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TRIDIAGONAL PAIRS OF TYPE III WITH HEIGHT ONE∗

XUE LI† , BO HOU‡ , AND SUOGANG GAO§

Abstract. Let K denote an algebraically closed field with characteristic 0. Let V denote a vector space over K with finite

positive dimension, and let A,A∗ denote a tridiagonal pair on V of diameter d. Let V0, . . . , Vd denote a standard ordering of

the eigenspaces of A on V , and let θ0, . . . , θd denote the corresponding eigenvalues of A. It is assumed that d ≥ 3. Let ρi
denote the dimension of Vi. The sequence ρ0, ρ1, . . . , ρd is called the shape of the tridiagonal pair. It is known that ρ0 = 1 and

there exists a unique integer h (0 ≤ h ≤ d/2) such that ρi−1 < ρi for 1 ≤ i ≤ h, ρi−1 = ρi for h < i ≤ d − h, and ρi−1 > ρi
for d− h < i ≤ d. The integer h is known as the height of the tridiagonal pair. In this paper, it is showed that the shape of a

tridiagonal pair of type III with height one is either 1, 2, 2, . . ., 2, 1 or 1, 3, 3, 1. In each case, an interesting basis is found for

V and the actions of A,A∗ on this basis are described.
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1. Introduction. Throughout the paper, K denotes an algebraically closed field with characteristic 0

and V denotes a vector space over K with finite positive dimension.

We begin by recalling the notion of a tridiagonal pair. We will use the following terms. Let End(V )

denote the K-algebra consisting of all K-linear transformations from V to V . For A ∈ End(V ) and for

a subspace W ⊆ V , we call W an eigenspace of A whenever W 6= 0 and there exists θ ∈ K such that

W = {υ ∈ V | Aυ = θυ}; in this case, θ is the eigenvalue of A associated with W . We say A is diagonalizable

whenever V is spanned by the eigenspaces of A.

Definition 1.1. ([1, Definition 1.1]) By a tridiagonal pair on V , we mean an ordered pair A,A∗ ∈
End(V ) that satisfy (i)–(iv) below:

(i) Each of A,A∗ is diagonalizable on V .

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

(1.1) A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d),

where V−1 = 0 and Vd+1 = 0.

(iii) There exists an ordering {V ∗
i }δi=0 of the eigenspaces of A∗ such that

(1.2) AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ),

where V ∗
−1 = 0 and V ∗

δ+1 = 0.
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(iv) There is no subspace W of V such that both AW ⊆W, A∗W ⊆W, other than W = 0 and W = V .

We say the pair A,A∗ is over K.

Let A,A∗ denote a tridiagonal pair on V . By [1, Lemma 4.5], the integers d and δ from Definition 1.1

are equal; we call this common value the diameter of A,A∗. We assume that d ≥ 3. An ordering of the

eigenspaces of A (resp., A∗) is said to be standard whenever it satisfies (1.1) (resp., (1.2)). By [1, Corollary

5.7], for 0 ≤ i ≤ d, the spaces Vi, V
∗
i have the same dimension; we denote this common dimension by ρi.

We call the sequence {ρi}di=0 the shape of A,A∗. By a Leonard pair we mean a tridigonal pair with shape

(1, 1, . . . , 1) [8, Definition 1.1]. See [5, 8, 9] for more information about Leonard pairs. The pair A,A∗ is said

to be sharp whenever ρ0 = 1. By [7, Theorem 1.3], a tridiagonal pair over an algebraically closed field is

sharp. See [2, 6] for more information about sharp tridiagonal pairs. By [1, Corollaries 5.7 and 6.6], {ρi}di=0

is symmetric and unimodal; that is ρi = ρd−i for 0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d
2 . By [3, Theorem 3.3],

there exists a unique integer h with 0 ≤ h ≤ d
2 such that ρi−1 < ρi for 1 ≤ i ≤ h, ρi−1 = ρi for h < i ≤ d−h

and ρi−1 > ρi for d− h < i ≤ d. We call h the height of A,A∗.

It is known [1, Theorem 10.1] that there exists a sequence of scalars β, γ, γ∗, %, %∗ taken from K such

that both

[A,A2A∗ − βAA∗A+A∗A2 − γ(AA∗ +A∗A)− %A∗] = 0,

[A∗, A∗2

A− βA∗AA∗ +AA∗2

− γ∗(A∗A+AA∗)− %∗A] = 0,

where [B,C] = BC − CB. The sequence is unique if the diameter of the pair is at least 3. The above

relations are known as the tridiagonal relations. The scalar β is called the fundamental parameter of A,A∗.

A tridiagonal pair A,A∗ is called of type I, type II, type III according to β 6= ±2, β = 2, β = −2 in the

tridiagonal relations, respectively.

In [4], K. Nomura considered tridiagonal pairs A,A∗ of type I with height one. He showed that the

shape of a tridiagonal pair of height one is either 1, 2, 2, . . . , 2, 1 or 1, 3, 3, 1. And he gave a basis for V and

obtained the matrices representing A,A∗ with respect to this basis. Motivated by [4], in this paper, we show

that the shape of a tridiagonal pair of type III with height one is the same as type I in [4], that is, the shape

is either 1, 2, 2, . . . , 2, 1 or 1, 3, 3, 1. Then, in each case, we display a basis for V and give the actions of A,A∗

on this basis.

In Section 2, we first recall some basic results from [1] and [3] concerning the split decomposition and

the refined split decomposition of the tridiagonal pair. In Section 3, we define some linear transformations

Xi, Yi, Zi(0 ≤ i ≤ d), and use them to show that RL(+) (resp., RL(−)) is a scalar multiple of L(+)R (resp.,

L(−)R) on each U (r) ∩ Ui. We also give a linear relation between RL(0), L(0)R and I (the identity map) on

each U (r) ∩Ui. In Section 4, we find a basis for V . In Section 5, we obtain the action of L. In Section 6, we

determine the shape of the tridiagonal pair of type III with height 1, which is Theorem 6.4. In Section 7,

for all cases listed in Theorem 6.4, we display a basis for V and give the actions of A,A∗ on this basis.

2. Refined split decomposition of a tridiagonal pair. In this section, we first recall some known

facts about the split decomposition and the refined split decomposition of the tridaigonal pair.

With reference to Definition 1.1, for 0 ≤ i ≤ d, we set

Ui = (V ∗
0 + V ∗

1 + · · ·+ V ∗
i ) ∩ (Vi + Vi+1 + · · ·+ Vd).
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By [1, Corollary 5.7], the dimension of Ui is equal to ρi for 0 ≤ i ≤ d. And by [1, Theorem 4.6], the space

V is decomposed as

(2.3) V = U0 + U1 + · · ·+ Ud (direct sum).

The decomposition given in (2.3) is called the split decomposition of the tridiagonal pair.

Let Fi : V → Ui denote the projection with respect to the direct sum (2.3). Then, for 0 ≤ i, j ≤ d,

F0 + F1 + · · ·+ Fd = I and FiFj = δijFi.

The raising map R and the lowering map L are defined as follows:

R = A−
d∑
i=0

θiFi and L = A∗ −
d∑
i=0

θ∗i Fi.

Lemma 2.1. ([1, Corollary 6.3])

(i) RUi ⊆ Ui+1 (0 ≤ i < d), RUd = 0.

(ii) LUi ⊆ Ui−1 (0 < i ≤ d), LU0 = 0.

Lemma 2.2. ([3, Lemma 2.7]) Let W denote a subspace of V . Suppose that RW ⊆ W,LW ⊆ W and

FiW ⊆W for 0 ≤ i ≤ d. Then W = 0 or W = V .

Next, we display some results concerning the refined split decomposition of the tridiagonal pair. For the

rest of this paper, let h denote the height of the tridiagonal pair.

For 0 ≤ r ≤ h and r ≤ i ≤ d− r, we set

U
(r)
i = Ri−r(Ur ∩Ker Rd−2r+1).

Lemma 2.3. ([3, Lemma 4.1]) For 0 ≤ r ≤ h, the following hold.

(i) U
(0)
0 = U0 and U

(0)
d = Ud,

(ii) U
(r)
i ⊆ Ui (r ≤ i ≤ d− r),

(iii) U
(r)
r = Ur ∩Ker Rd−2r+1,

(iv) U
(r)
i = Ri−rU

(r)
r (r ≤ i ≤ d− r),

(v) RU
(r)
i = U

(r)
i+1 (r ≤ i ≤ d− r − 1), RU

(r)
d−r = 0,

(vi) The restriction R |
U

(r)
i

: U
(r)
i → U

(r)
i+1 is a bijection (r ≤ i ≤ d− r − 1).

Lemma 2.4. ([3, Lemma 4.3]) For 0 ≤ r ≤ h,

dim U
(r)
i = ρr − ρr−1 (r ≤ i ≤ d− r),

where we set ρ−1 = 0.

