz = ẑ∗Jẑ. For the
first equality to hold, we require that

z̄1a1z1 − z̄2a2z2 + z̄1b1z2 − z̄2c1z1 = ¯̂z1a1ẑ1 − ¯̂z2a2ẑ2 + ¯̂z1c1ẑ2 − ¯̂z2b1ẑ1.
If z1 = 0, we can choose ẑ = z. Otherwise, let |ẑ1| = |z1|, |ẑ2| = |z2|, arg ẑ1 =
− arg z1 + π, arg ẑ2 = − arg z2. Moreover, we choose ẑj = zjeiφ, j > 2, where φ =
−2 arg zj . By easy calculations, the result follows.

A supporting line of a convex set S ⊂ C is a line containing a boundary point
of S and defining two half-planes, such that one of them does not contain S. The
supporting lines of WJ(A) are by definition the supporting lines of the convex sets
W+

J (A) and W
−
J (A). Let

HA =
A+A[∗]

2
and KA =

A−A[∗]

2i
.(2.2)

be the unique J−Hermitian matrices such that A = HA + iKA. (A matrix A is
J−Hermitian if it coincides with A[∗].) If ux + vy + w = 0 is the equation of a
supporting line of WJ (A), then det (uHA + v KA + w In) = 0. The homogeneous
polynomial equation det (uHA + v KA + w In) = 0 can be considered the dual (line)
equation of an algebraic curve. The real part of the dual curve is called the boundary
generating curve of WJ (A).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 192-208, April 2008



ELA

Krein Spaces Numerical Ranges and their Computer Generation 195

We recall that A ∈ Mn is essentially J−Hermitian if there exist ζ1, ζ2 ∈ C such
that A = ζ1 In + ζ2 A′ where A′ is J−Hermitian. In this case, WJ (A) is a line or
the union of two half-lines [13]. Next, we assume that A ∈ Mn is nonessentially
J−Hermitian.

Theorem 2.2. Let A ∈Mn be a nonessentially J−Hermitian tridiagonal matrix
with biperiodic main diagonal, that is, aj = a1 if j is odd and aj = a2 if j is even,
and with off-diagonal entries bj , cj such that either cj = kbj or bj = kcj for some
k ∈ C and j = 1, . . . , n−1. Let J be the diagonal matrix I1⊕−I1⊕· · ·⊕ I1⊕−I1⊕ I1
or I1 ⊕ −I1 ⊕ · · · ⊕ I1 ⊕ −I1 according to the size of A being odd or even. Let
γ = (a1−a2

2 )2 + kλ2
1, where λ1 is the spectral norm of C = tridiag (c, 0,b) ∈ Mn for

0 = (0, 0, . . . , 0), b = (b1,−b2, . . .) and c = (b1,−b2, . . .). The following holds:

(i) If |γ| > 1
2λ

2
1(1 + |k|2) − ∣∣a1−a2

2

∣∣2, then WJ(A) is bounded by the hyperbola
centered at a1+a2

2 , foci at

(a1 + a2)±
√
(a1 − a2)2 + 4kλ2

1

2

and semi-transverse axis of length

α =

√
1
2

∣∣∣∣a1 − a2

2

∣∣∣∣
2

− 1
4
λ2

1(1 + |k|2) + 1
2
|γ|.

(ii) If |γ| = 1
2λ

2
1(1 + |k|2) − ∣∣a1−a2

2

∣∣2, then WJ (A) is the whole complex plane except
the line with slope (arg(γ) + π)/2 passing through (a1 + a2)/2.

(iii) If |γ| < 1
2λ

2
1(1 + |k|2)− ∣∣a1−a2

2

∣∣2, then WJ (A) is the whole complex plane.

Proof. Let A have even size. According to Lemma 2.1, we may assume without
loss of generality that the off-diagonal entries of A are such that cj = kbj , for j =
1, . . . , n−1. Writing c = (a1−a2)/2, we have A = 1

2 (a1+a2)In+B, where the matrix
B is obtained from A replacing the main diagonal by (c,−c, . . . , c,−c). Without loss
of generality, we may assume that c > 0.

