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EFFECTS ON THE DISTANCE LAPLACIAN SPECTRUM OF GRAPHS

WITH CLUSTERS BY ADDING EDGES∗

ROBERTO C. DÍAZ† AND OSCAR ROJO†

Abstract. All graphs considered are simple and undirected. A cluster in a graph is a pair of vertex subsets (C, S), where 
C is a maximal set of cardinality |C| ≥ 2 of independent vertices sharing the same set S of |S| neighbors. Let G be a connected 
graph on n vertices with a cluster (C, S) and H be a graph of order |C|. Let G(H) be the connected graph obtained from G 
and H when the edges of H are added to the edges of G by identifying the vertices of H with the vertices in C. It is proved 
that G and G(H) have in common n − |C| + 1 distance Laplacian eigenvalues, and the matrix having these common eigenvalues 
is given, if H is the complete graph on |C| vertices then ∂ − |C| + 2 is a distance Laplacian eigenvalue of G(H) with multiplicity 
|C| − 1, where ∂ is the transmission in G of the vertices in C. Furthermore, it is shown that if G is a graph of diameter at least 
3, then the distance Laplacian spectral radii of G and G(H) are equal, and if G is a graph of diameter 2, then conditions for the 
equality of these spectral radii are established. Finally, the results are extended to graphs with two or more disjoint clusters.

Key words. Cluster, Pendant vertices, Distance Laplacian matrix, Distance Laplacian eigenvalues, Distance spectral 
radius.
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1. Introduction. Let G = (V (G), E(G)) be a simple undirected graph on n vertices with vertex set

V (G) and edge set E(G). Let D(G) be the diagonal matrix of order n whose (i, i)−entry is the degree of

the i− th vertex of G and let A (G) be the adjacency matrix of G. The matrices L(G) = D(G)−A(G) and

Q(G) = D(G) +A(G) are the Laplacian and signless Laplacian matrices of G, respectively. It is known that

L(G) and Q(G) are both positive semidefinite matrices. Thus, for each of these matrix, the corresponding

spectral radius is an eigenvalue. They are called the Laplacian spectral radius and the signless Laplacian

spectral radius of G, respectively. It is immediate that (0,1) is an eigenpair of L (G), where 1 is the all ones

vector. Fiedler [7] proved that G is a connected graph if and only if the second smallest eigenvalue of L(G)

is positive. This eigenvalue is called the algebraic connectivity of G.

As usual, K1,c denotes a star on c+ 1 vertices, Kn is a complete graph and Pn is a path of n vertices.

The distance between u, v ∈ V (G) for a connected graph G, denoted by d(u, v), is the length of the

shortest path connecting u and v. The Wiener index W (G) of the graph G is

W (G) =
1

2

∑
u,v∈V (G)

d(u, v),

and the transmission Tr(v) of a vertex v ∈ V (G) is the sum of the distances from v to all other vertices of
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G, that is,

Tr(v) =
∑

u∈V (G)

d(v, u).

The graph G is said to be k− transmission regular if Tr(v) = k for each vertex v ∈ V (G). The distance

matrix D(G) = (di,j) of G is an n × n matrix indexed by the vertices of G in which di,j = d(vi, vj). The

eigenvalues of D(G) are called the distance eigenvalues of G and they are denoted by

∂1(G) ≥ ∂2(G) ≥ · · · ≥ ∂n(G).

Clearly, D(Kn) = A(Kn) and then ∂1(Kn) = n− 1 and ∂i(G) = −1 for i = 2, . . . , n.

In [2], Aouchiche and Hansen introduce the distance Laplacian matrix L(G) and the signless Laplacian

matrix Q(G) as follows:

L(G) = Tr(G)−D(G)

and

Q(G) = Tr(G) +D(G),

where

Tr(G) = diag[Tr(v1),Tr(v2), . . . ,Tr(vn)]

is the diagonal matrix of the vertex transmissions in G.

The eigenvalues of L(G) and Q(G) are called the distance Laplacian eigenvalues and the distance signless

Laplacian eigenvalues of G, and they are denoted by

∂L1 (G) ≥ ∂L2 (G) ≥ · · · ≥ ∂Ln (G)

and

∂Q1 (G) ≥ ∂Q2 (G) ≥ · · · ≥ ∂Qn (G),

respectively.

From the above definitions, it follows that ∂Ln (G) = 0 with eigenvector 1 and

trace(L(G)) = trace(Q(G)) = 2W (G).

