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PARAMETRIZED SOLUTIONS X OF THE SYSTEM AXA = AEA AND

AkEAX = XAEAk FOR A MATRIX A HAVING INDEX k ∗

D.E. FERREYRA† , M. LATTANZI‡ , F.E. LEVIS† , AND N. THOME§

Abstract. Let A and E be n × n given complex matrices. This paper provides a necessary and sufficient condition for 
the solvability to the matrix equation system given by AXA = AEA and AkEAX = XAEAk, for k being the index of A. In 
addition, its general solution is derived in terms of a G-Drazin inverse of A. As consequences, new representations are obtained 
for the set of all G-Drazin inverses; some interesting applications are also derived to show the importance of the obtained 
formulas.
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1. Introduction. Matrix equations arise in Matrix Theory as a valuable tool to solve an extensive and

varied kind of problems. Sometimes, they appear from stating the model; other times, once the model is

stated, after discretizing a continuous-time equation, etc. They have important applications in areas such as

physics, mechanics, control theory, and many other fields [25]. For instance, the problem of finding all the

solutions of the classical Yang-Baxter matrix equation AXA = XAX is a representative case [14, 17, 21].

On the other hand, some recent results finding algebraic solutions for operator equations such as AXB =

B = BXA can be found in [22, 26].

Generalized inverses of matrices are very useful, among other topics, to tackle problems like the afore-

mentioned ones and they play an important role in the study of matrix equations and partial orders

[7, 8, 10, 11, 24, 27]. For example, the equation AX+Y B = C or the more general version AXB+CY D = E

(in the unknowns X and Y ) were solved by Baksalary and Kala in [1, 2] by means of projectors associated

to generalized inverses.

On the other hand, among other authors, Dinčić investigated the Sylvester equation AX − XB = C

under the condition σ(A) ∩ σ(B) 6= ∅ in [12] by using the Jordan canonical form.

In this paper, we completely solve a related matrix equation system and provide some applications.

Let Cm×n be the set of m× n complex matrices. For A ∈ Cm×n, let A∗, A−1, rk(A), and R(A) denote

the conjugate transpose, the inverse (m = n), the rank, and the range space of A, respectively. Moreover,
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Im stands for the m×m identity matrix and 0m×n denotes the m× n zero matrix. If the size is clear from

the context, it will be directly denoted by I or 0. For A ∈ Cn×n, the index of A is the smallest nonnegative

integer k such that R(Ak) = R(Ak+1), and is denoted by k = ind(A). Let A ∈ Cn×n with k = ind(A). We

recall that the Drazin inverse of A is the unique matrix X ∈ Cn×n such that (2)XAX = X, (5)AX = XA,

and (6)Ak+1X = Ak hold, and is denoted by AD. If A satisfies ind(A) ≤ 1, then the Drazin inverse of

A is called the group inverse of A and is denoted by A#. A matrix X ∈ Cn×m that satisfies the equation

AXA = A is called a {1}-inverse of A ∈ Cm×n, and it is denoted by A−. The symbol A{1} denotes the set

of all {1}-inverses of A. We also recall that the Moore-Penrose inverse of A ∈ Cm×n is the unique matrix

X ∈ Cn×m such that (1)AXA = A, (2)XAX = X, (3) (AX)∗ = AX, and (4) (XA)∗ = XA hold, and is

denoted by A†. A detailed analysis of all these generalized inverses can be found, for example, in [3].

The Drazin inverse was defined in [13] and it has proved helpful in analyzing Markov chains, difference

and differential equations, iterative procedures, etc., as we can see in [4, 5]. Among other applications,

this generalized inverse can be used to construct a generalized transfer function for singular descriptor

systems [19]. Taking into account its importance, many computational techniques have been developed to

calculate it. Using a determinantal technique, another matrix equation problems related to Drazin inverse

were investigated by Krychei in [16] by solving (for X) the weighted matrix equations WAWX = D,

XWAW = D, and W1AW1XW2BW2 = D on quaternions.

