
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 773-798, December 2020.
http://repository.uwyo.edu/ela

SPECTRAL ANALYSIS OF SADDLE–POINT MATRICES FROM OPTIMIZATION

PROBLEMS WITH ELLIPTIC PDE CONSTRAINTS∗

FABIO DURASTANTE† AND ISABELLA FURCI‡

Abstract. The main focus of this paper is the characterization and exploitation of the asymptotic spectrum of the saddle–

point matrix sequences arising from the discretization of optimization problems constrained by elliptic partial differential

equations. They uncover the existence of an hidden structure in these matrix sequences, namely, they show that these are

indeed an example of Generalized Locally Toeplitz (GLT) sequences. They show that this enables a sharper characterization of

the spectral properties of such sequences than the one that is available by using only the fact that they deal with saddle–point

matrices. Finally, they exploit it to propose an optimal preconditioner strategy for the GMRES, and Flexible–GMRES methods.
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1. Introduction. Linear systems with saddle–point matrices arises in a wide context of applications

and have attracted a great deal of attention [5, 2]. In general form, they can be simply stated as the family

of linear systems where the left–hand side is given by block–matrices of the form

(1.1) AN =

[
A BT1
B2 −C

]
, A ∈ Rq×q, B1, B2 ∈ Rp×q, C ∈ Rp×p.

We are interested here in the analysis of their spectral properties in the very specific context of the discretized

version of optimal constraint problems [33]

(1.2)


min
y,u

J(y, u) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

such that

e(y, u) = 0, in Ω,

y = f, on ∂ΩD,
∂y
∂n = g, on ∂ΩN ,

where, α > 0 is a fixed constant that acts as a Tikhonov regularization parameter, J is a cost functional,

Ω ⊂ Rd is the domain of both the state y and the control u, and ∂ΩD and ∂ΩN are two disjoint sets that

represent the Dirichlet and Neumann boundary respectively and have the whole boundary as union.

Spectral properties of the general case (1.1) have been indeed thoroughly analyzed [26, 22, 6, 3, 23, 18,

31, 7] under several hypotheses on the blocks of AN , e.g., B1 = B2 = B, C semipositive definite, A symmetric

and positive definite, and so on. The goal of the latter works has been to provide a sharp localization bounds

for their spectrum, and exploit them to devise efficient iterative solvers for such problems. Here we focus on
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a less general objective, i.e., we intend to exploit finer information on the structure of the blocks of (1.1), a

knowledge coming from the coupling of the source problem (1.2) and its discretization, to give an asymptotic

description of the spectrum of the matrices {AN}N . Specifically, we show that the saddle–point form of

AN obtained from (1.1) hides inside another structure, namely, that the sequence of matrices {AN}N is a

Generalized Locally Toeplitz (GLT) sequence [28, 16]. This enables us to obtain a sharper localization of

its asymptotic spectrum. Furthermore, we use this characterization to suggest an effective preconditioning

strategy for such problems. We stress that an approach of this type has already been exploited for both the

saddle–point matrices obtained from a two–dimensional linear elasticity–type problem in [11], and partially

explored in [10, 12] for a constrained optimization problem where the constraints e(y, u) were Fractional

Differential Equations.

The paper is therefore divided as follows: In Section 2, we describe the discrete form of (1.2) fully

specifying the sequence of matrices {AN}N . In Section 3, we recall the essential tools needed for working

with GLT sequences and apply them to our problem, while in Section 4, we exploit them to devise an efficient

preconditioning strategy. In Section 5, we substantiate our claims with some numerical examples, and give

conclusions in Section 6.

2. From the continuous problem to the saddle–point sequence {AN}N . The first point we need

to answer is how we obtain the sequence of saddle–point matrices from (1.2), indeed a way of doing so is

going through its Langrangian formulation. Thus, we find the Lagrangian of (1.2) as

(2.3) L(y, u, p) = J(y, u)− 〈p, e(y, u)〉W∗,W ,

where e(y, u) represents the PDE constraint as an operator between the Banach spaces Y ×U and W , and p

is the Adjoint status between the space W and its dual W ∗ acting as Lagrange multiplier. Indeed, a solution

for the original constrained optimization problem (1.2) is a stationary point for the Lagrangian (2.3). To

obtain such stationary point (ŷ, û, p̂) ∈ Y × U ×W ∗ we require that the Gâteaux derivative with respect to

each of the variables of (2.3) is zero, i.e.,

L′y(ŷ, û, p̂)h = J ′y(ŷ, û)h− 〈p̂, e′y(ŷ, û)h〉W∗,W = 0, ∀ h ∈ Y,
L′u(ŷ, û, p̂)w = J ′u(ŷ, û)w− 〈p̂, e′u(ŷ, û)w〉W∗,W = 0, ∀w ∈ U,
L′p(ŷ, û, p̂) = e(ŷ, û) = 0.

