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SOLVABILITY TO SOME SYSTEMS OF MATRIX EQUATIONS

USING G-OUTER INVERSES∗

DIJANA MOSIĆ†

Abstract. Two matrix equation systems AXA = AEA and BAEAX = XAEAD, where A ∈ Cm×n and B,D,E ∈ Cn×m;

and AXA = AEA, BAEAX = B and XAEAD = D, where A ∈ Cm×n, B ∈ Cp×m, D ∈ Cn×q and E ∈ Cn×m, are investigated

and equivalent conditions for their solvability are presented. Expressions of their general solutions are established in terms of

G-outer inverses of A. Specializing matrices B,D,E, these results are applied to solve various systems of matrix equations.

In particular, the set of all G-outer inverses of A is described. Since the fact A is below B under the G-outer (T, S)-partial

order implies that any G-outer (T, S)-inverse of B is also a G-outer (T, S)-inverse of A, an additional condition such that the

converse holds is studied.
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1. Introduction. The solvability of matrix equations as well as finding their explicit solutions have a

large number of applications in physics, mechanics, control theory and many other field [2, 13]. Many matrix

equations have been extended to Hilbert spaces operators [11, 14]. Generalized inverses play an important

role in the investigation of matrix equations and partial orders [1, 2, 7, 8].

According to standard notation, Cm×n is the set of m × n complex matrices. We use rank(A), A∗,

N (A) and R(A) to represent the rank, the conjugate transpose, the null space and the range (column

space), respectively, of A ∈ Cm×n. The index of A ∈ Cn×n, denoted by ind(A), is the smallest nonnegative

integer k for which rank(Ak) = rank(Ak+1).

The matrix X ∈ Cn×m is an outer (or inner) inverse of A ∈ Cm×n if the equality XAX = X (AXA = A)

is satisfied. The set of all inner inverses of A will be denoted by A{1}. For A,B ∈ Cm×n, we say that A

is below B under the minus partial order (denoted by A ≤− B) if there exists A− ∈ A{1} such that

AA− = BA− and A−A = A−B [6]. Also, A is below B under the space pre-order (denoted by A �s B)

if R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗) [7]. It is well known, by [7, Theorem 3.3.5], that A ≤− B implies

A �s B.

In this paper, we focus on outer inverses of A which have fixed range and null space. Let A ∈ Cm×n be

of rank r, let T be a subspace of Cn of dimension s ≤ r, and let S be a subspace of Cm of dimension m− s.

Recall that X is an outer inverse of A with prescribed range T and null space S if

XAX = X, R(X) = T, N (X) = S.

It is well known that A has an outer inverse X such thatR(X) = T andN (X) = S if and only if AT⊕S = Cm

[2]. In this case, X is unique and denoted by A
(2)
T,S . The notation Cm×n

T,S represents the set of all A ∈ Cm×n
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such that A
(2)
T,S exists.

Some special well known kinds of outer inverses are introduced now. For A ∈ Cm×n, there exists the

Moore-Penrose inverse of A as the unique matrix A† = X ∈ Cn×m such that

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Let A ∈ Cn×n and k = ind(A). The Drazin inverse of A is the unique matrix AD = X ∈ Cn×n which

satisfies

Ak+1X = Ak, XAX = X, AX = XA.

When ind(A) = 1, A# = AD is called the group inverse of A.

A G-Drazin inverse of a square matrix was defined by Wang and Liu [12]. For A ∈ Cn×n and k = ind(A),

X ∈ Cn×n is a G-Drazin inverse of A if

(1.1) AXA = A, Ak+1X = Ak and XAk+1 = Ak.

This set of equations is equivalent to [3]

(1.2) AXA = A and AkX = XAk.

Observe that G-Drazin inverse is not unique in general.

As a generalization of the results from [3, 12], the definition of a G-Drazin inverse of a Banach space

operator was presented in [10]. Notice that the definition given in [10] and the above definition of G-Drazin

inverses for square matrices are equivalent in complex matrix case [10]. We give an adequate interpretation

of the definition from [10]: a matrix X ∈ Cn×n is a G-Drazin inverse of A ∈ Cn×n if the following equations

hold:

(1.3) AXA = A and ADAX = XADA.