For θ ∈ [0, 2π[, consider a supporting line ofWJ (B) perpendicular to the direction
of argument θ. To determine the supporting lines ofWJ(B) we search the eigenvalues
of the matrix JRe (e−iθJB). By easy computations, we find
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det (Re (e−iθJB)− µ(θ)J) = 2−n |e−iθ − keiθ|n

×det




Re (c e−iθ)−µ(θ)

1/2|e−iθ−keiθ| b1 0 · · · 0

b1
Re (c e−iθ)+µ(θ)

1/2|e−iθ−keiθ| −b2 . . .
...

0 −b2 Re (c e−iθ)−µ(θ)

1/2|e−iθ−keiθ|
. . . 0

...
. . . . . . . . . bn−1

0 · · · 0 bn−1
Re (c e−iθ)−µ(θ)

1/2|e−iθ−keiθ|



.

For (Re (c e−iθ))2−µ(θ)2

1/4|e−iθ−keiθ|2 = λ2, the determinant in the right hand side of the above
equality coincides with the determinant of C − λIn, where C is the tridiagonal Her-
mitian matrix with vanishing main diagonal, first superdiagonal and subdiagonal
(b1,−b2, . . . , b1) and (b1,−b2, . . . , b1), respectively. The eigenvalues of the Hermitian
matrix C occur in pairs of symmetric real numbers, and we denote and order them as
follows: λ1 > · · · > λn

2
> · · · > λn, with λn−j+1 = −λj , j = 1, . . . , n. The eigenvalues

of JRe (e−iθJB), say µj(θ), satisfy

µ2
j(θ) = (Re (c e

−iθ))2 − λ2
j

4
|e−iθ − keiθ|2 ∈ R, j = 1, . . . , n.(2.3)

Let θ be fixed but arbitrary. We analyze the condition for the eigenvalues µj(θ)
to be real. If the smallest of the µ2

j(θ), that is, µ
2
1(θ), is nonnegative, then all the

µj(θ) are real. So, we investigate the existence of angles θ such that

µ2
1(θ) = P +Q cos(2θ) +R sin(2θ) ≥ 0,

where

P =
1
2
c2 − 1

4
λ2

1(1 + |k|2),

Q =
1
2
Re (c2) +

1
2
Re (k)λ2

1,

R =
1
2
Im(c2) +

1
2
Im(k)λ2

1.

Writing γ = 2(Q+ iR) = c2 + kλ2
1 and Γ = arg(γ), we have

µ2
1(θ) = α cos

2

(
Γ
2
− θ

)
− β sin2

(
Γ
2
− θ

)
,

where

α =
1
2
c2 − 1

4
λ2

1(1 + |k|2) + 1
2
|γ|,
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and

β = −1
2
c2 +

1
4
λ2

1(1 + |k|2) + 1
2
|γ|.(2.4)

We show that β ≥ 0. In fact, since
|γ|
2

≥ 1
2
c2 − |k|λ

2
1

2
,

from (2.4) we easily conclude that

β ≥ 1
4
λ2

1(1− |k|)2 ≥ 0.

It can be easily seen that a tridiagonal matrix A under the hypothesis of the theorem
is essentially J−Hermitian if and only if |k| = 1 and arg k = 2 arg c. Since A is
nonessentially J−Hermitian, then |k| �= 1 and to avoid trivial situations we may
suppose λ1 �= 0. Thus, we may consider β > 0.

If (i) holds, then |γ| > 1
2λ

2
1(1 + |k|2) − c2, and so α > 0. Thus there exist angles

θ such that µ2
1(θ) ≥ 0. Hence

µ1(θ) = ±
√
α cos2

(
Γ
2
− θ

)
− β sin2

(
Γ
2
− θ

)
,(2.5)

and all the µj(θ) are real and pairwise symmetric. It can be easily seen that (2.5)
describes a family of hyperbolas, for θ ranging over [θ1, θ2], tan(Γ/2− θi) = α/β, i =
1, 2. The parametric equations of the hyperbola generated by µj(θ) are{

x cos(θ) + y sin(θ) = µj(θ)
−x sin(θ) + y cos(θ) = µ′j(θ)

for θ ∈ [Γ/2,Γ/2 + 2π[. Since 0 < µ1(θ) < µ2(θ) < · · · < µn
2
(θ), these eigenvalues

originate a collection of nested hyperbolas. The outer hyperbola is generated by µ1(θ)
and its Cartesian equation is

X2

α
− Y 2

β
= 1,(2.6)

where X = x cos(Γ/2)− y sin(Γ/2) and Y = x sin(Γ/2) + y cos(Γ/2).
Now, we analyze the sign of the J−norm of the eigenvectors associated with µj(θ).