These are called, in general, the first order optimality conditions or the Karush-Kuhn-Tucker conditions

(KKT-conditions) for Problem (1.2). Finally, for obtaining such characterization we have to fully specify the

operator e(y, u), and consequently all the functional spaces Y, U , and W . The prototypical elliptic problem

in this class is represented by the Poisson distributed control

(2.4)


min
y,u

J(y, u) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

such that

−∇2y = u+ z, in Ω,

y = f, on ∂ΩD,
∂y
∂n = g, on ∂ΩN ,

where z represents the forcing term.
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The KKT conditions for problem (2.4) are expressed as

(2.5)


−∇2y = u+ z, in Ω,

y = f, on ∂ΩD,
∂y
∂n = g, on ∂ΩN .

(State equation)


−∇2p = y − yd, in Ω,

y = 0, on ∂ΩD,
∂y
∂n = 0, on ∂ΩN .

(Adjoint equation)

αu+ p = 0. (Gradient condition)

By posing p̂ = −p and choosing v ∈ H1
0 (Ω) we can rewrite conditions (2.5) in weak form as:∫

Ω

∇u · ∇v dx =

∫
Ω

uv dx,+

∫
Ω

zv dx,∫
Ω

∇p̂ · ∇v dx =

∫
Ω

(yd − y)v dx,(2.6)

α

∫
Ω

uv dx−
∫

Ω

p̂v dx =0.

Finally, the sequence {AN} is obtained by fixing a Finite Element (FEM) approximation of the optimality

system (2.6). This means fixing a space V0,n(Ωn) with V0,n = Span{φ1, . . . , φN(n)} ⊂ H1
0 (Ω) over a mesh

Ωn on the domain Ω thus obtaining the linear system

(2.7) ĀNx ≡



M̄ O K̄T

O αM̄ −M̄

K̄ −M̄ O





y

u

p


=


Myd

0

z

 ≡ b̄,

where

(2.8) (M̄)i,j =

∫
τh

φiφjdx, (K̄)i,j =

∫
τh

∇φi · ∇φjdx,

are the usual (scaled) mass and stiffness matrices, and O is the zero matrix of order N(n) = n1n2 · · ·nd.

2.1. Triangular Lagrangian elements. To completely specify the linear system (2.7) we need to

precise both the mesh ΩN(n) and the basis functions {φj}N(n)
j=1 , i.e., chose the element defining our discretiza-

tion. We focus here on nodal Lagrangian elements [9, Chapter 5] of degree p. These are built starting from

Pp, the vector space of polynomials q(x1, x2) with scalar coefficients of R2 in R of degree less than or equal

to p,

Pp =

q(x1, x2) =
∑

0≤i+j≤p

ci,jx
i
1x
j
2, ci,j ∈ R

 .
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Figure 1: Nodes Ni for the linear (p = 1), quadratic (p = 2) and cubic (p = 3) Lagrange polynomials on a

triangle.

That is indeed a vector space of dimension dimPp = 1
2 (p + 1)(p + 2). Then an homogeneous triangulation

ΩN(n) of the unit square domain Ω = [0, 1]2 is considered, i.e., a mesh consisting in 2D triangular cells τh

with straight sides, and a lattice Σp of nodes {Ni}
dim Pp
i=1 on each triangle; see Figure 1.

By this construction, every polynomial q ∈ Pp is uniquely determined by its values at the points

{Ni}
dim Pp
i=1 . The finite element method for triangular Lagrange Pp elements is then built on the discrete

finite dimensional space

V pn = {v ∈ C0(Ω) v|τh ∈ Pp, τh ∈ ΩN(n)} ⊂ H1,

and its subspace

V p0,n = {v ∈ V pn , v = 0 on ∂Ω} ⊂ H1
0 .

We call degrees of freedom of a function v ∈ V pn the set of the values of v at the nodes Nj on the entire

mesh, then the space V p0,n has exactly the dimension corresponding to the number of internal degrees of

freedom, i.e., excluding the nodes on ∂Ω. For our model grid we find that the degrees of freedom are

N(n) = n1n2 = (pnx + 1)(pny + 1), where nx and ny are the number of elements in the x and y direction,

respectively. Thus, the dimension N of the matrix in (2.8) will be equal to 3N(n). The matrices (2.8) are

then constructed by means of the opportune Gauss quadrature formulas, and in terms of the Lagrange basis

functions {φi}N(n)
i=1 . For all the discussion, and computation in the paper we deal with the matrices generated

for such elements by the FEniCS library (v.2018.1.0) [1, 21].

3. Spectral analysis of the resulting sequence of saddle point matrices. This section is devoted

to the attainment of a characterization of the spectra of a suitable scaling {AN}N of the sequence of matrices

{ĀN}N in (2.7). Specifically, we are going to answer to the following questions,

Q1 can we individuate some (possibly sharp) intervals containing the spectrum with respect to N?

Q2 For a given N how many eigenvalues are in each interval?

Q3 What is the relation between the condition number of a suitably preconditioned matrix sequence

and the value of the regularization parameter α?