Lemma 2.5. ([3, Lemmas 4.7 and 4.8]) For 0 ≤ i ≤ d,

Ui =

m∑
r=0

U
(r)
i (direct sum),
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where m = min{i, h, d− i}. And V is decomposed as

(2.4) V =

h∑
r=0

d−r∑
i=r

U
(r)
i (direct sum).

The decomposition given in (2.4) is called the refinement split decomposition of the tridiagonal pair.

For 0 ≤ r ≤ h, we set

U (r) =

d−r∑
i=r

U
(r)
i .

Lemma 2.6. ([3, Lemma 5.1]) V is decomposed as

V =

h∑
r=0

U (r) (direct sum).

Lemma 2.7. ([3, Lemma 5.3]) For 0 ≤ r ≤ h,

RU (r) ⊆ U (r).

Let

F (r) : V → U (r) (0 ≤ r ≤ h)

denote the projection with respect to the direct sum V =
∑h
r=0 U

(r). Then, for 0 ≤ r ≤ h and 0 ≤ s ≤ h,

F (0) + F (1) + · · ·+ F (h) = I and F (r)F (s) = δrsF
(r).

We set

F
(r)
i = FiF

(r) (0 ≤ r ≤ h, 0 ≤ i ≤ d).

Lemma 2.8. ([3, Lemma 6.1]) For 0 ≤ r ≤ h and 0 ≤ i ≤ d,

(i) F
(r)
i = F (r)Fi = FiF

(r),

(ii) F
(0)
0 = F0 and F

(0)
d = Fd,

(iii) F
(r)
i 6= 0 if and only if r ≤ i ≤ d− r.

Lemma 2.9. ([3, Lemma 6.2]) For 0 ≤ r ≤ h and r ≤ i ≤ d− r, F (r)
i V = U

(r)
i , and

F
(r)
i : V → U

(r)
i

is the projection with respect to the direct sum V =
∑h
r=0

∑d−r
i=r U

(r)
i .

Lemma 2.10. ([3, Lemma 6.3]) For 0 ≤ r ≤ h,

(i) F (r)R = RF (r),

(ii) F
(r)
i R = RF

(r)
i−1(1 ≤ i ≤ d),

(iii) F
(r)
r R = 0.

We set

(2.5) L(−) =

h∑
r=1

F (r−1)LF (r), L(0) =

h∑
r=0

F (r)LF (r), L(+) =

h−1∑
r=0

F (r+1)LF (r).
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Lemma 2.11. ([3, Lemma 6.5])

L = L(−) + L(0) + L(+).

Lemma 2.12. ([3, Lemma 6.7]) For 0 ≤ r ≤ h, the following hold.

(i) L(0)F
(r)
r = 0,

(ii) L(+)F
(r)
r = L(+)F

(r)
r+1 = 0.

Let A,A∗ be a tridiagonal pair with the fundamental parameter β. For the rest of this paper, we always

assume that β = −2.

Lemma 2.13. For 0 ≤ i ≤ d− 2,

(R3L+R2LR−RLR2 − LR3 − εiR2)Fi = 0,

(L3R+ L2RL− LRL2 −RL3 + εiL
2)Fi+2 = 0,(2.6)

where

(2.7) εi = (θi − θi+2)(θ∗i+1 − θ∗i+2)− (θ∗i+2 − θ∗i )(θi+1 − θi).

Proof. Immediate from [1, Theorem 12.1] and β = −2.

Lemma 2.14. The following relations hold.

R3L(+) +R2L(+)R−RL(+)R2 − L(+)R3 = 0,(2.8)

R3L(−) +R2L(−)R−RL(−)R2 − L(−)R3 = 0.(2.9)

Proof. Immediate from [3, Theorem 6.8] and β = −2.

Lemma 2.15. For 0 ≤ r ≤ h and 0 ≤ i ≤ d− 2,

(2.10) (R3L(0) +R2L(0)R−RL(0)R2 − L(0)R3 − εiR2)F
(r)
i = 0.

Proof. Immediate from [3, Lemma 6.9] and β = −2.

Lemma 2.16. ([1, Theorem 11.2]) Let {θi}di=0 (resp., {θ∗i }di=0) denote an ordering of the eigenvalues of

A (resp., A∗). Then there exist scalars a, a∗, b, b∗, c, c∗ in K such that

θi = a+ b(−1)i + ci(−1)i (0 ≤ i ≤ d),(2.11)

θ∗i = a∗ + b∗(−1)i + c∗i(−1)i (0 ≤ i ≤ d).(2.12)

3. Relations between R and L(+) (resp., L(−), L(0)). In this section, we show that RL(+) (resp.,

RL(−)) is a scalar multiple of L(+)R (resp., L(−)R) on each U (r)∩Ui. We also give a linear relation between

RL(0), L(0)R and I (the identity map) on each U (r) ∩ Ui.

We first fix an integer r such that 0 ≤ r ≤ h− 1, and set

Xi := L(+)F
(r)
i (0 ≤ i ≤ d).

Lemma 3.1. Xr = Xr+1 = 0.

Proof. Immediate from Lemma 2.12 (ii).
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Lemma 3.2. For r ≤ i ≤ d− r − 3,

(3.13) R3Xi +R2Xi+1R−RXi+2R
2 −Xi+3R

3 = 0.

Proof. From (2.8), we have

(R3L(+) +R2L(+)R−RL(+)R2 − L(+)R3)F
(r)
i = 0.

Apply Lemma 2.10 to the above relation to obtain

R3L(+)F
(r)
i +R2L(+)F

(r)
i+1R−RL

(+)F
(r)
i+2R

2 − L(+)F
(r)
i+3R

3 = 0.

Lemma 3.3. For r + 2 ≤ i ≤ d− r − 1,

RXi +Xi+1R = 0, if i− r is even;(3.14) (
i− r + 1

2

)
RXi +

(
i− r

2

)
Xi+1R = 0, if i− r is odd.(3.15)

Proof. Fix an integer i (r + 2 ≤ i ≤ d− r − 1). By the definition of Xi and Lemma 2.9, we have

RXi |U(r)
i
6= 0, RXi |U(r)

j
= 0 (i 6= j), Xi+1R |U(r)

i
6= 0, Xi+1R |U(r)

j
= 0 (i 6= j).

These imply that (3.14) and (3.15) hold on V if and only if (3.14) and (3.15) hold on U
(r)
i .

We first show that (3.14) holds using induction on i. Setting i = r in (3.13), and applying Lemma 3.1,

we find

(3.16) −RXr+2R
2 −Xr+3R

3 = −(RXr+2 +Xr+3R)R2 = 0.

Note that

R2 |
U

(r)
r

: U (r)
r → U

(r)
r+2

is a bijection by Lemma 2.3. Remove the factor (−1)R2 in (3.16) to obtain

(3.17) RXr+2 +Xr+3R = 0.

Hence, (3.14) holds at i = r + 2.

Now suppose (3.14) holds at i − 2, where i − 2 − r is a non-negative even integer. We will show that

(3.14) holds at i. By the induction hypothesis,

(3.18) RXi−2 +Xi−1R = 0.

Replacing i by i− 2 in (3.13),

(3.19) R3Xi−2 +R2Xi−1R−RXiR
2 −Xi+1R

3 = 0.

Multiplying (3.18) by (−1)R2 from the left,

(3.20) −R3Xi−2 −R2Xi−1R = 0.
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Adding (3.19) and (3.20),

−RXiR
2 −Xi+1R

3 = 0.

Since R2 |
U

(r)
i−2

: U
(r)
i−2 → U

(r)
i is a bijection by Lemma 2.3, we can remove the factor (−1)R2 to get

RXi +Xi+1R = 0.

Hence, (3.14) holds.

Next, we show that (3.15) holds using induction on i. Setting i = r + 1 in (3.13), and applying Lemma

3.1, we obtain

R2Xr+2R−RXr+3R
2 −Xr+4R

3 = 0.

Since R |
U

(r)
r+1

: U
(r)
r+1 → U

(r)
r+2 is a bijection by Lemma 2.3, we can remove the factor R to get

(3.21) R2Xr+2 −RXr+3R−Xr+4R
2 = 0.

Multiplying (3.17) by (−1)R from the left,

(3.22) −R2Xr+2 −RXr+3R = 0.

Adding (3.21) and (3.22),

−2RXr+3R−Xr+4R
2 = 0.

Since R |
U

(r)
r+2

: U
(r)
r+2 → U

(r)
r+3 is a bijection by Lemma 2.3, we may remove the factor R to get(

4

2

)
RXr+3 +

(
3

2

)
Xr+4R = 0.

Hence, (3.15) holds at i = r + 3.

Now suppose (3.15) holds at i − 2, where i − 2 − r is a non-negative odd integer. We will show that

(3.15) holds at i. By the induction hypothesis,

(3.23)

(
i− r − 1

2

)
RXi−2 +

(
i− r − 2

2

)
Xi−1R = 0.