Campbell and Meyer introduced in [6] some modifications to the classic Drazin inverse by introducing

weak Drazin inverses. A particular case of weak Drazin inverses was defined by H. Wang and X. Liu in [23].

More precisely, for a given A ∈ Cn×n of index k, a matrix X ∈ Cn×n satisfying

(1.1) AXA = A, XAk+1 = Ak, and Ak+1X = Ak,

is called a G-Drazin inverse of A, which is, in general, not unique. The symbol A{GD} stands for the set

of all G-Drazin inverses of A; an element of this set is denoted by AGD. Recently, it was proved [9] that the

set of the equations (1.1) is equivalent to the more simplified one given by

(1.2) AXA = A and AkX = XAk.

The purpose of this paper is to study the matrix equation system given by

(1.3) AXA = AEA and AkEAX = XAEAk,

for a matrix A ∈ Cn×n of index k, and a fixed matrix E ∈ Cn×n. Clearly, the matrix equation system (1.3)

is more general than (1.2) because, for example, by setting E = A† in (1.3) we get (1.2). We obtain general

expressions of solutions of the system (1.3) and derive new formulas for all solutions of the system (1.2). We

highlight the importance that the fact of making available a parametrized solution as that provided in this

paper gives us the opportunity of using it in further applications, such as occurred with the one quoted in

Lemma 2.1 below.

The paper is organized as follows. In Section 2, we provide a necessary and sufficient condition for

the solvability to the matrix equation system (1.3) and we find all its solutions by giving a parametrized

expression. In Section 3, we derive new representations for the set of all G-Drazin inverses of A. In particular,

we give (Subsection 3.1) a more simplified representation for all G-Drazin inverses of a matrix A of index

one. Moreover, we obtain (Subsection 3.2) some necessary conditions for any G-Drazin inverse of a matrix

B to be a G-Drazin inverse of A.
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2. A parametrized general solution. In this section, we extend the system given by (1.2) to a more

general case, by introducing a sort of G-Drazin inverse of A with respect to a fixed matrix E. We solve this

new system by finding a parametrized solution.

By mimicking the definition of affine linear variety of a linear system Ax = b (for given A ∈ Cm×n and

b ∈ Cm), which is given by the set of all its solutions {x ∈ Cn : Ax = b} = x0 + SH (where Ax0 = b and

SH = {x ∈ Cn : Ax = 0} is a vector subspace), we introduce the affine linear variety S of all solutions of

(1.3):

S = {X ∈ Cn×n : X satisfies equations in (1.3)} ,

the corresponding vector subspace

SH =
{
X ∈ Cn×n : AXA = 0 and AkEAX = XAEAk

}
associated to the homogeneous case, and a fixed (but arbitrary) element X0 ∈ S. It is also true that

S = X0 + SH holds.

The following result will be useful in what follows.

Lemma 2.1. ([3, p. 52]) Let A,B,C ∈ Cn×n. The matrix equation AXB = C is consistent if and only

if AA−CB−B = C for some A− ∈ A{1} and B− ∈ B{1}, in which case, the general solution of the equation

is given by X = A−CB− + Z −A−AZBB−, for arbitrary Z ∈ Cn×n.

It is well known that matrices A− and B− in Lemma 2.1 can be arbitrarily chosen as {1}-inverses of A

and B, respectively. Next result will use the notations PA := AA− and QA := A−A, where A− is any fixed

{1}-inverse of A.

Theorem 2.2. Let A ∈ Cn×n be a matrix of index k and E ∈ Cn×n be a fixed matrix. Then the matrix

equation system

(2.4) AXA = AEA and AkEAX = XAEAk,

is consistent if and only if

(2.5) Ak+1(EA)2 = (AE)2Ak+1

holds. In this case, if AGD is a fixed G-Drazin inverse of A, the general solution of (2.4) is given by

(2.6) X = AGDAEAAGD + T −QAkEAT (I − PA)− (I −QA)TPAEAk −QATPA,

for arbitrary T ∈ Cn×n.