As we mentioned in the introduction, there exist classical localization results for the eigenvalues of a sym-
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metric saddle–point matrix, like the AN in (1.1).

Theorem 1 (Rusten and Winther [26]). Given AN in (1.1), assume A is symmetric and positive

definite, B1 = B2 = B has full rank, and C = 0. Let µ1 and µn denote the largest and smallest eigenvalues

of A, and let σ1 and σm denote the largest and smallest singular values of B. Then the spectrum of AN is

contained in

I− ∪ I+,

where

I− =

[
1

2

(
µn −

√
µ2
n + 4σ2

1

)
;

1

2

(
µ1 −

√
µ2

1 + 4σ2
m

)]
, I+ =

[
µn;

1

2

(
µ1 +

√
µ2

1 + 4σ2
1

)]
.

This bound is indeed very general and versatile, since it requires only information on the symmetry/defi-

niteness of the diagonal blocks, and on the rank of the extradiagonal ones. It can be used to obtain an estimate

of the condition number of AN as function of N in a straightforward way. To this end, an even sharper

result can be obtained by means of [3, Theorem 1(c)] that permits to characterize exactly the eigenvalues

with the largest and the smallest module. Nevertheless, by exploiting further information on the blocks, we

show that finer answers to our question are indeed possible. Specifically, we are going to individuate three

disjoint intervals I−0 , I+
1 , and I+

2 containing the spectrum of the scaled version of ĀN , we show that this

choice is not arbitrary, and that it stems directly from the structure of the problem, and the selection of the

discretization scheme.

In Section 3.1, we start recalling the tools we use, and then we deploy them to achieve these results in

Section 3.2.

3.1. Background and definitions. Throughout this paper, we use the following notation. Let Cs×s

be the linear space of the complex s× s matrices and let f : G→ Cs×s, with G ⊆ R`, ` ≥ 1, measurable set.

We say that f belongs to L1(G) (resp. is measurable) if all its components fij : G→ C, i, j = 1, . . . , s, belong

to L1(G) (resp. are measurable). We denote by Id the d-dimensional cube (−π, π)d and define L1(d, s) as

the linear space of d-variate functions f : Id → Cs×s, f ∈ L1(Id).

Moreover, we indicate by {AN}n∈Nd , or simply {AN}n, the matrix sequence whose elements are the

matrices AN of dimensions N × N = N(s,n) × N(s,n), with N(s,n) = sN(n) = sn1n2 · · ·nd, n =

(n1, n2, . . . , nd).

Definition 1. Let the Fourier coefficients of a given function f ∈ L1(d, s) be defined as

f̂j :=
1

(2π)d

∫
Id

f(θ) e−ι 〈 j , θ〉 dθ ∈ Cs×s, j = (j1, . . . , jd) ∈ Zd, ι2 = −1,(3.9)

where 〈j,θ〉 =
∑d
t=1 jtθt and the integrals in (3.9) are computed componentwise.

Then, the nth Toeplitz matrix associated with f is the matrix of order N(s,n) given by

(3.10) Tn(f) =

n−e∑
j=−(n−e)

Jj1n1
⊗ · · · ⊗ Jjdnd ⊗ f̂j.

where e = (1, . . . , 1) ∈ Nd, j = (j1, . . . , jd) ∈ Nd and J
jξ
nξ is the nξ × nξ matrix whose (i, l)th entry equals 1

if (i− l) = jξ and 0 otherwise.
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The set {Tn(f)}n (with n ∈ Nd) is called the family of d-level Toeplitz matrices generated by f, that in

turn is referred to as the generating function or the symbol of {Tn(f)}n.

Moreover, from (3.9), the symbol can be expressed via the Fourier series

(3.11) f(θ) =

∞∑
j=−∞

f̂je
ι〈j,θ〉.

In order to deal with low–rank/small–norm perturbations and to show that they do not affect the symbol

of a Toeplitz sequence, we introduce the definition of spectral distribution in the sense of the eigenvalues and

of the singular values for a generic matrix-sequence {AN}n∈Nv , v ≥ 1, and then the notion of GLT algebra.

Definition 2. Let f : G → Cs×s be a measurable function, defined on a measurable set G ⊂ R` with

` ≥ 1, 0 < µ`(G) <∞. Let C0(K) be the set of continuous functions with compact support over K ∈ {C,R+
0 }

and let {AN}n∈Nv , v ≥ 1, be a sequence of matrices with eigenvalues λj(AN ), j = 1, . . . , N , and singular

values σj(AN ), j = 1, . . . , N .