Recently a new generalized inverse which extends the notation of G-Drazin inverse was introduced in

[9], using an outer inverse with determined range and null space. Precisely, a G-outer inverse was defined for

an operator between two Banach spaces. We now give the version of this definition for complex rectangular

matrices. Let A ∈ Cm×n
T,S . A matrix X ∈ Cn×m is a G-outer (T, S)-inverse of A if the following equalities

hold:

(1.4) AXA = A and A
(2)
T,SAX = XAA

(2)
T,S .

In the particular case that A
(2)
T,S = AD, the G-outer (T, S)-inverse of A becomes the G-Drazin inverse of A.

Notice that, by [9, Theorem 2.1], the system of equations (1.4) is equivalent to

(1.5) AXA = A, A
(2)
T,SAX = A

(2)
T,S and A

(2)
T,S = XAA

(2)
T,S .

The G-outer inverse is not unique and we use A{GO,T, S} to denote the set of all G-outer (T, S)-inverses

of A. Obviously, A{GO,T, S} ⊆ A{1}.

Let A,B ∈ Cm×n
T,S . Then we say that A is below to B under the G-outer (T, S)-relation (denoted by

A ≤GO,T,S B) if there exist C1, C2 ∈ A{GO,T, S} such that

AC1 = BC1 and C2A = C2B.
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Recall that, by [9, Theorem 3.2], the G-outer (T, S)-relation is a partial order on Cm×n
T,S . Since A{GO,T, S} ⊆

A{1}, note that A ≤GO,T,S B yields A ≤− B.

Let A,E ∈ Cn×n and k = ind(A). Extending the system (1.2), the matrix equation system

(1.6) AXA = AEA and AkEAX = XAEAk

was studied in [4] and its general solution was derived in terms of a G-Drazin inverse of A. The set of all

G-Drazin inverses of A was described as a consequence. Some recent results related to the G-Drazin partial

order and proved by results from [4], can be found in [5].

Motivated by recent research about the system (1.6) and G-outer inverses, the main contribution of this

manuscript is to present solvability of several systems of matrix equation which extend systems (1.1)-(1.6).

Firstly, our goal is to investigate the following matrix equation system

AXA = AEA and BAEAX = XAEAD,

where A ∈ Cm×n and B,D,E ∈ Cn×m. Obviously, for m = n, k = ind(A) and B = D = Ak−1, this system

becomes (1.6), which means that we consider solvability of system which generalizes the system (1.6). The

second research stream is investigation of the system

AXA = AEA, BAEAX = B and XAEAD = D,

where A ∈ Cm×n, B ∈ Cp×m, D ∈ Cn×q and E ∈ Cn×m. In a special case when A ∈ Cm×n
T,S , B = D = A

(2)
T,S

and E = A†, the previous system becomes (1.5) which means that our system is more general then (1.5). We

establish the general solutions of our systems and the general solutions of the system (1.5) (or equivalently

(1.4)). Also, we present some interesting applications to prove the importance of obtained expressions.

This paper is organized as follows. In Section 2, we get purely algebraic necessary and sufficient condi-

tions for the solvability of our new systems of matrix equation. We find the general forms of their solutions.

Applying these results, we investigate the solvability of matrix equation systems which generalize systems

(1.1) and (1.5), and we present their general solutions. Particularizing B,D,E of our systems, we obtain

more interesting applications in solving several matrix equation systems. In Section 3, we describe the set

of all G-outer (T, S)-inverses of a rectangular matrix A. Recall that, by [9, Corollary 3.1], if A is below B

under the G-outer (T, S)-partial order, then any G-outer (T, S)-inverse of B is also a G-outer (T, S)-inverse

of A. By [5, Example 2.7], we see that the converse is not true in general. We show that the converse is

valid under an additional condition. Thus, continuing previous research about G-outer (T, S)-inverses [9],

we generalize several results from [4, 5].

In the end of this section, we state two auxiliary results which will be often used.

Lemma 1.1. [2, p. 52] Let A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q. Then the equation AY B = C has a

solution Y ∈ Cn×p if and only if AA−CB−B = C holds for some A− ∈ A{1} and B− ∈ B{1}. In this case,

the general solution Y is given as Y = A−CB− + Z −A−AZBB− for arbitrary Z ∈ Cn×p.

Lemma 1.2. Let A ∈ Cm×n and B ∈ Cp×q. Then AY B = 0 for all Y ∈ Cn×p if and only if A = 0 or

B = 0.