Replacing i by i− 2 in (3.13),

(3.24) R3Xi−2 +R2Xi−1R−RXiR
2 −Xi+1R

3 = 0.

Multiplying (3.24) by
(
i−r−1

2

)
,

(3.25)

(
i− r − 1

2

)
R3Xi−2 +

(
i− r − 1

2

)
R2Xi−1R−

(
i− r − 1

2

)
RXiR

2 −
(
i− r − 1

2

)
Xi+1R

3 = 0.

Multiplying (3.23) by (−1)R2 from the left,

(3.26) −
(
i− r − 1

2

)
R3Xi−2 −

(
i− r − 2

2

)
R2Xi−1R = 0.

Adding (3.25) and (3.26), since the restriction R |
U

(r)
i−2

: U
(r)
i−2 → U

(r)
i−1 is a bijection by Lemma 2.3, we can

remove the factor R to get

(3.27) (i− r − 2)R2Xi−1 −
(
i− r − 1

2

)
RXiR−

(
i− r − 1

2

)
Xi+1R

2 = 0.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 555-582, November 2019.
http://repository.uwyo.edu/ela

Xue Li, Bo Hou, and Suogang Gao 562

Since i− 1− r is even, replacing i by i− 1 in (3.14), and then multiplying −(i− r − 2)R from the left, we

obtain

(3.28) − (i− r − 2)R2Xi−1 − (i− r − 2)RXiR = 0.

Adding (3.27) and (3.28), since R |
U

(r)
i−1

: U
(r)
i−1 → U

(r)
i is a bijection by Lemma 2.3, we can remove the factor

(−1)R to get (
i− r + 1

2

)
RXi +

(
i− r

2

)
Xi+1R = 0.

Hence, (3.15) holds.

Theorem 3.4. For 0 ≤ r ≤ h− 1 and r + 2 ≤ i ≤ d− r − 1,

(RL(+) + L(+)R)U
(r)
i = 0, if i− r is even;(3.29) (

RL(+) +
i− r − 1

i− r + 1
L(+)R

)
U

(r)
i = 0, if i− r is odd.(3.30)

Proof. Immediate from (3.14), (3.15) and the definition of Xi.

Next we fix an integer r such that 1 ≤ r ≤ h, and set

Yi := L(−)F
(r)
i (0 ≤ i ≤ d) and Yd+1 := 0.

Lemma 3.5. Yd−r+1 = Yd−r+2 = 0.

Proof. Immediate from Lemma 2.8 (iii).

Lemma 3.6. For r ≤ i ≤ d− r − 1,

(3.31) R3Yi +R2Yi+1R−RYi+2R
2 − Yi+3R

3 = 0.

Proof. Similar to the proof of (3.13).

Lemma 3.7. For r ≤ i ≤ d− r − 1,

RYi + Yi+1R = 0, if d− r − i is odd;(3.32) (
d− r − i+ 1

2

)
RYi +

(
d− r − i+ 2

2

)
Yi+1R = 0, if d− r − i is even.(3.33)

Proof. We first show that (3.32) holds using induction on i. Applying Lemma 3.5, setting i = d− r − 1

in (3.31) and then removing R2 from the left, we obtain

(3.34) RYd−r−1 + Yd−rR = 0.

Hence, (3.32) holds at i = d− r − 1.

Now suppose (3.32) holds at i+ 2, where d− r− i− 2 is a non-negative odd integer. We will show that

(3.32) holds at i. By the induction hypothesis,

(3.35) RYi+2 + Yi+3R = 0.

Multiplying (3.35) by R2 from the right, adding (3.31) and then removing R2 from the left, we can get

(3.32).
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Next, we show that (3.33) holds using induction on i. Setting i = d−r−2 in (3.31) and applying Lemma

3.5, we obtain

(3.36) R3Yd−r−2 +R2Yd−r−1R−RYd−rR2 = 0.

Multiplying (3.34) by R on the two sides of the equation,

(3.37) R2Yd−r−1R+RYd−rR
2 = 0.

Adding (3.36) and (3.37), and then removing R2, we have

RYd−r−2 + 2Yd−r−1R = 0.

Hence, (3.33) holds at i = d− r − 2.

Now suppose (3.33) holds at i+ 2, where d− r− i− 2 is a non-negative even integer. We will show that

(3.33) holds at i. By the induction hypothesis,

(3.38)

(
d− r − i− 1

2

)
RYi+2 +

(
d− r − i

2

)
Yi+3R = 0.

Multiplying (3.31) by
(
d−r−i

2

)
, we have

(3.39)

(
d− r − i

2

)
R3Yi +

(
d− r − i

2

)
R2Yi+1R−

(
d− r − i

2

)
RYi+2R

2 −
(
d− r − i

2

)
Yi+3R

3 = 0.

Multiplying (3.38) by R2 from the right, adding (3.39), and then removing R, we obtain

(3.40)

(
d− r − i

2

)
R2Yi +

(
d− r − i

2

)
RYi+1R− (d− r − i− 1)Yi+2R

2 = 0.

Since d− r− i− 1 is odd, replacing i by i+ 1 in (3.32), and then multiplying (d− r− i− 1)R from the right,

we have

(3.41) (d− r − i− 1)RYi+1R+ (d− r − i− 1)Yi+2R
2 = 0.

Adding (3.40) and (3.41), and then removing R, we can get (3.33).

Theorem 3.8. For 1 ≤ r ≤ h and r ≤ i ≤ d− r − 1,

(RL(−) + L(−)R)U
(r)
i = 0, if d− r − i is odd;(3.42) (

RL(−) +
d− r − i+ 2

d− r − i
L(−)R

)
U

(r)
i = 0, if d− r − i is even.(3.43)

Proof. Immediate from (3.32), (3.33) and the definition of Yi.

Finally we fix an integer r such that 0 ≤ r ≤ h, and set

Zi := L(0)F
(r)
i (0 ≤ i ≤ d).

Lemma 3.9. Zr = Zd−r+1 = 0.

Proof. Immediate from Lemmas 2.8 (iii) and 2.12 (i).
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Lemma 3.10. For r ≤ i ≤ d− r − 2,

(3.44) R3Zi +R2Zi+1R−RZi+2R
2 − Zi+3R

3 − εiR2F
(r)
i = 0.

Proof. Immediate from (2.10) and Lemma 2.10.

Lemma 3.11. For r + 1 ≤ i ≤ d− r − 1,

i− r + 1

2
R2Zi −RZi+1R−

i− r + 1

2
Zi+2R

2

−
i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εjRF

(r)
i = 0, if i− r is odd;(3.45)

i− r + 2

2
R2Zi −

i− r
2

Zi+2R
2 +

i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εjRF

(r)
i = 0,

if i− r is even.(3.46)

Proof. We show that the results hold using induction on i. Setting i = r in (3.44), and applying Lemma

3.9, we find

R2Zr+1R−RZr+2R
2 − Zr+3R

3 − εrR2F (r)
r = 0.

Using Lemma 2.10 and removing R, we obtain

(3.47) R2Zr+1 −RZr+2R− Zr+3R
2 − εrRF (r)

r+1 = 0.

Hence, (3.45) holds at i = r + 1.

Now suppose the results hold at i− 1, where i− 1− r is a non-negative odd integer. We will show that

the results hold at i. By the induction hypothesis,

(3.48)
i− r

2
R2Zi−1 −RZiR−

i− r
2

Zi+1R
2 −

i−2∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εjRF

(r)
i−1 = 0.

Replacing i by i− 1 in (3.44), and multiplying by i−r
2 ,

(3.49)
i− r

2
R3Zi−1 +

i− r
2

R2ZiR−
i− r

2
RZi+1R

2 − i− r
2

Zi+2R
3 − i− r

2
εi−1R

2F
(r)
i−1 = 0.

Multiplying (3.48) by (−1)R from the left, adding (3.49), and then removing R, we can get (3.46).

Next, we suppose the results hold at i− 1, where i− 1− r is a non-negative even integer. We will show

that the results hold at i. By the induction hypothesis,

i− r + 1

2
R2Zi−1 −

i− r − 1

2
Zi+1R

2 +

i−2∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εjRF

(r)
i−1 = 0.

Multiplying (−1)R from the left,

(3.50) − i− r + 1

2
R3Zi−1 +

i− r − 1

2
RZi+1R

2−
i−2∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εjR

2F
(r)
i−1 = 0.
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Replacing i by i− 1 in (3.44), and multiplying by i−r+1
2 ,

i− r + 1

2
R3Zi−1 +

i− r + 1

2
R2ZiR−

i− r + 1

2
RZi+1R

2 − i− r + 1

2
Zi+2R

3

− i− r + 1

2
εi−1R

2F
(r)
i−1 = 0.(3.51)

Adding (3.50) and (3.51), and then removing R, we can get (3.45).