• {AN}n∈Nv is distributed as the pair (f, G) in the sense of the eigenvalues, in symbols

{AN}n∈Nv ∼λ (f, G),

if the following limit relation holds for all F ∈ C0(C):

lim
n→∞

1

N

N∑
j=1

F (λj(AN )) =
1

µ`(G)

∫
G

s∑
i=1

F

((
λ(i)(f)

)
(θ)

)
s

dθ.(3.12)

• {AN}n∈Nv is distributed as the pair (f, G) in the sense of the singular values, in symbols

{AN}n∈Nv ∼σ (f, G),

if the following limit relation holds for all F ∈ C0(R+
0 ):

lim
n→∞

1

N

N∑
j=1

F (σj(AN )) =
1

µ`(G)

∫
G

s∑
i=1

F

((
σ(i)(f)

)
(θ)

)
s

dθ.(3.13)

In this setting the expression n→∞ means that every component of the vector n tends to infinity, that is,

min
i=1,...,v

ni →∞.

Remark 1. We denote by λ(1)(f), . . . , λ(s)(f) and by σ(1)(f), . . . , σ(s)(f) the eigenvalues and the singular

values of a s × s matrix-valued function f, respectively. If f is smooth enough, an informal interpretation

of the limit relation (3.12) (resp. (3.13)) is that when the matrix-size of AN is sufficiently large, then N/s

eigenvalues (resp. singular values) of AN can be approximated by a sampling of λ(1)(f) (resp. σ(1)(f)) on

a uniform equispaced grid of the domain G. Analogously each following N/s eigenvalues (resp. singular

values) can be approximated by an equispaced sampling of the relative λ(j)(f) (resp. σ(j)(f)), j = 2, . . . , s,

in the domain.
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Remark 2. To perform the sampling in Remark 1 computing a closed analytical expression of any of

the eigenvalue functions of f is not the most effective procedure. It is costly and, essentially, useless since

for q = 1, . . . , s, we can provide an “exact” evaluation of λ(q)(f) at the grid points {θn = (θ
(j)
1 , θ

(k)
2 )}n−1

j,k=0

without actually computing the analytical expression. Indeed the “exact” evaluation for d = 2 case is

achieved by

1. sampling f at θn−e = (θ
(j)
n−1, θ

(k)
n−1), j, k = 0, . . . , n − 1, and thus, obtain n2 s × s matrices, Aj,k,

j, k = 0, . . . , n− 1;

2. for each j, k = 0, . . . , n− 1, compute the s eigenvalues of Aj,k, λq(Aj,k), q = 1, . . . , s;

3. for a fixed q = 1, . . . , s, the evaluation of λ(q)(f) at θn−e, j, k = 0, . . . , n − 1, is given by λq(Aj,k),

j, k = 0, . . . , n− 1.

3.1.1. Spectral analysis of Hermitian (block) Toeplitz sequences: distribution results. We

collect here some classical results concerning the distribution of Hermitian (block) Toeplitz sequences from

[19, 32], that we will use extensively in the following.

Theorem 2 (Grenander and Szegő [19]). Let f ∈ L1(d, 1) be a real-valued function with d ≥ 1. Then,

{Tn(f)}n∈Nd ∼λ (f, Id).

In the case where f is a Hermitian matrix-valued function, according to Tilli [32], the previous theorem can

be extended as follows:

Theorem 3 (Tilli [32]). Let f ∈ L1(d, s) be a Hermitian matrix-valued function with d ≥ 1, s ≥ 2.

Then,

{Tn(f)}n∈Nd ∼λ (f, Id).

Remark 3. If {Tn(f)}n∈Nd is such that each Tn(f) is symmetric with real symmetric blocks, then the

symbol has the additional property that

f(±θ1, . . . ,±θd) ≡ f(θ1, . . . , θd), ∀(θ1, . . . , θd) ∈ I+
d = [0, π]d,

and therefore, Theorem 3 can be restated as

{Tn(f)}n∈Nd ∼λ (f, I+
d ).

3.1.2. GLT sequences: operative features. We list here some properties and operative features

from the theory of GLT sequences in their block form; refer to [29, 15, 17] for a full account of the GLT

theory.

GLT1 Each GLT sequence has a singular value symbol f(x,θ) for (x,θ) ∈ [0, 1]d × [−π, π]d according to

the second Item in Definition 2 with ` = 2d. If the sequence is Hermitian, then the distribution also

holds in the eigenvalue sense. If {AN}N has a GLT symbol f(x,θ) we will write {AN}N ∼glt f(x,θ).

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combinations, products,

inversion (whenever the symbol is singular, at most, in a set of zero Lebesgue measure), and conju-

gation. Hence, the sequence obtained via algebraic operations on a finite set of given GLT sequences

is still a GLT sequence and its symbol is obtained by performing the same algebraic manipulations

on the corresponding symbols of the input GLT sequences.
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GLT3 Every Toeplitz sequence generated by an L1(d, s) function f = f(θ) is a GLT sequence and its symbol

is f, with the specifications reported in item GLT1. We note that the function f does not depend

on the space variables x ∈ [0, 1]d.

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is a GLT sequence

with symbol 0. In particular:

• every sequence in which the rank divided by the size tends to zero, as the matrix size tends to

infinity;

• every sequence in which the trace-norm (i.e., sum of the singular values) divided by the size

tends to zero, as the matrix size tends to infinity.