Proof. Assume that X is any solution of (2.4). Then, pre- and post-multiplying by A the equality

AkEAX = XAEAk, we arrive at Ak+1(EA)2 = (AE)2Ak+1, since AXA = AEA. Hence, (2.5) holds.

For the converse, let AGD be a fixed G-Drazin inverse of A. If (2.5) holds, then X0 := AGDAEAAGD is

a solution of (2.4). In fact, we first note that AAGDA = A holds. Now,

AX0A = AAGDAEAAGDA = AEA.
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Moreover,

AkEAX0 = AkEAAGDAEAAGD = Ak(EA)2AGD = AGDAk+1(EA)2AGD

= AGD(AE)2Ak+1AGD = AGD(AE)2Ak = AGDAEAAGDAEAk

= X0AEA
k.

Hence, both equations in (2.4) hold. It then follows that S = AGDAEAAGD + SH .

In order to obtain the general solution, it is enough to determine SH . Applying Lemma 2.1 to the

equation AXA = 0, its general solution is given by

(2.7) X = Z −QAZPA,

for arbitrary Z ∈ Cn×n. Now, by substituting (2.7) in AkEAX = XAEAk and by virtue of the equalities

AkEAQA = AkEA and PAAEA
k = AEAk, we obtain

(2.8) AkEAZ(I − PA) = (I −QA)ZAEAk.

Post-multiplying the equation (2.8) by the projector AAGD, we have

(2.9) (I −QA)ZAEAk = 0.

Since I −QA is a projector, I −QA ∈ (I −QA){1} holds. Then, by Lemma 2.1, the general solution (in Z)

of (2.9) is given by

(2.10) Z = W − (I −QA)−(I −QA)WAEAk(AEAk)− = W − (I −QA)WAEAk(AEAk)−,

for any (AEAk)− ∈ (AEAk){1} and arbitraryW ∈ Cn×n. Thus, by using (2.10) and the identity A(I−QA) =

0, we obtain

(2.11) AkEAZ(I − PA) = AkEAW (I − PA).

However, W will be constrained in some sense because (2.8) must be satisfied. In fact, from (2.8), (2.9), and

(2.11) we have

(2.12) AkEAW (I − PA) = 0.

Again, by applying Lemma 2.1 to the equation (2.12) (now in the unknown W ) and using that I − PA ∈
(I − PA){1}, we get

(2.13) W = T − (AkEA)−AkEAT (I − PA),

for any (AkEA)− ∈ (AkEA){1} and arbitrary T ∈ Cn×n. Then, from (2.10) and (2.13), we obtain Z =

T − (AkEA)−AkEAT (I−PA)− (I−QA)TAEAk(AEAk)−, for arbitrary T ∈ Cn×n, because (I−PA)A = 0.

Finally, by substituting this last expression for Z in (2.7) and by taking into account again the identities

(I − PA)PA = 0 and QA(I −QA) = 0, we arrive at

(2.14) SH = {T −QAkEAT (I − PA)− (I −QA)TPAEAk −QATPA : T is arbitrary}.

Then, the proof is complete.

Remark 2.3. If the condition (2.5) is not fulfilled in Theorem 2.2, we have that S = ∅.
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3. Some applications. We can derive some interesting applications, by particularizing the parameter

E considered in the statement of the problem (1.3).

3.1. General representations for G-Drazin inverses. In this subsection, we obtain all parame-

trized solutions for the set of all G-Drazin inverses of a matrix A based on any particular G-Drazin inverse of

A. In particular, we obtain more simplified representations for all G-Drazin inverses of a matrix A of index

one.

We start with the following auxiliary lemma.

Lemma 3.1. Let A ∈ Cn×n be a matrix of index k. If X ∈ A{GD}, then the following assertions are

true:

(i) AkXk = XkAk, (ii) Xk ∈ Ak{GD}.

Proof. From AkX = XAk, it is obvious that (i) holds. If k ≤ 1, the assertion (ii) trivially holds. For k ≥
2, Xk ∈ Ak{1} since AkXkAk = XkAkAk = Xk−1(XAk+1)Ak−1 = Xk−1AkAk−1 = Xk−2(XAk+1)Ak−2 =

Xk−2AkAk−2 = · · · = XAkA = Ak. As ind(Ak) = 1, from (i) we get (ii).