We notice that if νj =
(
x

(j)
1 , . . . , x

(j)
n

)
is an eigenvector associated with µj(θ), then

νn−j+1 =
(
sx

(j)
1 , x

(j)
2 , sx

(j)
3 , . . . , x

(j)
n

)
is an eigenvector associated with −µj(θ), where

s =
c cos θ − µj(θ)
c cos θ + µj(θ)

.
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Easy calculations show that the J−norm of νj is(
|x(j)

1 |2 + |x(j)
3 |2 + · · ·+ |x(j)

n |2
)
(1 − s),

while the J−norm of νn−j+1 is(
|x(j)

1 |2 + |x(j)
3 |2 + · · ·+ |x(j)

n |2
)
s(s− 1).

Therefore, µj(θ) ∈ σ+(JRe (e−iθJB)), j = 1, . . . , n
2 and µn−j+1(θ) ∈ σ−(JRe (e−iθ

JB)), j = n
2 + 1, . . . , n. Hence,

W+
J (JRe (e

−iθJB)) = [µ1(θ),+∞[ ; W−
J (JRe (e

−iθJB)) = ]−∞,−µ1(θ)].(2.7)

Thus, ∂WJ (A) is the asserted hyperbola.

Now, we consider that A has odd size. The situation is similar to the one treated
above, with the eigenvalues of JRe (e−iθJ B) occurring in pairs of symmetric real num-
bers, being Re (e−iθc) an eigenvalue with associated eigenvector (x(j)

1 , 0, x(j)
3 , . . . , x

(j)
n )

of positive J−norm. For θ = 0, we have

α ≤ c2 − 1
2
λ2

1(1 − |k|2).

Therefore,
√
α ≤ c, so the point c lies inside the hyperbola (2.6). Thus, (i) follows.

(ii) If |γ| = 1
2λ

2
1(1 + |k|2) − c2, then α = 0 and µ2

1(θ) < 0 for all θ �= Γ/2. The
matrix JRe (Je−iθB) has complex eigenvalues in all directions, except in the direction
θ = Γ/2. Thus, the projection ofWJ (A) in all the directions is the whole line, possibly
except in the direction θ = Γ/2. Thus, we may conclude that WJ (A) is the complex
plane possibly without one line. Now, we show that the line with slope (Γ+π)/2 and
passing through (a1 + a2)/2 is not contained in WJ (A).

Since µ2
1(Γ/2) = 0, 0 is a double eigenvalue of B

Γ/2 := JRe (Je−iΓ/2B) and we
use a perturbative method. Let BΓ/2

ε = JRe (e−iΓ/2JBε), where Bε is obtained from
B replacing c by c+ ε, with ε ∈ R chosen as follows. We have α(ε) = α+ εM +O(ε2),
where M is real and nonzero. Choosing ε such that εM is positive, then α(ε) > 0
and by (2.7), we may conclude that W+

J (B
Γ/2
ε ) =

[√
α(ε),+∞

[
and W−

J (B
Γ/2
ε ) =]

−∞,−√
α(ε)

]
. If ε → 0, then α(ε) → 0 and we find that ]−∞, 0[ ∪ ]0,+∞[ is

contained in WJ (BΓ/2).