GLT5 If {AN}N ∼GLT κ and the matrices AN are such that AN = XN + Yn, where

• every XN is Hermitian,

• the spectral norms of XN and YN are uniformly bounded with respect to N ,

• the trace-norm of YN divided by the matrix size N converges to 0,

then the distribution holds in the eigenvalue sense.

We highlight that from the previous properties follows that a sequence of Toeplitz matrices is, up to low-rank

corrections, a GLT sequence whose symbol is not affected by the low-rank perturbation.

Theorem 4. [16, Section 8.4] Let {AN}N be a sequence of Hermitian matrices such that {AN}N ∼GLT
κ, and let {PN}N be a sequence of Hermitian positive definite matrices such that {PN}N ∼GLT ξ and ξ 6= 0

a.e. Then

{P−1
N AN}N ∼GLT ξ−1κ, {P−1

N AN}N ∼σ, λ (ξ−1κ, Id).

3.2. Spectral analysis of the sequence {AN}N . We can now use the introduced tools to perform

the spectral analysis of the matrix sequence {ĀN}N , assuming that n = n1 = n2, p = 1. For studying it is

easier to consider the equivalent distribution given by the following symmetric diagonal scaling

(3.14) AN = D(1)
N ĀND

(2)
N =

h4M O KT

O αM −M
K −M O

 , h =
1

n+ 1
,

with

D(1)
N =

h2In2 O O

O In2 O

O O In2

 , D(2)
N =

In2 O O

O 1
h2 In2 O

O O 1
h2 In2

 .
From the discretization of Section 2, the elements of the matrix M̄ depend on n as 1/(n + 1)2. Hence, the

effect of the proposed scaling permits to eliminate the dependence of h2 of the elements in M̄ , which, for n

large, would make the matrix AN ill-conditioned.

In particular the matrices M = 1
h2 M̄ = Tn(m), K = K̄ = Tn(κ) are n2 × n2 bi-level Toeplitz matrices

with generating functions

(3.15) m(θ1, θ2) =
cos (θ1)

6
+

cos (θ2)

6
+

1

6
cos (θ1 + θ2) +

1

2

and

(3.16) κ(θ1, θ2) = −2 cos (θ1)− 2 cos (θ2) + 4.
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We stress that in this case the matrices M and K are real and symmetric. A property that we will exploit

in the theoretical analysis, nevertheless we keep the notation KT for the (1,3) block of the matrix AN for

two reasons. On one side, for being consistent with the continuous setting, in which the adjoint is usually

explicitly expressed. On the other, to keep the analogy with Section 3.3 in which we will discuss the usage

of the advection-diffusion equation as constraint.

Theorem 5. The matrix sequence {AN}N in (3.14) is distributed in the sense of the Eigenvalues as

(3.17) f(θ1, θ2) = f̂(0,0) + 2f̂(0,−1) (cos θ1 + cos θ2) + 2f̂(−1,−1) (cos(θ1 + θ2)) ,

i.e., {AN}N ∼λ (f, [0, π]2), where

f̂(0,0) =

0 0 4

0 α
2 − 1

2

4 − 1
2 0

 , f̂(1,1) = f̂(−1,−1) =

0 0 0

0 α
12 − 1

12

0 − 1
12 0

 ,
f̂(−1,0) = f̂(0,−1) = f̂(0,1) = f̂(1,0) =

 0 0 −1

0 α
12 − 1

12

−1 − 1
12 0

 .(3.18)

Proof. Let ei, i = 1, . . . , N be the ith column of the identity matrix of size N , we can define a proper

N×N permutation matrix, Π = [P1|P2|P3], Pl ∈ RN×n2

, l = 1, 2, 3, such that the kth column of Pl l = 1, 2, 3,

is el+3(k−1). The matrix Π transforms AN as

(3.19) BN = ΠANΠT = Tn(f) + En,

where

• Tn(f) is the bi-level 3×3 block Toeplitz Tn(f) =
[̂
fi−j

]n
i,j=e

∈ CN×N generated by f : [−π, π]2 → C3×3

as in (3.11),

• En is a small-norm matrix, with ||En|| < C, C constant depending on the bandwidths of BN and

N−1‖En‖1 → 0.

This is a congruence transformation, thus if we find the distribution of the sequence {BN}N , we found also

the distribution for the sequence {AN}N . Let us observe that the nonzero entries of Tn(f) = [̂fi−j]
n
i,j=e

correspond to the indexes i = (i1, i2), j = (j1, j2) satisfying

{|i1 − j1|+ |i2 − j2| ≤ 1} ∪ {i1 = i2 = j1 = j2 = 1} ∪ {i1 = i2 = j1 = j2 − 1},



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 773-798, December 2020.
http://repository.uwyo.edu/ela

Fabio Durastante and Isabella Furci 782

as shown in equation (3.20), for n = (3, 3) we find Tn(f)