Clearly, if G is a k− transmission regular graph, then

L(G) = kIn −D(G)

and

Q(G) = kIn +D(G),
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where In is the identity matrix of order n; and, for i = 1, . . . , n,

∂Li (G) = k − ∂n−i+1(G)

and

∂Qi (G) = k + ∂i(G).

Definition 1.1. ([4, 9]) A cluster in a graph G is a pair of vertex subsets (C, S), where C is a maximal

set of independent vertices of cardinality |C| ≥ 2 sharing the same set S of |S| neighbors.

Example 1. The star K1,|C| is a subgraph of a graph G then (C, S) is a cluster in G, where C is the

set of the pendant vertices and S = {v}, being v the root vertex of the star.

Example 2. Let G:

1

2 3 4

5

6 7

8 9

10 11

We see that (C, S), where C = {1, 2, 3, 4, 5} and S = {6, 7} is a cluster in G.

Definition 1.2. Let G be a graph having a cluster (C, S). Let H be a graph of order |C|. Let G(H)

be the graph obtained from G and H when the edges of H are added to the edges of G by identifying the

vertices of H with the vertices in C.

From Definition 1.2, G(H) is a graph with vertex set V (G(H)) = V (G) and edge set E(G(H)) =

E(G) ∪ E(H).

Example 3. Let G be the graph in Example 2, and let H = P5. Then G(H) is the graph displayed

below:

1

2 3 4

5

6 7

8 9

10 11
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The Laplacian and signless Laplacian spectra of a graph G with a cluster (C, S) are studied in [1]. In [6]

and [12], respectively, the authors prove that the Laplacian spectral radius and algebraic connectivity of a

graph do not change when edges are added among the pendant vertices. The effects on some others spectral

invariants are determined in [10] and [11].

Definition 1.3. Let (C1, S1) and (C2, S2) be clusters in a graph G. We say that (C1, S1) and (C2, S2)

are disjoint if C1 ∩ C2 = φ and S1 ∩ S2 = φ.

Example 4. Let G:

1

2 3 4

5

6 7

10 11

8 9

12

We see that (C1, S1), C1 = {1, 2, 3, 4, 5}, S1 = {6, 7} and (C2, S2), C2 = {8, 9}, S2 = {10, 11}, are disjoint

clusters in G.

Definition 1.4. Let Nk = {1, 2, . . . , k} and let G be a graph having pairwise disjoint clusters (C1, S1),

. . ., (Ck, Sk). For i ∈ Nk, let Hi be a graph of order |Ci|. Let G(Hi : i ∈ Nk) be the graph obtained from G

and the graphs Hi when the edges of Hi are added to the edges of G by identifying the vertices of Hi with

the vertices in Ci for i ∈ Nk.

From this definition, we have

V (G(Hi : i ∈ Nk)) = V (G)

and

E(G(Hi : i ∈ Nk)) = E(G) ∪ E(H1) ∪ · · · ∪ E(Hk).

In [4], it is proved that the graphs G and G(Hi : i ∈ Nk) have n−
∑k
j=1 |Cj |+ k Laplacian eigenvalues

in common, among them the Laplacian spectral radii and algebraic connectivities.

The zero matrix of the appropriate order is denoted by 0. Furthermore, Im is the identity matrix of

order m, 1c is the column vector of ones of size c, AT is the transpose of A and Coli(A) denotes the i− th
column of A.

From now on, we assume that G is a connected graph, G(H) and G(Hi : i ∈ Nk) are as in Definition

1.2 and Definition 1.4, respectively. Thus, G(H) and G(Hi : i ∈ Nk) are connected graphs.

In this paper, we prove that G and G(H) have in common n − |C| + 1 distance Laplacian eigenvalues,

and we determine the matrix having these common eigenvalues; if H = K|C|, then ∂ − |C|+ 2 is a distance
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Laplacian eigenvalue of G(K|C|) with multiplicity |C| − 1, where ∂ is the transmission in G of the vertices

in C. Furthermore, we show that if G is a graph of diameter at least 3, then the distance Laplacian spectral

radii of G and G(H) are equal, and if G is a graph of diameter 2, then we derive the conditions for the

equality of these spectral radii. Finally, we extend the results to graphs with two or more disjoint clusters.

2. Preliminaries. In this section, we present some preliminaries results that will play important roles

in our work.

The next two theorems are due to Aouchiche and Hansen and we state them using the notation introduced

above.