We show that the origin is not an element of WJ (BΓ/2). Firstly, we assume
that n is even and we use a perturbative method. Let the eigenvalues of BΓ/2

ε be
µ1(ε), . . . , µn/2(ε) ∈ σ+(BΓ/2

ε ) and µn/2+1(ε), . . . , µn(ε) ∈ σ−(BΓ/2
ε ) with associated

eigenvectors ν1(ε), ν2(ε), . . . , νn/2(ε), νn/2+1(ε), . . . , νn(ε). Assume that 0 < µ1(ε) <
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· · · < µn/2(ε). Consider the basis B(ε) obtained from the above eigenbasis replacing
the vectors ν1(ε) and νn(ε), respectively, by v1(ε) and vn(ε), with J−norms 1 and
−1, so that the matrix BΓ/2

ε is represented in B(ε) in the form B1(ε)⊕B2(ε)⊕B3(ε),
where B1(ε) = diag(µn

2
(ε), . . . , µ2(ε)),

B2(ε) =
[

1
√
1− α2(ε)

−√
1− α2(ε) −1

]
,

and B3(ε) = diag(µn+1(ε), . . . , µn/2+1(ε)). Clearly,

B2(ε) =
[

1
√
1− α2(ε)

−√
1− α2(ε) −1

]
−−→ε→ 0

[
1 1

−1 −1
]
.

Taking the limit of each element of B(ε) as ε→ 0, we obtain the basis denoted by B.
Let v = x1v1 + xnvn +

n−1∑
i=2

xiνi be an arbitrary anisotropic vector of Cn expressed in

B. So
v∗JBv
v∗Jv

=
|x1 + xn|2 + µ2(|x2|2 + |xn−1|2) + · · ·+ µn

2
(|xn

2
|2 + |x2

n
2 +1|)

|x1|2 − |xn|2 + |x2|2 − |xn−1|2 + · · ·+ |xn
2
|2 − |xn

2 +1|2 ∈ W+
J (B

Γ/2).

Since v is anisotropic, the denominator is nonzero and the numerator vanishes if and
only if x2 = xn−1 = · · · = xn

2
= xn

2 +1 = 0 and xn + x1 = 0, which is impossible. If n
is odd an analogous argument holds.

(iii) If |γ| < 1
2λ

2
1(1 + |k|2) − |c|2, then µ2

1(θ) is negative and so µ1(θ) is imagi-
nary. Thus, the projection of WJ(A) in each direction is the whole line, and as a
consequence, WJ(A) = C.

Corollary 2.3. Let J be the infinite diagonal matrix I1 ⊕ −I1 ⊕ · · · and let A
be the infinite tridiagonal matrix with biperiodic main diagonal, that is, aj = a1 if j
is odd and aj = a2 if j is even, and with off-diagonal entries bj , cj such that either
cj = kbj or bj = kcj k ∈ C, j = 1, 2, . . .. Let γ = (a1−a2

2 )2 + k(|b1|+ |b2|)2. Then:

(i) If |γ| > 1
2 (|b1| + |b2|)2(1 + |k|2) − ∣∣a1−a2

2

∣∣2, then WJ (A) is the open region
bounded by the hyperbola centered at a1+a2

2 , foci at

(a1 + a2)±
√
(a1 − a2)2 + 4k(|b1|+ |b2|)2

2

and semi-transverse axis of length√
1
2

∣∣∣∣a1 − a2

2

∣∣∣∣
2

− 1
4
(|b1|+ |b2|)2(1 + |k|2) + 1

2
|γ| .
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(ii) If |γ| = 1
2 (|b1|+ |b2|)2(1 + |k|2)− ∣∣a1−a2

2

∣∣2, then WJ(A) is the whole complex
plane except the line with slope arg(γ)+π

2 passing through a1+a2
2 .

(iii) If |γ| < 1
2 (|b1|+ |b2|)2(1+ |k|2)− ∣∣a1−a2

2

∣∣2, then WJ(A) is the whole complex
plane.

Proof. The corollary is a simple consequence of the last theorem, by taking limits
as the size of A ∈ Mn tends to infinity. Having in mind that the eigenvalues of the
matrix C ∈Mn in Theorem 2.2 are (cfr. [8])

λ = 0 and λr = ±
√
|b1|2 + |b2|2 + 2|b1||b2| cos

(
rπ

m+ 1

)
, r = 1, . . . ,m

for n = 2m+ 1 and

λr = ±
√
|b1|2 + |b2|2 + 2|b1||b2|Qr, r = 1, . . . ,m

for n = 2m, where Qr, r = 1, . . .m, are the roots of the polynomial qm(µ) recurrently
defined by

q0(µ) = 1, q1(µ) = 1 + β, β2 =
|b2|2
|b1|2 , qm+1(µ) = µqm(µ)− qm−1(µ), m > 1.