Lemma 3.12. For r ≤ i ≤ d− r − 2,

d− r − i
2

R2Zi +RZi+1R−
d− r − i

2
Zi+2R

2

−
d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εjRF

(r)
i = 0, if d− r − i is even;(3.52)

d− r − i− 1

2
R2Zi −

d− r − i+ 1

2
Zi+2R

2

+

d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εjRF

(r)
i = 0, if d− r − i is odd.(3.53)

Proof. We show that the results hold using induction on i. Setting i = d − r − 2 in (3.44), applying

Lemma 3.9 and then removing R, we have

(3.54) R2Zd−r−2 +RZd−r−1R− Zd−rR2 − εd−r−2RF
(r)
d−r−2 = 0.

Hence, (3.52) holds at i = d− r − 2.

Now suppose the results hold at i+ 1, where d− r − i− 1 is a non-negative even integer. We will show

that the results hold at i. By the induction hypothesis,

d− r − i− 1

2
R2Zi+1 +RZi+2R−

d− r − i− 1

2
Zi+3R

2

−
d−r−2∑
j=i+1

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εjRF

(r)
i+1 = 0.(3.55)

Multiplying (3.44) by d−r−i−1
2 ,

d− r − i− 1

2
R3Zi +

d− r − i− 1

2
R2Zi+1R−

d− r − i− 1

2
RZi+2R

2 − d− r − i− 1

2
Zi+3R

3

− d− r − i− 1

2
εiR

2F
(r)
i = 0.(3.56)

Multiplying (3.55) by (−1)R from the right, adding (3.56), and then removing R, we can get (3.53).

Next, we suppose the results hold at i + 1, where d − r − i − 1 is a non-negative odd integer. We will
show that the results hold at i. By the induction hypothesis,

(3.57)
d− r − i− 2

2
R2Zi+1 −

d− r − i

2
Zi+3R

2 +

d−r−2∑
j=i+1

[
1

4
− 1

4
(−1)d−r−j +

d− r − j

2
(−1)d−r−j

]
εjRF

(r)
i+1 = 0.
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Multiplying (3.44) by d−r−i
2 ,

(3.58)
d− r − i

2
R3Zi+

d− r − i
2

R2Zi+1R−
d− r − i

2
RZi+2R

2− d− r − i
2

Zi+3R
3− d− r − i

2
εiR

2F
(r)
i = 0.

Multiplying (3.57) by (−1)R from the right, adding (3.58), and then removing R, we can get (3.52).

Lemma 3.13. For r + 1 ≤ i ≤ d− r − 1,

(i) If i− r and d− r − i are odd, then

(3.59) (i− r + 1)RZi − (d− r − i+ 1)Zi+1R− e1iF
(r)
i = 0,

where

e1i =(d− r − i+ 1)

i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

+ (i− r + 1)

d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj .

(ii) If i− r is even, d− r − i is odd, then

d− 2r + 1

2
R2Zi −

d− 2r + 1

2
Zi+2R

2 + e2iRF
(r)
i = 0,(3.60)

(d− 2r + 1)RZi + e2
′

i F
(r)
i = 0,(3.61)

where

e2i =

i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

+

d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj ,

e2
′

i =(d− r − i+ 1)

i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

− (i− r)
d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj .

(iii) If i− r is odd, d− r − i is even, then

d− 2r + 1

2
R2Zi −

d− 2r + 1

2
Zi+2R

2 − e3iRF
(r)
i = 0,(3.62)

(d− 2r + 1)Zi+1R+ e3
′

i F
(r)
i = 0,(3.63)
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where

e3i =

i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

+

d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj ,

e3
′

i =(d− r − i)
i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

− (i− r + 1)

d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj .

(iv) If i− r and d− r − i are even, then

(3.64) (d− r − i)RZi − (i− r)Zi+1R+ e4iF
(r)
i = 0,

where

e4i =(d− r − i)
i−1∑
j=r

[
1

4
− 1

4
(−1)j−r+1 +

j − r + 1

2
(−1)j−r

]
εj

+ (i− r)
d−r−2∑
j=i

[
1

4
− 1

4
(−1)d−r−j +

d− r − j
2

(−1)d−r−j
]
εj .

Proof. (i) Setting i = d− r− 1 in (3.45), applying Lemma 3.9 and then removing R, we get (3.59) holds

at i = d− r − 1.

Suppose r+1 ≤ i ≤ d−r−2. Eliminating the term of Zi+2R
2 from (3.45) and (3.53), and then removing

R, we get (3.59).

(ii) Setting i = d − r − 1 in (3.46) and using Lemma 3.9, we can get (3.60) holds at i = d − r − 1.

Removing R, we get (3.61) holds at i = d− r − 1.

Suppose r+ 1 ≤ i ≤ d− r− 2. Adding (3.46) and (3.53), we get (3.60). Eliminating the term of Zi+2R
2

from (3.46) and (3.53), and then removing R, we get (3.61).

(iii) Eliminating the term of RZi+1R from (3.45) and (3.52), we get (3.62). Similarly, eliminating the

terms of R2Zi, Zi+2R
2 from (3.45) and (3.52), and then removing R, we get (3.63).

(iv) Eliminating the term of Zi+2R
2 from (3.46) and (3.52), and then removing R, we get (3.64).

Lemma 3.14. With reference to Lemma 2.16, for 0 ≤ i ≤ d− 2,

εi = 4(bc∗ + b∗c+ 2(i+ 1)cc∗).

Proof. Immediate from (2.7) by a conventional calculation.
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Lemma 3.15. For r + 1 ≤ i ≤ d− r − 1, the scalars e1i , e
2
i , e

2
′

i , e
3
i , e

3
′

i , e
4
i by Lemma 3.13 are given by

e1i = (d− r − i+ 1)(i− r + 1)(2bc∗ + 2b∗c+ (d+ 2i)cc∗),

e2i = (d− 2r + 1)(d− 2i− 1)cc∗,

e2
′

= −(d− r − i+ 1)(i− r)(d− 2r + 1)cc∗,

e3i = (d− 2r + 1)(2bc∗ + 2b∗c+ (d+ 2i+ 1)cc∗),

e3
′

i = −(d− r − i)(i− r + 1)(d− 2r + 1)cc∗,

e4i = (d− r − i)(i− r)(2bc∗ + 2b∗c+ (d+ 2i)cc∗).

Proof. Immediate from Lemmas 3.13 and 3.14 by a conventional calculation.

Theorem 3.16. For 0 ≤ r ≤ h and r + 1 ≤ i ≤ d− r − 1,

(i) If i− r and d− r − i are odd, then

(3.65)

(
RL(0) − d− r − i+ 1

i− r + 1
L(0)R− (d− r − i+ 1)µiI

)
U

(r)
i = 0.

(ii) If i− r is even, d− r − i is odd, then

(R2L(0) − L(0)R2 + 2(d− 2i− 1)cc∗R)U
(r)
i = 0,(3.66)

(RL(0) − (d− r − i+ 1)(i− r)cc∗I)U
(r)
i = 0.(3.67)

(iii) If i− r is odd, d− r − i is even, then

(R2L(0) − L(0)R2 − 2γiR)U
(r)
i = 0,(3.68)

(L(0)R− (d− r − i)(i− r + 1)cc∗I)U
(r)
i = 0.(3.69)

(iv) If i− r and d− r − i are even, then

(3.70)

(
RL(0) − i− r

d− r − i
L(0)R+ (i− r)µiI

)
U

(r)
i = 0,

where

µi = 2bc∗ + 2b∗c+ (d+ 2i)cc∗,

γi = 2bc∗ + 2b∗c+ (d+ 2i+ 1)cc∗.

Proof. Immediate from Lemma 3.15 and equations (3.59)–(3.64).

To end this section, we give the following lemma for the future use.

Lemma 3.17. Let r denote an integer with 0 ≤ r ≤ h. Let Y denote a subspace of U
(r)
r such that

L(0)RY ⊆ Y . We set W =
∑d−2r
i=0 RiY . Then L(0)W ⊆W .

Proof. We show

(3.71) L(0)RiY ⊆ Ri−1Y (1 ≤ i ≤ d− 2r).
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We divide our proof into two cases in term of the parity of diameter d.

First we consider the case that d is odd. If i is even, pick any vector u ∈ Y ⊆ U
(r)
r , and observe that

Ri−1u belongs to U
(r)
r+i−1 by Lemma 2.3. Since r + i− 1− r is odd, applying (3.69) to Ri−1u, we find

L(0)Riu = i(d− 2r − i+ 1)cc∗Ri−1u.

Hence, L(0)Riu ∈ Ri−1Y . If i is odd, we show (3.71) holds using induction on i. Observe that (3.71) holds

at i = 1 by our assumption. Now suppose 3 ≤ i ≤ d− 2r, and suppose (3.71) holds at i− 2. We will show

(3.71) holds at i. Since Ri−2u ∈ U (r)
r+i−2, and r + i− 2− r is odd, applying (3.68) to Ri−2u, we obtain

L(0)Riu = R2L(0)Ri−2u− 2γr+i−2R
i−1u.