Theorem 2.1. ([3]) Let G be a connected graph on n vertices with a cluster (C, S). Then,

1. the vertices in C have the same transmission, and

2. ∂ + 2 is an eigenvalue of L(G) with multiplicity at least |C| − 1, where ∂ is the transmission in G

of the vertices in C.

Theorem 2.2. ([3]) Let G be a connected graph on n vertices with a cluster (C, S). Consider the graph

G(K|C|) as in Definition 2. Then,

1. in the graph G(K|C|), the vertices in C have the same transmission, and

2. ∂ + 1 is an eigenvalue of L(G(K|C|)) with multiplicity at least |C| − 1, where ∂ is the transmission

in G(K|C|) of the vertices in C.

Corollary 2.3. Let G be a connected graph of order n with a cluster (C, S). Let ∂ be the transmission

in G of the vertices in C. Then the transmission in G(K|C|) of the vertices in C is ∂ − |C|+ 1.

Proof. Let ϕ be the transmission in G(K|C|) of the vertices in C. Then, for any u ∈ C, we have

∂ = 2(|C| − 1) + |S|+
∑

v∈V (G)\(C∪S)

d(u, v),

and

ϕ = (|C| − 1) + |S|+
∑

v∈V (G)\(C∪S)

d(u, v).

Therefore, ϕ = ∂ − |C|+ 1.

Corollary 2.4. Let G be a connected graph of order n with a cluster (C, S). Let ∂ be the transmission

in G of the vertices in C. Then, ∂ − |C|+ 2 is a distance Laplacian eigenvalue of G(K|C|) with multiplicity

at least |C| − 1.

Proof. The proof follows from Theorem 2.2 and Corollary 2.3.

Theorem 2.5. ([13]) Let G 6= Kn be a connected graph with maximum transmission D1. Then

∂L1 (G) ≥ D1 + 2.

Moreover, if diam(G) ≥ 3, then ∂L1 (G) > D1 + 2.

Theorem 2.6. ([2]) Let G be a connected graph on n vertices and m ≥ n edges. Consider the connected

graph G̃ obtained from G by the deletion of an edge. If (∂L1 , ∂
L
2 , . . . , ∂

L
n ) and (∂̃L1 , ∂̃

L
2 , . . . , ∂̃

L
n ) denote the

distance Laplacian spectra of G and G̃, respectively, then ∂̃Li ≥ ∂Li for all i = 1, . . . , n.
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We recall that a circulant matrix is any square matrix in which each row is rotated one element to the

right relative to the preceding row. More precisely, a matrix of the form

C =



c0 c1 · · · cn−2 cn−1
cn−1 c0 c1 cn−2

... cn−1 c0
. . .

...

c2
. . .

. . . c1
c1 c2 · · · cn−1 c0


is a circulant matrix of order n× n.

A general and remarkable result on circulant matrices is:

Theorem 2.7. ([5]) The normalized eigenvectors of any circulant matrix of order n× n are

xj =
1√
n

[1, ωj , ωj
2, . . . , ωn−1j ]T ,

j = 0, 1, . . . , n− 1, where ωj = exp 2ijπ
n and i =

√
−1.

An immediate consequence of Theorem 2.7 is:

Corollary 2.8. Circulant matrices of the same order commute.

3. Main results. The graphs G and G(H) have the same set of vertices. We label the vertices of G

as follows: The labels 1, 2, . . . , |C| are for the vertices of C, the labels |C| + 1, |C| + 2, . . . , |C| + |S| are for

the vertices in S and the labels |C| + |S| + 1, |C| + |S| + 2, . . . , n are for the remaining vertices of G. This

labeling is illustrated in Example 2. In particular, for the graphs G and G(K|C|), we obtain

L(G) =

[
E X

XT Y

]
with

E =


∂ −2 · · · −2

−2 ∂
. . .

...
...

. . .
. . . −2

−2 · · · −2 ∂

 ,
and

L(G(K|C|)) =

[
F X

XT Y

]
with

F =


∂ − |C|+ 1 −1 · · · −1

−1 ∂ − |C|+ 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 ∂ − |C|+ 1

 ,
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where the circulant matrices E and F are both of order |C| × |C|, the entries of X are the negatives of the

distances of the vertices in C to the vertices |C| + 1, . . . , n, the diagonal entries of Y are the transmissions

of the vertices |C| + 1, . . . , n and its off-diagonal entries are the negatives of the distances between these

vertices.