Now, by setting E = A† in Theorem 2.2, (1.3) reduces to (1.2), and using Lemma 3.1 we can derive

an interesting result for G-Drazin inverses; namely, all parametrized solutions of the (equivalent) equation

system that define them.

Theorem 3.2. Let A ∈ Cn×n be a matrix of index k and let AGD be a fixed G-Drazin inverse of A.

Then the set of all G-Drazin inverses of A is given by

(3.15) A{GD} = {AGD + (I−PAk)T (I−PA) + (I−QA)T (I−PAk)− (I−QA)T (I−PA) : T is arbitrary},

or equivalently,

(3.16) A{GD} = {AGD + (I − PAk)U(I − PA) + (I −QA)V (I − PAk) : U, V are arbitrary},

where PA = AAGD, QA = AGDA, and PAk = Ak(AGD)k.

Proof. Set E = A†. We recall that the solution set of the system (1.3) is given by S = X0 + SH for

some (fixed but arbitrary) X0. For a fixed AGD ∈ A{GD}, notice that clearly X0 := AGD is a solution of

(1.2). In particular, AGD ∈ A{1}. Now, by Lemma 3.1, we have (AGD)k ∈ Ak{1}. Setting A− = AGD

and (AEAk)− = (Ak)− = (AGD)k in Theorem 2.2, projectors become PA = AAGD, QA = AGDA, PAk =

Ak(AGD)k, and QAk = (AGD)kAk. By Lemma 3.1, it follows that PAk = QAk . Since −QAk = −PAk =

(I −PAk)− I, we have −QAkT (I −PA) = (I −PAk)T (I −PA)− T (I −PA). Similarly, (I −QA)T (−PAk) =

(I − QA)T (I − PAk) − T + QAT . Now, some computations in (2.14) lead to (3.15). In order to see the

equality between expressions in (3.15) and (3.16), we first choose T = U(I−PA)+(I−QA)V , with arbitrary

U and V to be substituted in (3.15) and by using the facts that ATA = 0 and PAPAk = PAkQA = PAk ,

some calculations yield (3.16). For the other inclusion, by setting U = T and V = (I −QA)T − T (I − PA),

with arbitrary T , (3.15) can be easily deduced from (3.16).

Remark 3.3. Observe that while expression (3.16) for A{GD} is expressed in terms of two parameters

(namely, U and V ), expression (3.15) requires only one (namely, T ).

Corollary 3.4. Let A ∈ Cn×n be a matrix of index one and let AGD be a fixed G-Drazin inverse of A.

Then the set of all G-Drazin inverses of A is given by
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A{GD} = {AGD + (I −AGDA)T (I −AAGD) : T is arbitrary}.

Corollary 3.5. Let A ∈ Cn×n be a matrix of index k. Then the general solution of the system

(3.17) AXA = AADA and AkX = XAk

is given by

X = AD + T −AADT +AADTPA − TAAD +QATAA
D −QATPA,

for arbitrary T ∈ Cn×n.

Proof. By setting E = AD in Theorem 2.2, (1.3) reduces to (3.17). Since AAD is a projector and

AAD = ADA, it is easy to see that AGDAAD = ADAAGD = AD and (AD)k is a {1}-inverse of Ak. Thus, the

particular solution has the form AGDAADAAGD = AD. Now, applying Theorem 2.2 with (Ak)− = (AD)k,

we obtain the result.

Next, as a consequence, we derive the following result about commuting {1}−inverses which was proved

in [20, Lemma 4.5.2].

Corollary 3.6. Let A ∈ Cn×n be a matrix of index 1. Then the general solution of the system AXA =

A and AX = XA is given by X = A# + (I −A#A)T (I −AA#), for arbitrary T ∈ Cn×n.