Note that L(0)Ri−2u ∈ Ri−3Y by induction, so R2L(0)Ri−2u ∈ Ri−1Y . Hence, L(0)Riu ∈ Ri−1Y .

Next, we consider the case that d is even. We show (3.71) holds using induction on i. Observe that

(3.71) holds at i = 1 by our assumption. Now suppose 2 ≤ i ≤ d − 2r, and suppose (3.71) holds at i − 1.

We will show (3.71) holds at i. If i is even, applying (3.65) to Ri−1u, we find

L(0)Riu =
i

d− 2r − i+ 2
RL(0)Ri−1u− iµr+i−1R

i−1u.

If i is odd, applying (3.70) to Ri−1u, we find

L(0)Riu =
d− 2r − i+ 1

i− 1
RL(0)Ri−1u+ (d− 2r − i+ 1)µr+i−1R

i−1u.

These imply that L(0)Riu ∈ span{RL(0)Ri−1u,Ri−1u}. By the induction hypothesis, we have L(0)Ri−1u ∈
Ri−2Y , so RL(0)Ri−1u ∈ Ri−1Y . Hence, L(0)RiY ⊆ Ri−1Y . We have shown (3.71). We also have L(0)Y ⊆
L(0)U

(r)
r = 0 by Lemma 2.12. Thus, L(0)W ⊆W .

4. The basis for V . In this section, we assume the height of A,A∗ is 1. That is ρ0 = ρd = 1,

ρ1 = ρ2 = · · · = ρd−1 ≥ 2. Note that by [4, Lemma 4.1], V is decomposed as V =
∑d
i=0 U

(0)
i +

∑d−1
i=1 U

(1)
i

(direct sum). Now, we give the bases for U
(0)
i (0 ≤ i ≤ d) and U

(1)
i (1 ≤ i ≤ d− 1).

Fix a nonzero vector u0 in U0, and set ui = Riu0 (1 ≤ i ≤ d).

Lemma 4.1. For 0 ≤ i ≤ d, {ui} is a basis of U
(0)
i .

Proof. Immediate from Lemma 2.3.

Lemma 4.2. We have

(i) L(+)u0 = 0, L(+)u1 = 0;

(ii) L(+)u2 6= 0.

Proof. (i) Immediate from Lemma 2.12.

(ii) Suppose L(+)u2 = 0. Applying Lemma 3.4 to ui for 2 ≤ i ≤ d− 1,

L(+)ui+1 = L(+)Rui = −RL(+)ui, if i is even;

L(+)ui+1 = L(+)Rui = − i+ 1

i− 1
RL(+)ui, if i is odd.
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Combining with (i), these imply L(+)ui = 0 for 0 ≤ i ≤ d. So L(+)U (0) = 0. Using (2.5) and Lemma 2.11,

we have

LU (0) = L(−)U (0) + L(0)U (0) + L(+)U (0) = L(0)U (0) ⊆ U (0).

Hence, U (0) is invariant under L. Also we have RU (0) ⊆ U (0) by Lemma 2.7, and FiU
(0) = U

(0)
i ⊆ U (0)(0 ≤

i ≤ d). From which we have U (0) = V by Lemma 2.2, a contradiction.

We set v1 = L(+)u2, vi = Ri−1v1 (2 ≤ i ≤ d− 1).

Lemma 4.3. For 1 ≤ i ≤ d− 1, vi 6= 0 and vi lies in U
(1)
i .

Proof. Immediate from Lemmas 2.3 and 4.2.

Lemma 4.4. Suppose ρ1 = 2. Then {vi} is a basis of U
(1)
i (1 ≤ i ≤ d− 1).

Proof. Immediate from Lemmas 2.5, 4.1 and 4.3.

Lemma 4.5. For 1 ≤ i ≤ d− 1,

(4.72) L(+)ui+1 = bivi,

where

bi =
i+ 1

2
, if i is odd;(4.73)

bi = − i
2
, if i is even.(4.74)

Proof. We show (4.72) holds using induction on i. Observe that (4.72) holds for i = 1, so we assume

2 ≤ i ≤ d− 1. Now suppose (4.72) holds at i− 1. We will show (4.72) holds at i. If i is even, applying (3.29)

to ui, then

L(+)ui+1 = L(+)Rui = −RL(+)ui.

By induction,

RL(+)ui = Rbi−1vi−1 = bi−1vi.

Hence,

L(+)ui+1 = −bi−1vi = − i
2
vi = bivi.

If i is odd, applying (3.30) to ui, then

L(+)ui+1 = L(+)Rui = − i+ 1

i− 1
RL(+)ui.

So,

L(+)ui+1 = − i+ 1

i− 1
bi−1vi =

i+ 1

2
vi = bivi.

Lemma 4.6. Suppose ρ1 ≥ 3. Then L(0)v2 and v1 are linearly independent.

Proof. By way of contradiction, we assume L(0)v2 lies in the span Y of {v1}. We set W =
∑d−2
i=0 R

iY .

Observe that U (0) +W is invariant under R and Fi(0 ≤ i ≤ d). We show that U (0) +W is invariant under

L.
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Since h = 1, we have W ⊆ U (1) and L(+)U (1) = 0. So L(+)W = 0. Hence, LW ⊆ L(−)W + L(0)W ⊆
U (0)+L(0)W . We have L(0)RY ⊆ Y from our assumption L(0)v2 ∈ Y , and this implies L(0)W ⊆W by Lemma

3.17. Observe that L(+)U (0) ⊆W by Lemma 4.5, so that LU (0) ⊆ L(−)U (0)+L(0)U (0)+L(+)U (0) ⊆ U (0)+W ,

since L(−)U (0) = 0. So U (0) + W is invariant under L. Therefore, U (0) + W is invariant under L, R and

Fi(0 ≤ i ≤ d). From which we have W = V by Lemma 2.2. This contradicts our assumption ρ1 ≥ 3.

When ρ1 ≥ 3, we set

w1 = L(0)v2, wi = Ri−1w1 (2 ≤ i ≤ d− 1).

Lemma 4.7. Suppose ρ1 ≥ 3. Then vi and wi are linearly independent for 1 ≤ i ≤ d− 1.

Proof. Immediate from Lemmas 2.3 and 4.6.

Lemma 4.8. Suppose ρ1 = 3. Then {vi, wi} is a basis of U
(1)
i (1 ≤ i ≤ d− 1).

Proof. Immediate from Lemmas 2.4 and 4.7.

5. The action of L. Recall that {ui} is a basis of U
(0)
i , {vi} is a basis of U

(1)
i if ρ1 = 2, and {vi, wi}

is a basis of U
(1)
i if ρ1 = 3. In this section, we consider the action of L on these bases.

By Lemma 4.1, we know that L(0)ui+1 is a scalar multiple of ui. We set

(5.75) L(0)ui+1 = aiui (0 ≤ i ≤ d− 1)

for some scalars a0, a1, . . . , ad−1.

Clearly, L(−)vi+1 is a scalar multiple of ui by Lemmas 4.1 and 4.3. So, we set

(5.76) L(−)vi+1 = eiui (0 ≤ i ≤ d− 2)

for some scalars e0, e1, . . . , ed−2.

When ρ1 = 2, by Lemma 4.4,

(5.77) L(0)v1 = 0, L(0)vi+1 = civi (1 ≤ i ≤ d− 2)

for some scalars c1, . . . , cd−2.

When ρ1 ≥ 3, by Lemma 4.1, we set

(5.78) L(−)wi+1 = fiui (0 ≤ i ≤ d− 2)

for some scalars f0, f1, . . . , fd−2.

Similarly, when ρ1 = 3, by Lemma 4.8,

(5.79) L(0)wi+1 = sivi + tiwi (1 ≤ i ≤ d− 2)

for some scalars si, ti.

Now we determine the parameters ai, ei, ci, fi,mi, ni, si, ti. We divide the arguments into two cases in

term of the parity of diameter d.

Case I: d is odd. By equations (5.75)–(5.79), we have the following lemmas.
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Lemma 5.1. For 0 ≤ i ≤ d− 1,

ai = (i+ 1)(d− i)cc∗, if i is odd;(5.80)

ai = a0 − i(2bc∗ + 2b∗c+ (d+ i+ 1)cc∗), if i is even.(5.81)

Proof. We first show (5.80) holds. Applying (3.69) to ui,

L(0)Rui = (i+ 1)(d− i)cc∗ui.

Note that L(0)Rui = L(0)ui+1 = aiui. Hence, ai = (i+ 1)(d− i)cc∗.

Next, we show (5.81) holds using induction on i. Clearly (5.81) holds for i = 0, so we assume 2 ≤ i ≤ d−1.

Now suppose (5.81) holds at i− 2. We will show (5.81) holds at i. Applying (3.68) to ui−1,

L(0)R2ui−1 = R2L(0)ui−1 − 2γi−1Rui−1.