As n tends to infinity we can easily show that λ2
1 = (|b1|+ |b2|)2. In the infinite case,

the half-rays (2.7) are open. In fact, if their origins were attained, they would be
eigenvalues of the infinite matrix JRe (e−iθJB), which is impossible since under the
hypothesis the matrix is non scalar. Thus, WJ (A) is the open region bounded by the
asserted hyperbola in (i). Now, the corollary straightforwardly follows.

Remark 2.4. Given A = HA + iKA ∈ Mn, with HA and KA as in (2.2), the
J−generalized Levinger transform of A (see [7]) is defined by

LJ(A,α, β) = αHA + βKA, with α, β ∈ R.

For every α, β ∈ R, we clearly have

HL(A,α,β) = αHA and KL(A,α,β) = −iβKA.

Thus, we may write

WJ(LJ (A,α, β)) = {αx+ i β y : x, y ∈ R, x+ i y ∈WJ (A)}.
There is a relation between WJ (A) and WJ (LJ (A,α, β)), in case the sets are hy-
perbolical. In fact, supposing that the boundary of WJ (A) in the plane (u, v) has
equation

u2

M2
− v2

N2
= 1, M,N > 0,
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for α �= 0 and β > 0, changing the variables u = α−1X and v = β−1Y , then the
boundary of WJ (A) is the hyperbola

X2

α2M2
− Y 2

β2N2
= 1.

3. Algorithm and Examples. As an heuristic tool, it is convenient to have a
code to produce the plot of WJ(A). In [10], a Matlab program for plotting W+

J (A),
A ∈Mn, was presented and the authors mention that there is place to improvement.
We would like to observe that in some cases, such as in Example 3.4 (Figure 3.3),
this program fails. We include a Matlab program to generate Krein spaces numerical
ranges of arbitrary complex matrices that treats the degenerate cases and represents
the boundary generating curves. As an essential complement, an algorithm is given
for computing the pseudoconvex hull of a finite number of points. The accuracy of
our program is quite good because a routine, namely rounding.m, was implemented
to remove the rounding errors in the program. Its speed is equivalent to the one of the
program in [10]. We emphazise that our program plots the boundary generating curves
and their pseudoconvex hull. Moreover, it also works for Hilbert spaces numerical
ranges.

Our approach uses the elementary idea that the boundary, ∂WJ(A) , may be
traced by computing the extreme eigenvalues (as specified below) of
JRe

(
e−iθJA

)
in σ+(JRe

(
e−iθJA

)
) and in σ−(JRe

(
e−iθJA

)
), and the

associated eigenvectors ν+
θ and ν−θ , for θ running over a finite discretization of

0 ≤ θ < π. The points

ν+
θ

∗
JAν+

θ

ν+
θ

∗
Jν+

θ

and
ν−θ

∗
JAν−θ

ν−θ
∗
Jν−θ

are boundary points of W+
J (A) and W

−
J (A), respectively.

To describe the algorithm, we recall the concepts of noninterlacing eigenvalues
and of pseudoconvex hull of a set of points.

Let H be a J−Hermitian matrix whose eigenvalues are all real and α1 ≥ · · · ≥
αr ∈ σ+(H) and αr+1 ≥ · · · ≥ αn ∈ σ−(H). If αr > αr+1 or αn > α1, we say that
the eigenvalues of H do not interlace.

Consider a set of points P = {p1, . . . , pk} ⊂ Rk with associated signs {ε1, . . . , εk},
where εj = ±1, j = 1, . . . , k. The pseudoconvex hull of P is the set of the pseudo
convex combinations of points, that is, the set of the form


∑k

j=1 tjεjpj∑k
j=1 εjtj

: tj ≥ 0, j = 1, 2, . . . , k,
k∑

j=1

εjtj �= 0

 .
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If the εj are all equal, then the pseudoconvex hull reduces to the convex hull.