(3.20)



f̂(0,0) f̂(0,−1) 0 f̂(−1,0) f̂(−1,−1) 0 0 0 0

f̂(0,1) f̂(0,0) f̂(0,−1) 0 f̂(−1,0) f̂(−1,−1) 0 0 0

0 f̂(0,1) f̂(0,0) 0 0 f̂(−1,0) 0 0 0

f̂(1,0) 0 0 f̂(0,0) f̂(0,−1) 0 f̂(−1,0) f̂(−1,−1) 0

f̂(1,1) f̂(1,0) 0 f̂(0,1) f̂(0,0) f̂(0,−1) 0 f̂(−1,0) f̂(−1,−1)

0 f̂(1,1) f̂(1,0) 0 f̂(0,1) f̂(0,0) 0 0 f̂(−1,0)

0 0 0 f̂(1,0) 0 0 f̂(0,0) f̂(0,−1) 0

0 0 0 f̂(1,1) f̂(1,0) 0 f̂(0,1) f̂(0,0) f̂(0,−1)

0 0 0 0 f̂(1,1) f̂(1,0) 0 f̂(0,1) f̂(0,0)


Therefore, from (3.11), the generating function f is given by the finite sum

f(θ1, θ2) = f̂(0,0) + f̂(−1,0)e
−iθ1 + f̂(0,−1)e

−iθ2 + f̂(1,0)e
iθ1 + f̂(0,1)e

iθ2+

+ f̂(−1,−1)e
−i(θ1+θ2) + f̂(1,1)e

i(θ1+θ2),
(3.21)

where f̂(0,0), f̂(−1,0), f̂(0,−1), f̂(1,0), f̂(0,1), f̂(1,1), f̂(−1,−1) ∈ R3×3, that is f is a linear trigonometric polynomial in

the variables θ1 and θ2 with matrix coefficients from (3.18). Moreover, using the equalities in (3.18), the

symbol in (3.21) can be readily simplified as

f(θ1, θ2) = f̂(0,0) + f̂(0,−1)e
−iθ1 + f̂(0,−1)e

−iθ2 + f̂(0,−1)e
iθ1 + f̂(0,−1)e

iθ2+

+ f̂(−1,−1)e
−i(θ1+θ2) + f̂(−1,−1)e

i(θ1+θ2)

= f̂(0,0) + f̂(0,−1)(e
−iθ1 + eiθ1 + e−iθ2 + eiθ2) + f̂(−1,−1)(e

−i(θ1+θ2) + ei(θ1+θ2))

= f̂(0,0) + 2f̂(0,−1) (cos θ1 + cos θ2) + 2f̂(−1,−1) (cos(θ1 + θ2)) .

Note, from the latter, that

fT (θ1, θ2) = f(θ1, θ2),

thus f is a symmetric matrix-valued function which implies that Tn(f) is a symmetric matrix. By Theorem 3,

we conclude that

(3.22) {Tn(f)}n ∼λ (f, [−π, π]2).

While, from GLT3, we know that {Tn(f)}n is a GLT sequence with symbol f. Moreover, let us observe that

{En} is a zero–distributed sequence hence {En}n ∼σ (0, I+
2 ). Indeed, En is the permutation of a matrix

that in block position (1,1) collects all the terms that contains the scaling h4, deriving from the (1,1) block

of AN , and 0 anywhere else. Then it can be written as En = h4Ẽn.

Since the trace norm ‖ · ‖1 of Ẽn is equal to a constant C independent on n, we have

lim
n→∞

N−1||En||1 = lim
n→∞

N−1
N∑
i=1

σi(En) ≤ lim
n→∞

N−1σmax(En)N = 0,
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and hence, the zero–distribution follows from GLT4. In addition, from GLT1 and the fact that En is

Hermitian, {En}n ∼λ (0, I+
2 ).

The conclusion of the theorem is then achieved by applying GLT2 and (3.22), since this proves that

{Tn(f) + En}n∈N2 is a GLT sequence with symbol f , i.e., {AN}N ∼GLT f. Consequently, by recalling that

Tn(f) + En is real symmetric for every n and using GLT1, we deduce that the distribution result holds in

the sense of the eigenvalues

(3.23) {BN}N ∼λ (f, [−π, π]2).

Furthermore, since each BN is symmetric and its blocks are symmetric and real, then f is such that

f(±θ1,±θ2) ≡ f(θ1, θ2), ∀(θ1, θ2) ∈ [0, π]2, and therefore, (3.23) can be rephrased as

(3.24) {BN}N ∼λ (f, I+
2 ).

We can now find a first answer to the questions Q1 and Q2. For N sufficiently large, let

λ1(BN ) ≤ λ2(BN ) ≤ · · · ≤ λN (BN ).

be the eigenvalues of BN from (3.19), i.e., of AN . By Remark 1, with s = 3, and equation (3.24), we

discover that N/3 = n2 eigenvalues of BN , up to a number of outliers infinitesimal in the dimension, can be

approximated by a sampling of λ(1)(f) on an opportune grid (see the following discussion). The next N/3

on the second one and the last n2 on the sampling of λ(3)(f). Moreover, obtaining the following proposition,

as a specialized version of Theorem 1, is straightforward.