2. Solvability to some systems of matrix equations. Firstly, we give an extension of the system

(1.6) and a necessary and sufficient algebraic condition for its solvability. Using G-outer inverses, the

representation of general solution is presented.
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Theorem 2.1. Let A ∈ Cm×n and B,D,E ∈ Cn×m. If A
(2)
R(B),N (D) exists (or rank(B) = rank(D) =

rank(DAB)) and A{GO,R(B),N (D)} 6= ∅, then the system

(2.7) AXA = AEA and BAEAX = XAEAD

has a solution if and only if

(2.8) ABA(EA)2 = (AE)2ADA.

In this case, the general solution X is given as

X = C1AEAC2 + M − (I −A−A)MAEAD(AEAD)−(2.9)

− (BAEA)−BAEAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C1, C2 ∈ A{GO,R(B),N (D)}, A− ∈ A{1}, (AEAD)− ∈
(AEAD){1} and (BAEA)− ∈ (BAEA){1}.

Proof. In the case that X is a solution of the system (2.7), we get

ABA(EA)2 = ABAE(AEA) = A(BAEAX)A = (AXA)EADA = (AE)2ADA,

i.e., (2.8) is valid.

Let (2.18) hold, C1, C2 ∈ A{GO,R(B),N (D)} and X ′ = C1AEAC2. By [9, Theorem 2.2], B = C1AB

and D = DAC2. Now, we verify that

AX ′A = (AC1A)E(AC2A) = AEA

and

BAEAX ′ = BAE(AC1A)EAC2 = C1(ABAEAEA)C2 = C1AEAEA(DAC2)

= C1AEAEAD = (C1AEAC2)AEAD = X ′AEAD,

which imply that X ′ = C1AEAC2 is a solution of the system (2.7).

Notice that a sum of X ′ = C1AEAC2 and the general solution of

(2.10) AXA = 0 and BAEAX = XAEAD,

is the general solution of the system (2.7). Using Lemma 1.1 and A− ∈ A{1}, we deduce that the equation

AXA = 0 has a solution and its general solution is given by

(2.11) X = Z −A−AZAA−,

for arbitrary Z ∈ Cn×m. If we substitute (2.11) in BAEAX = XAEAD, we obtain

(2.12) BAEAZ(I −AA−) = (I −A−A)ZAEAD.

Multiplying the equality (2.12) on the left hand side by CA, where C ∈ A{GO,R(B),N (D)}, we show that

(2.13) BAEAZ(I −AA−) = 0.
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Let (BAEA)− ∈ (BAEA){1}. By Lemma 1.1 and I −AA− ∈ (I −AA−){1}, the general solution of (2.13)

is

(2.14) Z = W − (BAEA)−BAEAW (I −AA−)

for arbitrary W ∈ Cn×m. Applying (2.12), (2.13) and (2.14), we get

(2.15) (I −A−A)WAEAD = 0.

For (AEAD)− ∈ (AEAD){1}, according to Lemma 1.1 and I −A−A ∈ (I −A−A){1}, the general solution

of (2.15) is represented by

(2.16) W = M − (I −A−A)MAEAD(AEAD)−,

for arbitrary M ∈ Cn×m. Using (2.11), (2.14) and (2.16), we conclude that the general solution of (2.10) is

expressed by

X = M − (I −A−A)MAEAD(AEAD)− − (BAEA)−BAEAM(I −AA−)−A−AMAA−.

Therefore, the general solution of the system (2.7) is represented by (2.9).

Notice that, [4, Theorem 2.2] can be obtained as a special case of Theorem 2.1 for m = n, k = ind(A)

and B = D = Ak−1.

If we apply Theorem 2.1, we can solve more systems of matrix equation extending systems (1.3) and

(1.4) which are their particular cases.

Corollary 2.2. Let A ∈ Cm×n and B,D ∈ Cn×m.

(i) If A
(2)
R(B),N (D) exists and A{GO,R(B),N (D)} 6= ∅, then the system

AXA = A and BAX = XAD

has a solution if and only if

ABA = ADA.

In this case, the general solution X is given as

X = C + M − (I −A−A)MAD(AD)− − (BA)−BAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C ∈ A{GO,R(B),N (D)}, A− ∈ A{1}, (AD)− ∈
(AD){1} and (BA)− ∈ (BA){1}.