3.2. What about range spaces of A and B whenever B{GD} ⊆ A{GD} holds?. This subsection

gives necessary conditions for any G-Drazin inverse of a matrix B to be a G-Drazin inverse of A. Next lemma

plays an important role in the subsequent result.

Lemma 3.7. Let A,B ∈ Cn×n. If AXB = 0 for all X ∈ Cn×n, then A = 0 or B = 0.

Proof. Let Ei,j be the matrix whose entries are all 0’s except its (i, j)-entry which is 1. Then, we can

consider A = [aij ], and note that 0 = EkjAEikB = aijEkkB for all integer 1 ≤ k ≤ n. Hence, aijB = 0 for

all integer 1 ≤ i, j ≤ n from which we conclude that A = 0 or B = 0.

In [23], the condition B{GD} ⊆ A{GD} was studied related to the G-based partial order that the

G-Drazin determines. Next result goes more deeply in this sense.

Theorem 3.8. Let A,B ∈ Cn×n be such that B{GD} ⊆ A{GD}. Let k = ind(A) and ` = ind(B).

Then the following properties hold:

(i) R(A) ⊆ R(B) or R(A∗) ⊆ R(B∗), (ii) R(Ak) ⊆ R(B`) and R((Ak)∗) ⊆ R((B`)∗).

Proof. If ` = 0, items (i) and (ii) are obvious. In order to show (i) and (ii) for ` ≥ 1, we consider a fixed

G-Drazin inverse BGD of B. By using the projectors PB = BBGD, QB = BGDB, and PB` = B`(BGD)`,

from Theorem 3.2, it follows that the formula

(3.18) X = BGD + (I − PB`)U(I − PB) + (I −QB)V (I − PB`),

provides all G-Drazin inverses of B for arbitrary U ∈ Cn×n and V ∈ Cn×n.

(i) Since X,BGD ∈ B{GD} ⊆ A{GD}, the equalities AXA = ABGDA = A hold. Hence, by setting

U = 0 in (3.18), it follows that A(I −QB)V (I − PB`)A = 0 for arbitrary V . Therefore, from Lemma 3.7 we

get (I − PB`)A = 0 or A(I − QB) = 0, which is equivalent to R(A) ⊆ R(B`) ⊆ R(B) or R(A∗) ⊆ R(B∗),

respectively.
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(ii) Since X,BGD ∈ B{GD} ⊆ A{GD}, we have XAk+1 = BGDAk+1 = Ak. By setting U = 0 in (3.18)

we get (I−QB)V (I−PB`)Ak = (I−QB)V (I−PB`)Ak+1AD = 0, for arbitrary V . Now, Lemma 3.7 implies

(I − PB`)Ak = 0 because ` 6= 0. Hence, R(Ak) ⊆ R(B`). Similarly, by setting V = 0 in (3.18) we arrive at

Ak(I−PB`)U(I−PB) = 0, for arbitrary U . Then Ak(I−PB`) = 0, i.e., Ak = AkB`(BGD)` = Ak(BGD)`B`

by Lemma 3.1. Thus, R((Ak)∗) ⊆ R((B`)∗).

Remark 3.9. We point out that most of the results provided in this paper are also valid for Hilbert space

operators, under an adequate interpretation. Let H be a complex Hilbert space and denote by B(H) the

algebra of all bounded linear operators on H. Now, the matrix equation system (1.3) should be interpreted

as operator equations, where A ∈ B(H) has closed range and k = ind(A) is the Drazin index of A (see [15]).

The crucial fact for solving these operator equations is that Lemma 2.1 remains valid. In fact, if A,B ∈ B(H)

have closed ranges, then AXB = C has a solution X ∈ B(H) if and only if AA−CB−B = C. In this case,

the general solution is given by X = A−CB− +Z −A−AZB−B, for arbitrary Z ∈ B(H) (see [10]). Finally,

we would like to highlight that is not necessary to use Hilbert space operator techniques for solving the new

system. It is enough to apply strictly algebraic techniques such as those used in the proof of Theorem 2.2.

In consequence, a natural further question is to ask about considering our results in rings.
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