Note that L(0)R2ui−1 = L(0)ui+1 = aiui, and R2L(0)ui−1 = R2ai−2ui−2 = ai−2ui. So ai = ai−2 − 2γi−1. By

induction,

ai−2 = a0 − (i− 2)(2bc∗ + 2b∗c+ (d+ i− 1)cc∗).

Hence, (5.81) holds.

Lemma 5.2. For 0 ≤ i ≤ d− 2,

ei = − d− i
d− 1

e0, if i is odd;(5.82)

ei =
d− i− 1

d− 1
e0, if i is even.(5.83)

Proof. We show that the results hold using induction on i. Observe that the results hold at i = 0. Now

suppose 1 ≤ i ≤ d− 2, and suppose the results hold at i− 1. We will show that the results hold at i. If i is

odd, applying (3.42) to vi, then

L(−)Rvi = −RL(−)vi.

Note that L(−)Rvi = L(−)vi+1 = eiui, and RL(−)vi = Rei−1ui−1 = ei−1ui. So ei = −ei−1. By induction,

ei−1 =
d− i
d− 1

e0.

Hence, (5.82) holds. If i is even, applying (3.43) to vi, then

L(−)Rvi = −d− i− 1

d− i+ 1
RL(−)vi.

So,

ei = −d− i− 1

d− i+ 1
ei−1.

By induction,

ei−1 = −d− i+ 1

d− 1
e0.

Hence, (5.83) holds.
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Lemma 5.3. Suppose ρ1 = 2. Then, for 1 ≤ i ≤ d− 2,

ci = c1 − (i− 1)(2bc∗ + 2b∗c+ (d+ i+ 2)cc∗), if i is odd;(5.84)

ci = i(d− i− 1)cc∗, if i is even.(5.85)

Proof. We first show (5.84) holds using induction on i. Observe that (5.84) holds for i = 1, so we assume

3 ≤ i ≤ d− 2. Now suppose (5.84) holds at i− 2. We will show (5.84) holds at i. Applying (3.68) to vi−1,

L(0)R2vi−1 = R2L(0)vi−1 − 2γi−1Rvi−1.

Note that L(0)R2vi−1 = L(0)vi+1 = civi, and R2L(0)vi−1 = R2ci−2vi−2 = ci−2vi. Thus, ci = ci−2 − 2γi−1.

By induction,

ci−2 = c1 − (i− 3)(2bc∗ + 2b∗c+ (d+ i)cc∗).

Hence, (5.84) follows.

Next, we will show (5.85) holds. Applying (3.69) to vi,

L(0)Rvi = i(d− i− 1)cc∗vi.

Note that L(0)Rvi = L(0)vi+1 = civi. Hence, (5.85) holds.

Lemma 5.4. Suppose ρ1 ≥ 3. Then, for 0 ≤ i ≤ d− 2,

fi =− d− i
d− 1

f0, if i is odd;(5.86)

fi =
d− i− 1

d− 1
f0, if i is even.(5.87)

Proof. Similar to the proof of Lemma 5.2.

Lemma 5.5. Suppose ρ1 ≥ 3. Then

(5.88) L(0)vi+1 = mivi + niwi (1 ≤ i ≤ d− 2),

where

mi = −(i− 1)(2bc∗ + 2b∗c+ (d+ i+ 2)cc∗), ni = 1, if i is odd;(5.89)

mi = i(d− i− 1)cc∗, ni = 0, if i is even.(5.90)

Proof. We divide our proof into two cases in term of the parity of i. First suppose i is odd. We will

show (5.88) holds using induction on i. Observe that (5.88) holds for i = 1 with m1 = 0, n1 = 1, since

L(0)v2 = w1. Now we assume 3 ≤ i ≤ d− 2, and suppose (5.88) holds at i− 2. We will show (5.88) holds at

i. Applying (3.68) to vi−1,

L(0)R2vi−1 = R2L(0)vi−1 − 2γi−1Rvi−1.

Note that L(0)R2vi−1 = L(0)vi+1, and Rvi−1 = vi. By induction, we have

R2L(0)vi−1 = R2(mi−2vi−2 + ni−2wi−2) = mi−2vi + ni−2wi.

Hence,

L(0)vi+1 = (−(i− 3)(2bc∗ + 2b∗c+ (d+ i)cc∗)− 2(2bc∗ + 2b∗c+ (d+ 2i− 1)cc∗))vi + wi

= −(i− 1)(2bc∗ + 2b∗c+ (d+ i+ 2)cc∗)vi + wi.
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Next suppose i is even. Applying (3.67) to vi+1 to get

RL(0)vi+1 = i(d− i− 1)cc∗vi+1.

Removing R, we find

L(0)vi+1 = i(d− i− 1)cc∗vi = mivi + niwi.

Lemma 5.6. Suppose ρ1 = 3. Then, for 1 ≤ i ≤ d− 2,

si = s1, ti = t1 − (i− 1)(2bc∗ + 2b∗c+ (d+ i+ 2)cc∗), if i is odd;(5.91)

si = 0, ti = i(d− i− 1)cc∗, if i is even.(5.92)

Proof. Similar to the proof of Lemma 5.5.

Lemma 5.7. When ρ1 ≥ 3, the following hold with the values of ai, bi, ei, fi,mi, ni given by (5.80), (5.81),

(4.73), (4.74), (5.82), (5.83), (5.86), (5.87), (5.89) and (5.90).

(i) Lu0 = 0, Lu1 = a0u0, Lui+1 = aiui + bivi (1 ≤ i ≤ d− 1),

(ii) Lv1 = e0u0, Lvi+1 = eiui +mivi + niwi (1 ≤ i ≤ d− 2),

(iii) L(−)wi+1 = fiui (0 ≤ i ≤ d− 2).

Proof. Immediate from Lemma 2.11, and equations (4.72), (5.75), (5.76), (5.78) and (5.88).

Case II: d is even. Similarly, by equations (5.75)–(5.79), we have the following lemmas.

Lemma 5.8. For 0 ≤ i ≤ d− 1,

ai = (i+ 1)

(
a0
d

+

i∑
k=1

(−1)kµk

)
, if i is odd;(5.93)

ai = (d− i)

(
a0
d

+

i∑
k=1

(−1)kµk

)
, if i is even.(5.94)

Proof. We show that the results hold using induction on i. Observe that the results hold for i = 0, so

we assume 1 ≤ i ≤ d− 1, and suppose the results hold at i− 1. We will show that the results hold at i. If i

is odd, applying (3.65) to ui, then

L(0)Rui =
i+ 1

d− i+ 1
RL(0)ui − (i+ 1)µiui.

Note that L(0)Rui = L(0)ui+1 = aiui, and RL(0)ui = R(ai−1ui−1) = ai−1Rui−1 = ai−1ui. Hence,

ai =
i+ 1

d− i+ 1
ai−1 − (i+ 1)µi.

By induction,

ai−1 = (d− i+ 1)

(
a0
d

+

i−1∑
k=1

(−1)kµk

)
.

Now (5.93) holds. If i is even, applying (3.70) to ui, then

L(0)Rui =
d− i
i

RL(0)ui + (d− i)µiui.
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So

ai =
d− i
i

ai−1 + (d− i)µi.

By induction,

ai−1 = i

(
a0
d

+

i−1∑
k=1

(−1)kµk

)
.

Now (5.94) holds.

Lemma 5.9. For 0 ≤ i ≤ d− 2,

ei = −d− i− 1

d
e0, if i is odd;(5.95)

ei =
d− i
d

e0, if i is even.(5.96)

Proof. Similar to the proof of Lemma 5.2.

Lemma 5.10. Suppose ρ1 = 2. Then, for 1 ≤ i ≤ d− 2,

ci = (d− i− 1)

(
c1

d− 2
−

i∑
k=2

(−1)kµk

)
, if i is odd;(5.97)

ci = i

(
c1

d− 2
−

i∑
k=2

(−1)kµk

)
, if i is even.(5.98)

Proof. We show that the results hold using induction on i. Observe that the results hold for i = 1. So

we assume 2 ≤ i ≤ d− 2. Now suppose the results hold at i− 1. We will show that the results hold at i. If

i is odd, applying (3.70) to vi, then

L(0)Rvi =
d− i− 1

i− 1
RL(0)vi + (d− i− 1)µivi.

Note that L(0)Rvi = L(0)vi+1 = civi, and RL(0)vi = Rci−1vi−1 = ci−1vi. Hence,

ci =
d− i− 1

i− 1
ci−1 + (d− i− 1)µi.

By induction,

ci−1 = (i− 1)

(
c1

d− 2
−

i−1∑
k=2

(−1)kµk

)
.

Now (5.97) holds. If i is even, applying (3.65) to vi, then

L(0)Rvi =
i

d− i
RL(0)vi − iµivi.

So

ci =
i

d− i
ci−1 − iµi.