(ii) If A
(2)
R(B),N (B) exists and A{GO,R(B),N (B)} 6= ∅, then the system

AXA = A and BAX = XAB

has a solution. In this case, the general solution X is given as

X = C + M − (I −A−A)MAB(AB)− − (BA)−BAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C ∈ A{GO,R(B),N (B)}, A− ∈ A{1}, (AB)− ∈
(AB){1} and (BA)− ∈ (BA){1}.
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Proof. (i) For E = A† in Theorem 2.1, we verify this part.

(ii) It follows by (i) when B = D.

Corollary 2.3. Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r, S be a subspace

of Cm of dimension m− s and E ∈ Cn×m. If A
(2)
T,S exists and A{GO,T, S} 6= ∅, then the system

AXA = AEA and A
(2)
T,SAEAX = XAEAA

(2)
T,S

has a solution if and only if

AA
(2)
T,SA(EA)2 = (AE)2AA

(2)
T,SA.

In this case, the general solution X is given as

X = C1AEAC2 + M − (I −A−A)MAEAA
(2)
T,S(AEAA

(2)
T,S)−

− (A
(2)
T,SAEA)−A

(2)
T,SAEAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C1, C2 ∈ A{GO,T, S}, A− ∈ A{1}, (AEAA
(2)
T,S)− ∈

(AEAA
(2)
T,S){1} and (A

(2)
T,SAEA)− ∈ (A

(2)
T,SAEA){1}.

Proof. If B = D = A
(2)
T,S in Theorem 2.1, we prove this result.

We now present an equivalent condition for solving a new matrix equation system which is a general-

ization of the system given by (1.5). Also, we obtain the general solution of this new system in terms of

G-outer inverses. Beside the fact that the matrices B and D are not of the same type in Theorem 2.1 and

Theorem 2.4, we observe that G-outer inverses which appear in Theorem 2.1 and Theorem 2.4 are not from

the same set. Precisely, we use G-outer inverses from the set A{GO,R(B),N (D)} in Theorem 2.1, but from

the set A{GO,R(D),N (B)} in Theorem 2.4.

Theorem 2.4. Let A ∈ Cm×n, B ∈ Cp×m, D ∈ Cn×q and E ∈ Cn×m. If A
(2)
R(D),N (B) exists (or

rank(D) = rank(B) = rank(BAD)) and A{GO,R(D),N (B)} 6= ∅, then the system

(2.17) AXA = AEA, BAEAX = B and XAEAD = D

has a solution if and only if

(2.18) BA(EA)2 = BA and (AE)2AD = AD.

In this case, the general solution X is given as

X = C1AEAC2 + M − (I −A−A)MAEAD(AEAD)−

− (BAEA)−BAEAM(I −AA−)−A−AMAA−,(2.19)

for arbitrary M ∈ Cn×m and for arbitrary but fixed C1, C2 ∈ A{GO,R(D),N (B)}, A− ∈ A{1}, (AEAD)− ∈
(AEAD){1} and (BAEA)− ∈ (BAEA){1}.

Proof. If X is a solution of the system (2.17), then (2.18) is satisfied:

BA(EA)2 = BAE(AEA) = (BAEAX)A = BA

and

(AE)2AD = (AEA)EAD = A(XAEAD) = AD.
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Suppose that (2.18) holds, C1, C2 ∈ A{GO,R(D),N (B)} and X ′ = C1AEAC2. Using [9, Theorem 2.2],

we obtain

AX ′A = (AC1A)E(AC2A) = AEA,

BAEAX ′ = BAE(AC1A)EAC2 = (BAEAEA)C2 = BAC2 = B

and

X ′AEAD = C1AE(AC2A)EAD = C1(AEAEAD) = C1AD = D.

Thus, X ′ = C1AEAC2 is a solution of the system (2.17).

The general solution of the system (2.17) is a sum of X ′ = C1AEAC2 and the general solution of

(2.20) AXA = 0, BAEAX = 0 and XAEAD = 0.

Let A− ∈ A{1}. By Lemma 1.1, we have that the general solution of equation AXA = 0 is

(2.21) X = Z −A−AZAA−,

for arbitrary Z ∈ Cn×m. Substituting (2.21) in BAEAX = 0, we get

(2.22) BAEAZ(I −AA−) = 0.

For (BAEA)− ∈ (BAEA){1}, according to Lemma 1.1 and I −AA− ∈ (I −AA−){1}, the general solution

of (2.22) is given by

(2.23) Z = W − (BAEA)−BAEAW (I −AA−)

for arbitrary W ∈ Cn×m. Using XAEAD = 0, (2.21) and (2.23), we verify that

(2.24) (I −A−A)WAEAD = 0.