Step 1: For an arbitrary complex matrix A of order n, compute the eigenvalues
of the matrix JRe

(
e−iθrJA

)
, with

θr =
π(r − 1)
2m

, r = 1, . . . , 2m

for some positive integer m and for some involutive Hermitian matrix J . Construct
the vector formed by all the values of r such that the matrix JRe

(
e−iθrJA

)
has at

least one real eigenvalue. For each choice of r, test the multiplicity of the eigenvalues.
If there exists at least one multiple eigenvalue, perturb the direction θr. If the above
mentioned vector is nonempty and there exists at least a value of r such that the
eigenvalues of the matrix JRe

(
e−iθrJA

)
are all real with anisotropic eigenvectors,

go to Step 2. Otherwise, go to Step 5 and we have a degenerate case.

Step 2: For each θr described above, compute the eigenvalues of the matrix
JRe

(
e−iθrJA

)
, and the associated eigenvectors ξi(r), i = 1, . . . , n. Evaluate

ρi(r) =
ξi(r)∗JAξi(r)
ξi(r)∗Jξi(r)

, i = 1, . . . , n

and construct two vectors formed by the elements ρi(r) such that the sign of the
scalar ξi(r)∗Jξi(r) is +1 and −1, respectively. The components of these vectors
produce points of the boundary generating curves of WJ (A).

Step 3: Investigate the existence of directions for which the eigenvalues of the
matrix JRe

(
e−iθrJA

)
do not interlace. If they exist, go to the next step. Otherwise,

follow to Step 5.

Step 4: Compute the pseudoconvex hull of the boundary generating curves of
WJ (A).

Step 5: Compute
ζ∗i JAζi
ζ∗i Jζi

for a sample of anisotropic vectors ζi randomly chosen.

The distribution of these points allows to conclude whether WJ (A) is the complex
plane (possibly the complex plane without a line) or a line (possibly without a point).

Remark 3.1. Obviously, if J = I,−I, then WJ (A) reduces to the classical
numerical range. In this case, the algorithm consists of the Steps 1, 2, 4, where the
pseudoconvex hull gives rise to the convex hull. Thus, our algorithm and program
also work for the classical case.

We illustrate Theorem 2.2 with the following example. The points represented
by a cross are the eigenvalues of the matrix A. The J−numerical ranges presented in
this note were generated by our Matlab program.
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Example 3.2. Let A ∈ M6 be the tridiagonal matrix with a1 = 2, a2 = −2,
bj = i and cj = −2i, j = 1, . . . , 5. According to Theorem 2.2, WJ (A) is bounded by
the hyperbola centered at (0, 0) and with semi-transverse axis of length approximately
1.79. For σ+(HA) = {α1, α2, α3} and σ+(A) = {γ1, γ2, γ3} increasingly ordered and
βj =

√
γ2

j − α2
j , j = 1, . . . , 6, the line equation of the boundary generating curve is

(w2 − α2
1u

2 + β2
1v

2)(w2 − α2
2u

2 + β2
2v

2)(w2 − α2
3u

2 + β2
3v

2) = 0.

The foci of the hyperbolas in Figure 3.1 are the eigenvalues of A.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Fig. 3.1. WJ(A) and boundary generating curves for the matrix of Example 3.2.

Observe that the boundary of the J−numerical range of a tridiagonal matrix with
biperiodic main diagonal may not be hyperbolic if the super and subdiagonals do not
satisfy the conditions in Theorem 2.2.

Example 3.3. Let J = I1 ⊕ −I1 ⊕ I1 ⊕ −I1 ⊕ I1 ⊕ −I1 and let A ∈ M6 be the
tridiagonal matrix with a1 = 2, a2 = −2, bj = 1, cj = −1 for j odd and cj = 1
for j even. There are two flat portions on the boundary, namely the line segments
[
√
3 + i

√
6/6,

√
3 − i

√
6/6] and [−√

3 + i
√
6/6,−√

3 − i
√
6/6]. The line equation of

the boundary generating curve is

−27u6 + w2(v2 + w2)2 + 3u4(8v2 + 9w2)− u2(4v4 + 14v2w2 + 9w4) = 0

and it is not factorizable (cf. Figure 3.2).