Theorem 3.1. Let G be a connected graph having a cluster (C, S). Let ∂ be the transmission in G of

the vertices in C. Then the matrices L(G) and L(G(K|C|)) share n− |C|+ 1 eigenvalues and these are the

eigenvalues of the (n− |C|+ 1)× (n− |C|+ 1) singular matrix

(3.1) T =

[
∂ − 2|C|+ 2 yT

y Y

]
,

where

y =
[
−
√
|C|d1,|C|+1 −

√
|C|d1,|C|+2 · · · −

√
|C|d1,n

]T
.

Proof. We have

E = 2L(K|C|) + (∂ − 2|C|+ 2)I|C|.

Then the eigenvalues of E are ∂ + 2 with multiplicity |C| − 1 and the single eigenvalue ∂ − 2|C|+ 2. For the

matrix F, we have

F = L(K|C|) + (∂ − 2|C|+ 2)I|C|.

Then the eigenvalues of F are ∂ − |C| + 2 with multiplicity |C| − 1 and the single eigenvalue ∂ − 2|C| + 2.

Theorem 2.7 allows us to construct an orthogonal matrix

U =

[
x1, . . . ,x|C|−1,

1√
|C|

1|C|

]

whose columns are eigenvectors of the real circulant matrices E and F . We observe that

UTX =


0 0 · · · 0
...

...
...

0 0 · · · 0

y1 y2 · · · yn−|C|

 ,

where yi = −
√
|C|d1,|C|+i for i = 1, . . . , n− |C|.

Let

Q =

[
U 0

0 In−|C|

]
.

Clearly, Q is an n× n orthogonal matrix. Hence,
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QTL(G)Q =

[
UT 0

0 In−|C|

] [
E X

XT Y

] [
U 0

0 In−|C|

]
=

[
UTEU UTX

XTU Y

]

=




∂ + 2 0 · · · 0

0
. . .

. . .
...

...
. . . ∂ + 2 0

0 · · · 0 ∂ − 2|C|+ 2




0 0 · · · 0
...

...
...

0 0 · · · 0

y1 y2 · · · yn−|C|




0 · · · 0 y1
...

... y2

0 · · · 0
...

0 · · · 0 yn−|C|

 Y


=

 (∂ + 2)I|C|−1 0 0

0 ∂ − 2|C|+ 2 yT

0 y Y

 =

[
(∂ + 2)I|C|−1 0

0 T

]
.

Since QTL(G)Q and L(G) are similar matrices, it follows that the distance Laplace eigenvalues of G are

∂ + 2 with multiplicity |C| − 1 and the eigenvalues of the matrix T . Similarly,

QTL(G(K|C|))Q =

[
UT 0

0 In−|C|

] [
F X

XT Y

] [
U 0

0 In−|C|

]

=




∂ − |C|+ 2 0 · · · 0

0
. . .

. . .
...

...
. . . ∂ − |C|+ 2 0

0 · · · 0 ∂ − 2|C|+ 2




0 0 · · · 0
...

...
...

0 0 · · · 0

y1 y2 · · · yn−|C|




0 · · · 0 y1
...

... y2

0 · · · 0
...

0 · · · 0 yn−|C|

 Y


=

 (∂ − |C|+ 2)I|C|−1 0 0

0 ∂ − 2|C|+ 2 yT

0 y Y

 =

[
(∂ − |C|+ 2)I|C|−1 0

0 T

]
.

The matrices QTL(G(K|C|))Q and L(G(K|C|)) are similar. Then the distance Laplacian eigenvalues of

G(K|C|) are ∂ − |C| + 2 with multiplicity |C| − 1 and the eigenvalues of T . Observe that T is a singular

matrix. In addition, since T is an (n− |C|+ 1)× (n− |C|+ 1) matrix whose eigenvalues are eigenvalues of

L(G) and L(G(K|C|)), the proof is complete.
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Theorem 3.2. Let G be a connected graph on n vertices with a cluster (C, S). Let H be a graph of order

|C|. Then L(G) and L(G(H)) have in common the eigenvalues of the matrix T , given in (3.1), of order

(n− |C|+ 1)× (n− |C|+ 1) .

Proof. Applying Theorem 2.6, we get

(3.2) ∂Li (G(K|C|)) ≤ ∂Li (G(H)) ≤ ∂Li (G)

for i = 1, . . . , n. From Theorem 3.1, L(G) and L(G(K|C|)) have in common the n − |C| + 1 eigenvalues of

the matrix T in (3.1). Thus, using this fact in (3.2), the result follows.