Let (AEAD)− ∈ (AEAD){1}. Applying Lemma 1.1 and I −A−A ∈ (I −A−A){1}, the general solution of

(2.24) is

(2.25) W = M − (I −A−A)MAEAD(AEAD)−,

for arbitrary M ∈ Cn×m. From (2.21), (2.23) and (2.25), the general solution of the system (2.20) is given

by

X = M − (I −A−A)MAEAD(AEAD)− − (BAEA)−BAEAM(I −AA−)−A−AMAA−,

which implies that (2.19) is the general solution of (2.17).

Remark 2.5. Notice that, if the conditions of Theorem 2.4 and the equalities of (2.18) are satisfied,

then, for (BAEA)− ∈ (BAEA){1} and (AEAD)− ∈ (AEAD){1},

(i) BAEA(BAEA)−BA = BA and AD(AEAD)−AEAD = AD;

(ii) BAEA(BAEA)−B = B and D(AEAD)−AEAD = D.

Indeed, for (BAEA)− ∈ (BAEA){1},

BA = (BAEA)EA = BAEA(BAEA)−(BAEAEA) = BAEA(BAEA)−BA.

Multiplying the previous equality by C ∈ A{GO,R(D),N (B)} on the right hand side, we obtain B =

BAEA(BAEA)−B. Let (AEAD)− ∈ (AEAD){1}. Multiplying

AD = AE(AEAD) = (AEAEAD)(AEAD)−AEAD = AD(AEAD)−AEAD

by C on the left hand side, we have D = D(AEAD)−AEAD.
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Specializing matrices B, D, E of Theorem 2.4, we obtain some interesting applications. In the particular

case that E = A† in Theorem 2.4, we solve the following system of three equations using a G-outer inverse.

Corollary 2.6. Let A ∈ Cm×n, B ∈ Cp×m and D ∈ Cn×q. If A
(2)
R(D),N (B) exists and A{GO,R(D),

N (B)} 6= ∅, then the system

AXA = A, BAX = B and XAD = D

has a solution. In addition, the general solution X is given as

X = C + M − (I −A−A)MAD(AD)− − (BA)−BAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C ∈ A{GO,R(D),N (B)}, A− ∈ A{1}, (AD)− ∈
(AD){1} and (BA)− ∈ (BA){1}.

Proof. Recall that, by [9, Theorem 2.4], C1AC2 ∈ A{GO,T, S}, for C1, C2 ∈ A{GO,T, S}. Using

E = A† in Theorem 2.4, we obtain this consequence.

Choosing B = D = A
(2)
T,S in Theorem 2.4, we present the system which generalizes (1.5) and get that its

solvability is equivalent with some algebraic conditions. We also describe the general form of its solutions.

Corollary 2.7. Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r, S be a subspace

of Cm of dimension m− s and E ∈ Cn×m. If A
(2)
T,S exists and A{GO,T, S} 6= ∅, then the system

AXA = AEA, A
(2)
T,SAEAX = A

(2)
T,S and XAEAA

(2)
T,S = A

(2)
T,S

has a solution if and only if

A
(2)
T,SA(EA)2 = A

(2)
T,SA and (AE)2AA

(2)
T,S = AA

(2)
T,S .

In this case, the general solution X is given as

X = C1AEAC2 + M − (I −A−A)MAEAA
(2)
T,S(AEAA

(2)
T,S)−

− (A
(2)
T,SAEA)−A

(2)
T,SAEAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C1, C2 ∈ A{GO,T, S}, A− ∈ A{1}, (AEAD)− ∈
(AEAD){1} and (BAEA)− ∈ (BAEA){1}.

Proof. If we assume that B = D = A
(2)
T,S in Theorem 2.4, we get this result.

Setting E = A
(2)
T,S in Corollary 2.7, we show the next consequence.

Corollary 2.8. Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a

subspace of Cm of dimension m− s. If A
(2)
T,S exists and A{GO,T, S} 6= ∅, then the system

AXA = AA
(2)
T,SA, A

(2)
T,SAX = A

(2)
T,S and XAA

(2)
T,S = A

(2)
T,S

has a solution. In addition, the general solution X is given as

X = A
(2)
T,S + M − (I −A−A)MAA

(2)
T,S −A

(2)
T,SAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed A− ∈ A{1}.
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Proof. Notice that, for C1, C2 ∈ A{GO,T, S}, (C1AA
(2)
T,S)AC2 = A

(2)
T,SAC2 = A

(2)
T,S . Applying E = A

(2)
T,S

in Corollary 2.7 and according to (AA
(2)
T,S)− ∈ (AA

(2)
T,S){1} and (A

(2)
T,SA)− ∈ (A

(2)
T,SA){1}, we prove this

result.