We illustrate the algorithm with another example.
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−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 3.2. WJ(A) and boundary generating curves for the matrix of Example 3.3.

Example 3.4. Let

A =




4 0 −1 0 0 0
0 −4 0 −1 0 0
1 0 4 0 −1 0
0 1 0 −4 0 −1
0 0 1 0 4 + 2

√
2 0

0 0 0 1 0 −4 + 2√2



.

The J−numerical range of A has one flat portion on the boundary, namely the line
segment [4 + i, 4− i] (cf. Figure 3.3).

4. Matlab program. In this section, we present the code for plotting the points
defining the boundary generating curves of the J−numerical range of an arbitrary
complex matrix. The program is listed below and is also available at the following
website:

http://www.mat.uc.pt/∼bebiano

The below mentioned routines and a routine for plotting the pseudoconvex hull of the
boundary generating curves can also be found there.
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Fig. 3.3. WJ(A) and boundary generating curves for the matrix of Example 3.4.

MATLAB PROGRAM FOR PLOTTING THE BOUNDARY GENERATING CURVE OF

THE J−NUMERICAL RANGE OF A COMPLEX MATRIX

%

%boundary_curve(A,J,m,Tol), where J is the J-Hermitian matrix that defines

%the indefinite inner product, A is the Krein space matrix for which

%the program computes points in the Krein space numerical range, 2m

%is the number of directions and Tol>0 is the considered tolerance.

%

function [X1_round,X2_round,degenerate1,degenerate2]=boundary_curve(A,J,m,Tol)

%

global definite

X1_round=[]; X2_round=[];

%

if ~isequal(size(J,1),size(J,2))

error(’J must be a square matrix’);

end

if ~isequal(size(A,1),size(A,2))

error(’A must be a square matrix’);

end

if ~isequal(size(J),size(A))

error(’A and J must have the same size’);

end

for r=1:size(J,2)

for s=1:size(J,2)

if r~=s && J(r,s)~=0 || J(r,r)~=1 && J(r,r)~=-1

error(’J must be an involutive Hermitian matrix’);
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end

end

end

%

% Evaluation of the vector described in Step 1

[degenerate1,direc,eig_real]=directions(A,J,m,Tol);

%

% Evaluation of the points of the boundary generating

degenerate2=0;

if degenerate1~=1

row1=1; row2=1; X1=[]; X2=[]; vec=[];

for t=1:size(direc,2)

D1=[]; D2=[];

w=direc(t);

T=(exp(pi*i*(w-1)/(2*m))*A+ exp(-pi*i*(w-1)/(2*m))*J*A’*J)/2;

[U,D]=eig(T);

for s=1:size(U,2)

u=U(:,s);

if abs(real(u’*J*u))>=Tol %no null J-norm

z2=real(u’*J*A*u)/real(u’*J*u);

z3=imag(u’*J*A*u)/real(u’*J*u);

if real(u’*J*u)>0 %positive J-norm

X1(row1)=z2+i*z3;

row1=row1+1;

D1=[D1 D(s,s)];

else

X2(row2)=z2+i*z3;

row2=row2+1;

D2=[D2 D(s,s)];

end

end

end

for r=1:size(eig_real,2)

if eig_real(r)==w

[interla]=interlacing(D1,D2);

vec=[vec interla];

end

end

end

%

%Cheking if there exists at least one direction

%with noninterlacing eigenvalues

aux=0;

for t=1:size(vec,2)
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if vec(t)==2

aux=1; % Noninterlacing eigenvalues in the direction w=eig_real(t)

break;

end

end

%

if aux==1 || definite==1

[X1_round]=rounding(X1); %Remove of rounding errors of X1

if definite==0

[X2_round]=rounding(X2); %Remove of rounding errors of X2

else

X2_round=[]; %Definite case

end

%

%Plot of the boundary generating curves

plot(real(X1_round),imag(X1_round),’.b’);

hold on;

plot(real(X2_round),imag(X2_round),’.r’);

hold on;

else

degenerate2=1; %Degenerate cases.

return;

end

end
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