Proposition 1. Let mi = ess infI+2
λ(i)(f(θ)) and Mi = ess supI+2

λ(i)(f(θ)) be the essential infimum

and essential supremum of λ(i)(f(θ)) respectively, for i = 1, 2, 3. Then, for N sufficiently large, the spectrum

λ(AN ) of the matrix sequence {AN}N is contained in three intervals

λ(AN ) ⊂ I−0 ∪ I
+
1 ∪ I

+
2 =(ess inf

I+2
λ(1)(f(θ)), ess sup

I+2

λ(1)(f(θ))]

∪ (ess inf
I+2

λ(2)(f(θ)), ess sup
I+2

λ(2)(f(θ))]

∪ [ess inf
I+2

λ(3)(f(θ)), ess sup
I+2

λ(3)(f(θ)))

=(m1,M1] ∪ (m2,M2] ∪ [m3,M3),

for I+
2 = [0, π]2.

Proof. From the definition of f in (3.17), ∀ (θ1, θ2) ∈ [0, π]2, and matching with the classical analysis

for saddle–point matrices in Theorem 1, we find

(3.25)
(
λ(1)(f)

)
(θ1, θ2) < 0 ≤

(
λ(2)(f)

)
(θ1, θ2) <

(
λ(3)(f)

)
(θ1, θ2),

i.e.,

(3.26) M1 < m2, M2 < m3.

and

ess sup
I+2

λ(1)(f(θ)) ≤ ess inf
I+2

λ(2)(f(θ)),

ess sup
I+2

λ(2)(f(θ)) ≤ ess inf
I+2

λ(3)(f(θ)).
(3.27)
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From [27, Theorem 2.3], we know that the thesis holds true for Tn(f) and, from the relation {AN}N ∼λ
(f, [0, π]2) of Theorem 5, we have that asymptotically the inclusion in (3.27) is valid, also involving the small

norm correction.

To deliver an actual numerical estimate for these bounds what we need is a reasonable approximation of

the eigenvalue functions λ(l)(f), l = 1, 2, 3, following the procedure from Remark 2 and exploiting Theorem 5,

we define the following equispaced grid on I+
2

θn−e =

{
(θ

(j)
n−1, θ

(k)
n−1) =

(
jπ

n
,
kπ

n

)
, j, k = 0, . . . , n− 1

}
,

and consider the following n2 Hermitian matrices of size 3× 3

(3.28) Aj,k := f(θ
(j)
n−1, θ

(k)
n−1), j, k = 0, . . . , n− 1.

Ordering in ascending way the eigenvalues of Aj,k

λ1(Aj,k) ≤ λ2(Aj,k) ≤ λ3(Aj,k), j, k = 0, . . . , n− 1,

for any l = 1, 2, 3, an evaluation of λ(l)(f) at (θ
(j)
1 , θ

(k)
2 ) is given by λl(Aj,k), j, k = 1, . . . , n. For a fixed l,

we denote the vector of all eigenvalues λl(Aj,k), j, k = 0, . . . , n− 1 as P
(n)
l , i.e.,

P
(n)
l := [λl(A0,0), λl(A0,1), . . . , λl(An−1,n−1)] ,

and by P(n) the vector of all eigenvalues λl(Aj,k), j, k = 0, . . . , n− 1 varying l, i.e.,

P(n) := [λ1(A0,0), . . . , λ1(An−1,n−1), . . . , λ3(A0,0), . . . , λ3(An−1,n−1)] .

Note that, refining the grid by increasing n, we can provide the evaluation of the eigenvalue functions

of f in a larger number of grid points: numerical evidences of this fact are reported in Figure 2, in which we

compare the approximation of λ(l)(f) on θn, n = 5, 6 contained in P
(n)
l (ordered in ascending way) with the

approximation of the same eigenvalue function on a grid that is twice as fine θ2n−e, n = 5, 6 contained in

P
(2n)
l (ordered in ascending way as well) for every l = 1, 2, 3.

Then, for n sufficiently large, if we order in ascending way P
(n)
l , its extremes satisfy the following

relations

(P
(n)
l )1 ≈ ml, (P

(n)
l )n2 ≈Ml, l = 1, 2, 3,

and we can can compute a satisfactory approximation of the {ml,Ml}3l=1 from Proposition 1, e.g., by setting

n = 3 · 103, and α = 1.0e-04, we obtain the following approximations:

{m1,M1} ≈ {−8.006939205138657,−0.971179393341684},
{m2,M2} ≈ {0, 0.00006086664699},
{m3,M3} ≈ {0.971268643759555, 8.006939262908668}.