If A
(2)
T,S = AD in Corollary 2.8, we verify the next corollary.

Corollary 2.9. Let A ∈ Cn×n and k = ind(A). Then the system

AXA = AADA, ADAX = AD and XAAD = AD

has a solution. In addition, the general solution X is given as

X = AD + M − (I −A−A)MAAD −ADAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed A− ∈ A{1}.

We can easily check that the system appeared in Corollary 2.9 has a solution if and only if the system

AXA = AADA and AkX = XAk considered in [4, Corollary 3.5], has a solution, and these two systems

have the same general solution forms.

Applying Theorem 2.4 for A ∈ Cn×n, k = ind(A) and B = D = Ak, we consider solvability of an

extension of system (1.1).

Corollary 2.10. Let A ∈ Cn×n, k = ind(A) and E ∈ Cn×n. Then the system

AXA = AEA, Ak+1EAX = Ak and XAEAk+1 = Ak

has a solution if and only if

Ak+1(EA)2 = Ak+1 and (AE)2Ak+1 = Ak+1.

In this case, the general solution X is given as

X = C1AEAC2 + M − (I −A−A)MAEAk+1(AEAk+1)−

− (Ak+1EA)−Ak+1EAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m and for arbitrary but fixed C1, C2 ∈ A{GD}, A− ∈ A{1}, (AEAk+1)− ∈
(AEAk+1){1} and (Ak+1EA)− ∈ (Ak+1EA){1}.

3. General representations for G-outer inverses. In this section, we firstly describe the set of

all G-outer (T, S)-inverses of A using one particular G-outer (T, S)-inverse of A. Precisely, we present two

general representations for G-outer inverses in terms of only one parameter M and in terms of two parameters

U and V .

Theorem 3.1. Let A ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a

subspace of Cm of dimension m− s. If A
(2)
T,S exists and A{GO,T, S} 6= ∅, then

A{GO,T, S} = {C + (I −A−A)M(I −AA
(2)
T,S) + (I −A

(2)
T,SA)M(I −AA−)

− (I −A−A)M(I −AA−), M ∈ Cn×m is arbitrary}(3.26)

= {C + (I −A−A)V (I −AA
(2)
T,S) + (I −A

(2)
T,SA)U(I −AA−),

U, V ∈ Cn×m are arbitrary}(3.27)

for arbitrary but fixed C ∈ A{GO,T, S} and A− ∈ A{1}.
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Proof. For E = A† in Corollary 2.7, we observe that the general solution of the system (1.5) is given by

C + M − (I −A−A)MAA
(2)
T,S −A

(2)
T,SAM(I −AA−)−A−AMAA−,

for arbitrary M ∈ Cn×m, C ∈ A{GO,T, S} and A− ∈ A{1}. By some elementary calculations, we obtain

(3.26).

If we set M = U(I −AA−) + (I −A−A)V in (3.26), for arbitrary U, V ∈ Cn×m, by direct calculations,

we get (3.27). For U = M and V = (I − A−A)M −M(I − AA−) in (3.27), for arbitrary M ∈ Cn×m, it

follows that (3.26) holds.

Remark that, if m = n and A
(2)
T,S = AD in Theorem 3.1, we obtain [4, Theorem 3.2]. Thus, Theorem 3.1

generalizes [4, Theorem 3.2].

We now consider the range spaces of A and B in the case that any G-outer (T, S)-inverse of B is a

G-outer (T, S)-inverse of A.

Theorem 3.2. Let A,B ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a

subspace of Cm of dimension m− s. Suppose that A
(2)
T,S and B

(2)
T,S exist. If ∅ 6= B{GO,T, S} ⊆ A{GO,T, S},

then

(i) R(A) ⊆ R(B) or R(A∗) ⊆ R(B∗);

(ii) R(AA
(2)
T,S) ⊆ R(BB

(2)
T,S) and R((A

(2)
T,SA)∗) ⊆ R((B

(2)
T,SB)∗).