By induction,

ci−1 = (d− i)

(
c1

d− 2
−

i−1∑
k=2

(−1)kµk

)
.

Now (5.98) holds.
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Lemma 5.11. Suppose ρ1 ≥ 3. Then, for 0 ≤ i ≤ d− 2,

fi =− d− i− 1

d
f0, if i is odd;(5.99)

fi =
d− i
d

f0, if i is even.(5.100)

Proof. Similar to the proof of Lemma 5.2.

Lemma 5.12. Suppose ρ1 ≥ 3. Then

(5.101) L(0)vi+1 = mivi + niwi (1 ≤ i ≤ d− 2),

where

mi = −(d− i− 1)

i∑
k=2

(−1)kµk, ni =
d− i− 1

d− 2
, if i is odd;(5.102)

mi = −i
i∑

k=2

(−1)kµk, ni =
i

d− 2
, if i is even.(5.103)

Proof. We show (5.101) holds using induction on i. Obverse that (5.101) holds for i = 1 with m1 =

0, n1 = 1, since L(0)v2 = w1. Now we assume 2 ≤ i ≤ d − 2, and suppose (5.101) holds at i − 1. We will

show (5.101) holds at i. If i is odd, applying (3.70) to vi, then

L(0)Rvi =
d− i− 1

i− 1
RL(0)vi + (d− i− 1)µivi.

Note that L(0)Rvi = L(0)vi+1. By induction,

RL(0)vi = R(mi−1vi−1 + ni−1wi−1) = mi−1vi + ni−1wi.

Hence,

L(0)vi+1 =
d− i− 1

i− 1

(
−(i− 1)

i−1∑
k=2

(−1)kµkvi +
i− 1

d− 2
wi

)
+ (d− i− 1)µivi

=− (d− i− 1)

i∑
k=2

(−1)kµkvi +
d− i− 1

d− 2
wi.

If i is even, applying (3.65) to vi, then

L(0)Rvi =
i

d− i
RL(0)vi − iµivi.

Hence

L(0)vi+1 =
i

d− i

(
−(d− i)

i−1∑
k=2

(−1)kµkvi +
d− i
d− 2

wi

)
− iµivi

=− i
i∑

k=2

(−1)kµkvi +
i

d− 2
wi.
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Lemma 5.13. Suppose ρ1 = 3. Then, for 1 ≤ i ≤ d− 2,

si =
d− i− 1

d− 2
s1, ti = (d− i− 1)

(
t1

d− 2
−

i∑
k=2

(−1)kµk

)
, if i is odd;(5.104)

si =
i

d− 2
s1, ti = i

(
t1

d− 2
−

i∑
k=2

(−1)kµk

)
, if i is even.(5.105)

Proof. Similar to the proof of Lemma 5.12.

Lemma 5.14. When ρ1 ≥ 3, the following hold with the values of ai, bi, ei, fi,mi, ni given by (5.93),

(5.94), (4.73), (4.74), (5.95), (5.96), (5.99), (5.100), (5.102) and (5.103).

(i) Lu0 = 0, Lu1 = a0u0, Lui+1 = aiui + bivi (1 ≤ i ≤ d− 1),

(ii) Lv1 = e0u0, Lvi+1 = eiui +mivi + niwi (1 ≤ i ≤ d− 2),

(iii) L(−)wi+1 = fiui (0 ≤ i ≤ d− 2).

Proof. Similar to the proof of Lemma 5.7.

6. Determining the shape of the tridiagonal pair. Recall that u0 ∈ U0, ui = Riu0 (1 ≤ i ≤ d),

v1 = L(+)u2, vi = Ri−1v2 (2 ≤ i ≤ d − 1), w1 = L(0)v2, and wi = Ri−1w1 (2 ≤ i ≤ d − 1). In this section,

we assume the height of A,A∗ is 1, and determine the shape of A,A∗.

Lemma 6.1. Suppose ρ1 ≥ 4. Then the vectors v1, w1, L
(0)w2 are linearly independent.

Proof. By way of contradiction, we suppose v1, w1, L
(0)w2 are linearly dependent. Since v1, w1 are

linearly independent by Lemma 4.7 and by our assumption, L(0)w2 lies in Y = span{v1, w1}. We set

W =
∑d−2
i=0 R

iY . Observe that U (0) + W is invariant under R and Fi(0 ≤ i ≤ d). We show U (0) + W is

invariant under L.

Obverse that RY = span{v2, w2} and L(0)v2 = w1 ∈ Y , so that L(0)RY ⊆ Y . Hence, W is invariant

under L(0) by Lemma 3.17. This implies LW ⊆ L(−)W + L(0)W ⊆ U (0) +W . Moreover, L(+)U (0) ⊆ W by

Lemma 4.5. So, U (0)+W is invariant under L. Therefore, U (0)+W is invariant under L, R and Fi(0 ≤ i ≤ d).

From which we have U (0) + W = V by Lemma 2.2. It follows that U1 = {u1, v1, w1}, contradicting our

assumption ρ1 ≥ 4.

Lemma 6.2. Suppose ρ1 ≥ 4, and we set L(0)w2 = x1. Then

(i) If d = 3, we have

L3Ru3 =0,

L2RLu3 =(a1a2a2 + e1a2b2)u1 + a2a2v1 + a2b2w1,

LRL2u3 =(a1(a1a2 + e1b2) + e1a2 + f1b2)u1 + (a1a2 + e1b2)v1 + a2w1 + b2x1,

RL3u3 ∈ span{u1},
L2u3 =(a1a2 + e1b2)u1 + a2v1 + b2w1.
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(ii) If d ≥ 4, we have

L3Ru3 =(a2a3 + e2b3)(a1u1 + v1) + (b2a3 +m2b3)(e1u1 + w1) + n2b3(f1u1 + x1),

L2RLu3 =(a2a2 + b2e2)(a1u1 + v1) + (a2b2 + b2m2)(e1u1 + w1) + b2n2(f1u1 + x1),

LRL2u3 =(a1(a1a2 + e1b2) + e1a2 + f1b2)u1 + (a1a2 + e1b2)v1 + a2w1 + b2x1,

RL3u3 ∈ span{u1},
L2u3 =(a1a2 + e1b2)u1 + a2v1 + b2w1.

Proof. Immediate from Lemmas 2.3, 2.11, 5.7 and 5.14, and (5.78) by a routine computation.

Lemma 6.3. ρ1 ≤ 3.

Proof. By way of contradiction, we suppose ρ1 ≥ 4. Observe that u1, v1, w1, x1 are linearly independent

by Lemmas 2.6 and 6.1. Applying (2.6) to u3,

(6.106) L3Ru3 + L2RLu3 − LRL2u3 −RL3u3 + ε1L
2u3 = 0.

According to the parity of diameter d and the range of diameter d, we divide our computation into three

cases: (I) d = 3; (II) d is odd and d ≥ 5; (III) d is even.

Case (I) d = 3.

Obverse that the coefficient of x1 in (6.106) becomes −b2 by Lemma 6.2, so that −b2 = 0, contradicting

our convention.

Case (II) d is odd and d ≥ 4.

Looking at the coefficients of x1 in (6.106), we have n2b3 + b2n2 − b2 = 0 by Lemma 6.2, so that 1=0,

contradicting our convention.

Case (III) d is even.

Looking at the coefficients of x1 in (6.106) by Lemma 6.2,

2

d− 2
· 3 + 1

2
+ (−1) · 2

d− 2
− (−1) =

d

d− 2
= 0,

so that d = 0, contradicting to the assumption. These complete the proof of ρ1 ≤ 3.

Theorem 6.4. One of the following holds.

(i) ρ0 = 1, ρ1 = ρ2 = · · · = ρd−1 = 2, ρd = 1,

(ii) d = 3, ρ0 = 1, ρ1 = ρ2 = 3, ρ3 = 1.

Proof. Since K is an algebraically closed field, by [7, Theorem 1.3], ρ0 = 1. And by Lemma 6.3, ρ1 ≤ 3.

So, ρ1 = 2 or ρ1 = 3, since h = 1. If ρ1 = 2, then (i) holds. If ρ1 = 3, we need to show d = 3. Applying

(2.6) to v3,

(6.107) L3Rv3 + L2RLv3 − LRL2v3 −RL3v3 + ε1L
2v3 = 0.