Lemma 3.3. Let G be a connected graph of order n with a cluster (C, S) such that |C| + |S| < n and

diam(G) = 2. Let ∂ be the transmission in G of the vertices in C. If ∂L1 (G) = ∂ + 2, then each vertex in S

is connected to every vertex in R = V (G) \ (C ∪ S).

Proof. To obtain a contradiction, suppose that the assertion of the lemma is false. By Theorem 2.6, we

may assume without loss of generality that each vertex in S is connected to every vertex in R except for the

vertices |C|+ |S| in S and n in R. Let G̃ the graph obtained from G adding the edge connecting the vertex

|C|+ |S| with the vertex n. Thus, in the graph G̃, each vertex in S is connected to every vertex in R. Then,

in G̃, di,j = 1 for i ∈ S and j ∈ R. Let ei the i-th standard basis vector in Rn. Let z ∈ Rn given by

z = (n− |C| − |S|) e1 −
n∑

j=|C|+|S|+1

ej .(3.3)

Since diam(G) = 2, an easy computation shows that ∂ + 2 = 2n− |S|. We claim that L(G̃)z = (∂ + 2)z. In

fact,

L(G̃)z = (n− |C| − |S|)L(G̃)(e1)−
n∑

j=|C|+|S|+1

L(G̃)(ej)

= (n− |C| − |S|)Col1(L(G̃))−
n∑

j=|C|+|S|+1

Colj(L(G̃))

= (n− |C| − |S|)



∂

−2
...

−2

−1
...

−1

−2

−2
...

−2



−



−2

−2
...

−2

−d|C|+1,|C|+|S|+1

...

−d|C|+|S|,|C|+|S|+1

Tr(v|C|+|S|+1)

−d|C|+|S|+2,|C|+|S|+1

...

−dn,|C|+|S|+1



− · · · −



−2

−2
...

−2

−d|C|+1,n

...

−d|C|+|S|,n
−d|C|+|S|+1,n

−d|C|+|S|+2,n

...

Tr(vn)
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= (n− |C| − |S|)



∂

−2
...

−2

−1
...

−1

−2

−2
...

−2



−



−2 (n− |C| − |S|)
−2 (n− |C| − |S|)

...

−2 (n− |C| − |S|)

−
n∑

j=|C|+|S|+1

d|C|+1,j

...

−
n∑

j=|C|+|S|+1

d|C|+|S|,j

Tr(v|C|+|S|+1)−
n∑

j=|C|+|S|+1

d|C|+|S|+1,j

Tr(v|C|+|S|+2)−
n∑

j=|C|+|S|+1

d|C|+|S|+2,j

...

Tr(vn)−
n∑

j=|C|+|S|+1

dn,j



=



(n− |C| − |S|) (∂ + 2)

0
...

0

0
...

0

−(2n− |S|)
−(2n− |S|)

...

−(2n− |S|)



.

The last equality is a consequence of

−
n∑

j=|C|+|S|+1

di,j = |C|+ |S| − n, for each i = |C|+ 1, . . . , |C|+ |S|

and

Tr(vi)−
n∑

j=|C|+|S|+1

di,j = 2|C|+ |S|, for each i = |C|+ |S|+ 1, . . . , n.
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Therefore,

L(G̃)z =



(n− |C| − |S|) (∂ + 2)

0
...

0

0
...

0

−(∂ + 2)

−(∂ + 2)
...

−(∂ + 2)



= (∂ + 2)z.

Define D = L(G)− L(G̃). The entries of D are zeros except for the entries

D(|C|+ |S|, |C|+ |S|) = D(n, n) = 1 and D(|C|+ |S|, n) = D(n, |C|+ |S|) = −1.

One can easily see that zTDz = 1. Let z0 = z
‖z‖2 . Rayleigh-Ritz Theorem [8] implies that ∂L1 (G) ≥ zT0 L(G)z0

and zT0 L(G̃)z0 = ∂ + 2. Therefore,

∂ + 2 = ∂L1 (G) ≥ zT0 L(G)z0 = zT0 L(G̃)z0 + zT0Dz0

= ∂ + 2 + zT0Dz0 = ∂ + 2 +
1

‖z‖22
> ∂ + 2,

which is a contradiction. Consequently, in the graph G each vertex in S is connected to every vertex in R.