Proof. Applying Theorem 3.1, the set of all G-outer inverses of B is given by

(3.28) X = D + (I −B−B)V (I −BB
(2)
T,S) + (I −B

(2)
T,SB)U(I −BB−),

for arbitrary U, V ∈ Cn×m, D ∈ B{GO,T, S} and B− ∈ B{1}.

(i) Set U = 0 in (3.28). From X,D ∈ B{GO,T, S} ⊆ A{GO,T, S}, we have that A = AXA = ADA

implying A(I − B−B)V (I − BB
(2)
T,S)A = 0, for arbitrary V ∈ Cn×m. Applying Lemma 1.2, note that

A(I − B−B) = 0 or (I − BB
(2)
T,S)A = 0 which give R(A∗) ⊆ N ((I − B−B)∗) = R(B∗(B−)∗) = R(B∗) or

R(A) ⊆ N (I −BB
(2)
T,S) = R(BB

(2)
T,S) = R(B).

(ii) By X,D ∈ B{GO,T, S} ⊆ A{GO,T, S}, we deduce that A
(2)
T,S = XAA

(2)
T,S = DAA

(2)
T,S . For U = 0

in (3.28), we obtain (I − B−B)V (I − BB
(2)
T,S)AA

(2)
T,S = 0, for arbitrary V ∈ Cn×m. Using Lemma 1.2, we

conclude that (I −BB
(2)
T,S)AA

(2)
T,S = 0, i.e., R(AA

(2)
T,S) ⊆ N (I −BB

(2)
T,S) = R(BB

(2)
T,S).

In a similar way, by A
(2)
T,S = A

(2)
T,SAX = A

(2)
T,SAD, for V = 0 in (3.28), we get A

(2)
T,SA(I − B

(2)
T,SB)U(I −

BB−) = 0. Hence, A
(2)
T,SA(I−B

(2)
T,SB) = 0, which yields R((A

(2)
T,SA)∗) ⊆ N ((I−B

(2)
T,SB)∗) = R((B

(2)
T,SB)∗).

For A
(2)
T,S = AD and B

(2)
T,S = BD in Theorem 3.2, we get [4, Theorem 3.8] as a consequence.

Observe that A ≤GO,T,S B gives B{GO,T, S} ⊆ A{GO,T, S} by [9, Corollary 3.1]. It is interesting to

study when the converse implication holds. Applying an additional condition, we prove that the converse is

satisfied.
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Theorem 3.3. Let A,B ∈ Cm×n be of rank r, T be a subspace of Cn of dimension s ≤ r and S be a

subspace of Cm of dimension m−s. Suppose that A
(2)
T,S and B

(2)
T,S exist and A{GO,T, S} 6= ∅ 6= B{GO,T, S}.

Then the following statements are equivalent:

(i) A ≤GO,T,S B;

(ii) B{GO,T, S} ⊆ A{GO,T, S} and A �s B.

Proof. (i) ⇒ (ii): It follows by [9, Corollary 3.1] and the implications A ≤GO,T,S B ⇒ A ≤− B ⇒
A �s B.

(ii) ⇒ (i): Let C ∈ A{GO,T, S} and D ∈ B{GO,T, S}. The hypothesis B{GO,T, S} ⊆ A{GO,T, S}
implies that D ∈ A{GO,T, S}. If C1 = CAD and C2 = DAC, by [9, Theorem 2.4], we have that C1, C2 ∈
A{GO,T, S}. The assumption A �s B gives R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗). Thus, there exist

Z ∈ Cn×n and W ∈ Cm×m such that A = BZ = WB. Now, we get

C1A = C(ADA) = CA = CWB = C(WB)DB = (CAD)B = C1B

and

AC2 = (ADA)C = AC = BZC = BD(BZ)C = B(DAC) = BC2,

that is, A ≤GO,T,S B.

In the special case that A
(2)
T,S = AD and B

(2)
T,S = BD, Theorem 3.3 recovers [5, Theorem 2.4].

Remark 3.4. Notice that the results of this paper are also true for Hilbert space operators. This fact

can be proved using the same algebraic techniques as in this paper, and it is not need to use Hilbert space

operator techniques. In particular, we can assume that A,B,D,E are bounded linear operators between

corresponding Hilbert spaces in Theorem 2.4 such that operators A, AEAD and BAEA have closed range.

Then (2.17) is the system of operator equations and we prove an equivalent condition for its solvability and

its general solution form in the same manner as in the proof of Theorem 2.4.
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