From Lemmas 2.11, 3.14, 5.7 and 5.14, we can compute each term of (6.107). The term of L3Rv3 vanishes
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when d = 4. When d ≥ 5, it becomes

L3Rv3 =(a1(a2e3 + e2m3 + f2n3) + e1(b2e3 +m2m3 + s2n3) + f1(n2m3 + t2n3))u1

+ ((a2e3 + e2m3 + f2n3) + s1(n2m3 + t2n3))v1

+ ((b2e3 +m2m3 + s2n3) + t1(n2m3 + t2n3))w1,

L2RLv3 =(a1(a2e2 + e2m2 + f2n2) + e1(b2e2 +m2m2 + n2s2) + f1(m2n2 + n2t2))u1

+ ((a2e2 + e2m2 + f2n2) + s1(m2n2 + n2t2))v1

+ ((b2e2 +m2m2 + n2s2) + t1(m2n2 + n2t2))w1,

LRL2v3 =(a1(a1e2 + e1m2 + f1n2) + e1(e2 + s1n2) + f1(m2 + n2t2))u1

+ ((a1e2 + e1m2 + f1n2) + s1(m2 + t1n2))v1 + ((e2 + s1n2) + t1(m2 + t1n2))w1,

RL3v3 ∈ span{u1},
L2v3 =(a1e2 + e1m2 + f1n2)u1 + (e2 + s1n2)v1 + (m2 + t1n2)w1.

According to the parity of diameter d and the range of diameter d, we divide the arguments into four cases:

(I) d = 3; (II) d is odd and d ≥ 5; (III) d = 4; (IV) d is even and d ≥ 6. To show (I) holds, we show that

(II), (III), and (IV) do not occur.

Suppose case (II) holds for a contradiction.

By a routine computation, the coefficient of w1 in (6.107) becomes

b2e3 +m2m3 + s2n3 + t1(n2m3 + t2n3) + b2e2 +m2m2 + n2s2 + t1(m2n2 + n2t2)

− (e2 + s1n2 + t1(m2 + t1n2)) + ε1(m2 + t1n2) = −d− 3

d− 1
e0 = 0.

It follows that e0 = 0. And this implies ei = 0 (0 ≤ i ≤ d− 2). The coefficient of v1 becomes

f2n3 + s1(n2m3 + t2n3) + f2n2 + s1(m2n2 + n2t2)− (f1n2 + s1(m2 + t1n2)) + ε1s1n2

=
d− 3

d− 1
f0 = 0.

It follows that f0 = 0. And this implies fi = 0 (0 ≤ i ≤ d − 2). Since L(−)wi+1 = fiui, L
(−)vi+1 =

eivi (0 ≤ i ≤ d − 2), we have L(−)U (1) = 0 by Lemma 4.8. Hence, LU (1) ⊆ U (1). Since U (1) is invariant

under R and Fi (0 ≤ i ≤ d), we get U (1) = V by Lemma 2.2, a contradiction.

Suppose case (III) holds for a contradiction.

The coefficient of w1 in (6.107) becomes

b2e2 +m2m2 + n2s2 + t1(m2n2 + n2t2)− (e2 + s1n2 + t1(m2 + t1n2)) + ε1(m2 + t1n2) = −e0 = 0,

It implies ei = 0 (0 ≤ i ≤ d− 2). The coefficient of v1 becomes

f2n2 + s1(m2n2 + n2t2)− (f1n2 + s1(m2 + t1n2)) + ε1s1n2 = f0 = 0,

It implies fi = 0 (0 ≤ i ≤ d− 2). Hence, LU (1) ⊆ U (1). Since U (1) is invariant under R and Fi (0 ≤ i ≤ d),

we get U (1) = V by Lemma 2.2, a contradiction.
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Suppose case (IV) holds for a contradiction.

By a routine computation, the coefficient of w1 in (6.107) becomes

b2e3 +m2m3 + s2n3 + t1(n2m3 + t2n3) + b2e2 +m2m2 + n2s2 + t1(m2n2 + n2t2)

− (e2 + s1n2 + t1(m2 + t1n2)) + ε1(m2 + t1n2) = −e0 = 0,

It follows that e0 = 0. And this implies ei = 0 (0 ≤ i ≤ d− 2). The coefficient v1 becomes

f2n3 + s1(n2m3 + t2n3) + f2n2 + s1(m2n2 + n2t2)− (f1n2 + s1(m2 + t1n2)) + ε1s1n2

= f0 = 0.

It follows that f0 = 0. And this implies fi = 0 (0 ≤ i ≤ d − 2). So L(−)U (1) = 0. Hence, LU (1) ⊆ U (1).

Since U (1) is invariant under R and Fi (0 ≤ i ≤ d), we get U (1) = V by Lemma 2.2, a contradiction. These

complete the proof of Theorem 6.4.

7. Determine the structure of tridiagonal pairs A,A∗ of height 1. In Section 6, we have already

displayed the shape of tridiagonal pairs of height 1. In this section, for all cases listed in Theorem 6.4, we

display a basis for V and give the actions of A,A∗ on this basis.

Lemma 7.1. Suppose Theorem 6.4 (i) holds. Then

(i) u0 is a basis for U0,

(ii) ui, vi is a basis for Ui (1 ≤ i ≤ d− 1),

(iii) ud is a basis for Ud,

(iv) the vectors

(7.108) u0, u1, v1, . . . , ud−1, vd−1, ud

form a basis for V .

Proof. Immediate from Lemmas 2.5, 4.1 and 4.4.

We now give the actions of R,L on the basis in Lemma 7.1.

Lemma 7.2. Suppose Theorem 6.4 (i) holds. Then there exist scalars a0, c1, e0 in K such that the maps

R,L act on the basis (7.108) as follows.

Rui =ui+1 (0 ≤ i ≤ d− 1), Rud = 0,

Rvi =vi+1 (1 ≤ i ≤ d− 2), Rvd−1 = 0,

Lu0 =0, Lu1 = a0u0, Lui+1 = aiui + bivi (1 ≤ i ≤ d− 1),

Lv1 =e0u0, Lvi+1 = eiui + civi (1 ≤ i ≤ d− 2),

where if d is odd, the coefficients satisfy (5.80), (5.81), (4.73), (4.74), (5.82), (5.83), (5.84) and (5.85); if d

is even, the coefficients satisfy (5.93), (5.94), (4.73), (4.74), (5.95), (5.96), (5.97) and (5.98).

Proof. Immediate from Lemmas 2.11 and 7.1, and equations (4.72), (5.75), (5.76) and (5.77).
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Theorem 7.3. Suppose Theorem 6.4 (i) holds. Then A,A∗ act on the basis (7.108) as follows.

Aui = θiui + ui+1 (0 ≤ i ≤ d− 1), Aud = θdud,

Avi = θivi + vi+1 (1 ≤ i ≤ d− 2), Avd−1 = θd−1vd−1,

A∗u0 = θ∗0u0, A∗u1 = a0u0 + θ∗1u1,

A∗ui+1 = aiui + bivi + θ∗i+1ui+1 (1 ≤ i ≤ d− 1),

A∗v1 = e0u0 + θ∗1v1, A∗vi+1 = eiui + civi + θ∗i+1vi+1 (1 ≤ i ≤ d− 2).

Proof. Immediate from Lemma 7.2 and the definition of R,L.

Lemma 7.4. Suppose Theorem 6.4 (ii) holds. Then

(i) u0 is a basis for U0,

(ii) ui, vi, wi is a basis for Ui (1 ≤ i ≤ 2),

(iii) u3 is a basis for U3,

(iv) the vectors

(7.109) u0, u1, v1, w1, u2, v2, w2, u3

form a basis for V .

Proof. Similar to the proof of Lemma 7.1.

We now give the actions of R,L on the basis in Lemma 7.4.

Lemma 7.5. Suppose Theorem 6.4 (ii) holds. Then there exist scalars a0, e0, f0, s1, t1 in K such that the

maps R,L act on the basis (7.109) as follows.

Ru0 =u1, Ru1 = u2, Ru2 = u3, Ru3 = 0,

Rv1 =v2, Rv2 = 0,

Rw1 =w2, Rw2 = 0,

Lu0 =0, Lu1 = a0u0, Lui+1 = aiui + bivi (1 6 i 6 2),

Lv1 =e0u0, Lv2 = e1u1 + w1,

Lw1 =f0u0, Lw2 = f1u1 + s1v1 + t1w1,

where

a1 =2(d− 1)cc∗, a2 = a0 − 2(2b∗c+ 2bc∗ + (d+ 3)cc∗),

b1 =1, b2 = −1,

e1 =− e0,
f1 =− f0.

Proof. Similar to the proof of Lemma 7.2.
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Theorem 7.6. Suppose Theorem 6.4 (ii) holds. Then A,A∗ act on the basis (7.109) as follows.

Aui = θiui + ui+1 (0 ≤ i ≤ 2), Au3 = θ3u3,

Av1 = θ1v1 + v2, Av2 = θ2v2,

A∗u0 = θ∗0u0, A∗u1 = a0u0 + θ∗1u1,

A∗ui+1 = aiui + bivi + θ∗i+1ui+1 (1 ≤ i ≤ 2),

A∗v1 = e0u0 + θ∗1v1, A∗v2 = e1u1 + w1 + θ∗2v2,

A∗ω1 = f0u0 + θ∗1ω1, A∗ω2 = f1u1 + s1v1 + t1ω1 + θ∗2ω2.

Proof. Similar to the proof of Theorem 7.3.
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