Theorem 3.4. Let G be a connected graph on n vertices with a cluster (C, S). Let ∂ be the transmission

in G of the vertices in C. Let H be a graph of order |C|. The distance Laplacian spectral radii of G and

G(H) are equal in the following cases:

1. diam(G) ≥ 3,

2. diam(G) = 2 and ∂ is not the largest transmission in G, and

3. diam(G) = 2, ∂ is the largest transmission in G and |C|+ |S| < n.

Proof. As in the proof of Theorem 3.2, because of Theorem 2.6, it suffices to show the results for

H = K|C|. Since C is a set of independent vertices, G 6= Kn. Let D be the largest transmission in G.

1. Assume diam(G) ≥ 3. From Theorem 2.5, ∂L1 (G) > D + 2. Then ∂L1 (G) > ∂ + 2. Therefore, from

Theorem 3.1, ∂L1 (G) is an eigenvalue of the matrix T defined in (3.1). The eigenvalues of T are also

eigenvalues of L(G(K|C|)). Finally, since ∂L1 (G) ≥ ∂L1 (G(K|C|)), these distance Laplacian spectral

radii are equal.

2. Assume that diam(G) = 2 and ∂ is not the largest transmission in G. From Theorem 2.5, ∂L1 (G) ≥
D + 2 > ∂ + 2. The rest of the proof runs as in 1.

3. Assume now that diam(G) = 2, ∂ is the largest transmission in G and |C| + |S| < n. We have

∂L1 (G) > ∂ + 2 or ∂L1 (G) = ∂ + 2. As above, the result follows if ∂L1 (G) > ∂ + 2. Suppose that

∂L1 (G) = ∂ + 2. We apply Lemma 3.3, to get that each vertex in S is connected to every vertex in
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R. We can proceed as in the proof of Lemma 3.3, to obtain that L(G)z = ∂L1 (G)z with z as in (3.3).

We claim that ∂L1 (G) has multiplicity at least |C|. Consider the following set of vectors in Rn

F = {x1,x2, . . . ,x|C|−1, z},

where

xi = e1 − ei+1, i = 1, . . . , |C| − 1.

Clearly, F is a linearly independent set. To prove that ∂L1 (G) has multiplicity at least |C|, it

remains to show that each vector xi in F is an eigenvector of L(G) corresponding to ∂L1 (G). For

i = 1, . . . , |C| − 1, we may write xi = (x̃i,0), where x̃i = e1 − ei+1 ∈ R|C| and 0 ∈ Rn−|C|. For

i = 1, . . . , |C| − 1, we have Ex̃i = (∂ + 2)x̃i, where E is as in (3). From (3), we get that xi,

i = 1, . . . , |C| − 1, is an eigenvector of L(G) corresponding to ∂L1 (G). Thus, we have proved that

each vector in the linearly independent set F is an eigenvector of L(G) for the eigenvalue ∂L1 (G).

Therefore, ∂L1 (G) has multiplicity at least |C|. We apply Theorem 3.1 to the graph G, to obtain

that ∂L1 (G) is an eigenvalue of T , and thus, ∂L1 (G) is also an eigenvalue of L(G(K|C|)).

The proof is complete.

Let k ≥ 2. Let G(Hi : i ∈ Nk) as in Definition 1.4. For i = 1, . . . , k, let ∂i be the common transmission

in G of the vertices in Ci. Since k ≥ 2 and the clusters are pairwise disjoint, it follows that diam(G) ≥ 3.

Observe that, for i = 1, . . . , k,

G(Hj : j ∈ Nk) = G(Hj : j ∈ Nk \ {i})(Hi).

Repeated application of the above results enables us to obtain

Theorem 3.5. Let G be a connected graph having pairwise disjoint clusters (C1, S1), . . ., (Ck, Sk). For

i = 1, . . . , k, we have

1. ∂i + 2 is an eigenvalue of L(G) with multiplicity at least |Ci| − 1,

2. ∂i − |Ci|+ 2 is an eigenvalue of L(G(K|Cj | : j ∈ Nk)) with multiplicity at least |Ci| − 1,

3. the matrices L(G) and L(G(Hj : j ∈ Nk)) have n+
∑k
j=1 |Cj | − k eigenvalues in common, and

4. the distance Laplacian spectral radii of L(G) and L(G(Hj : j ∈ Nk)) are equal.
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