This clearly matches with the fact that the matrix–valued symbol is analytically singular in (0, 0), i.e.,

f(0, 0) =

0 0 0

0 α −1

0 −1 0

 ,
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(a) n = 5
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(b) n = 6

Figure 2: Comparison between the evaluation of the eigenvalue functions λ(l)(f), l = 1, 2, 3, ordered in

ascending way, on the grid θn−e contained in P
(n)
l (◦) and the corresponding evaluation on the grid twice

as fine θ2n−e contained in P
(2n)
l (∗). Each ‘curve’ refers to a different value of l. The parameter n equals 5

and 6 in subplots (a) and (b), respectively.

hence m2 = 0, nevertheless we stress again that this is not in contradiction with the fact that AN is non

singular.

In conclusion, we can exploit Remark 1, to provide an answer to Q2 determining how many eigenvalues

are asymptotically contained in each of the three blocks. According to the relations (3.24), (3.26) we expect

the eigenvalues of BN to verify

# {i : λi(BN ) ∈ (m1,M1]} =
3n2

3
+ o(3n2),

# {i : λi(BN ) ∈ (m2,M2]} =
3n2

3
+ o(3n2),

# {i : λi(BN ) ∈ [m3,M3)} =
3n2

3
+ o(3n2).

(3.29)

and then to identify 3 blocks

Bl1 = [λ1(BN ), . . . , λn2(BN )] ,

Bl2 = [λn2+1(BN ), . . . , λ2n2(BN )] ,

Bl3 = [λ2n2+1(BN ), . . . , λ3n2(BN )] .

Correspondingly, we can split the vector P(n) containing the sampling of the eigenvalue functions on θn−e
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as follows

Eval1 = [(P(n))1, . . . , (P
(n))n2 ],

Eval2 = [(P(n))n2+1, . . . , (P
(n))2n2 ],

Eval3 = [(P(n))2n2+1, . . . , (P
(n))3n2 ].

We stress again that (3.29) allows for a number of outliers that is infinitesimal in the dimension N .

For example, for n = (n, n) = (40, 40) (N = 4800), approximately 3n2

3 = 1600 eigenvalues should be in

each block, by a straightforward numerical check one obtains

# {i : λi(BN ) ∈ (m1,M1]} = 1600,

# {i : λi(BN ) ∈ (m2,M2]} = 1421,

# {i : λi(BN ) ∈ [m3,M3)} = 1600.

(3.30)

Therefore, we expect from that a certain number of eigenvalues of BN are in none of the blocks; in the

example the effective 1421 eigenvalues against the expected 1600 in the second block. This is confirmed

again by Figure 3 in which we highlight represent in blue the whole spectrum of BN and highlight in black

the outliers not belonging to the blocks. On the other hand, such a phenomenon is in line with (3.29), since

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-8

-6

-4

-2

0

2

4

6

8

2000 2500 3000
0

2

4

6

10-5

Figure 3: Eigenvalues of BN for n = (n, n) = (40, 40) (∗) together with the eigenvalues of BN satisfying one

of the relations (3.29) (∗), for α = 1.0e-04.

the order of what is missing/exceeding is infinitesimal in the dimension N . As an example, in Table 1 we

compare the actual number of eigenvalues of BN contained in the second interval (m2,M2] with the expected

number n2. In such way, we succeed in counting the outliers of BN in (m2,M2], whose cardinality behaves

as O(
√

3n2). A further and more natural evidence of relation (3.24) can be obtained by comparing block

by block the eigenvalues of BN with the sampling of the eigenvalue functions of f, that is comparing Bl1,
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n #{λ ∈ (m2,M2]} n2 #{λ /∈ (m2,M2]} #{λ /∈ (m2,M2]}/
√

3n2

10 74 100 26 0.086

20 353 400 47 0.039

40 1421 1600 179 0.037

80 5694 6400 706 0.036

Table 1: Comparison of the effective number of eigenvalues of BN contained in the second interval (m2,M2]

with the expected number n2.

Bl2, Bl3, with Eval1, Eval2, Eval3, respectively. Indeed we want to compare the eigenvalues of BN (properly

ordered) with the evaluation of λ(l)(f) l = 1, 2, 3 at θn−e, using the values that are present in the blocks

of P(n).

More precisely, we compare the elements of Evalt with the elements of Blt by means of the following

matching algorithm:

• save the couples (θ
(jt)
n−1, θ

(kt)
n−1) of θn−e to which the elements of Evalt are associated with;

• for a fixed λ ∈ Blt find η̃ ∈ Evalt such that

η̃ = arg min
η∈Evalt

‖λ− η‖;

• associate λ to the couple (θ
(jt)
n−1, θ

(kt)
n−1) corresponding to η̃.

Making use of the previous algorithm, in Figure 4, we compare the eigenvalues of BN with λ(l)(f), l = 1, 2, 3

displayed as a mesh on θn−e, for n = 40. The eigenvalues of BN mimic, up to some outliers shown in the

Figure 4b, the sampling of the eigenvalue functions, numerically confirming the result given in Theorem 5.

3
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(a) λ(1)(f)
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(b) λ(2)(f)
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1
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8

03

(c) λ(3)(f)

Figure 4: Comparison between the eigenvalues of BN and λ(l)(f), l = 1, 2, 3 displayed as a mesh on θn−e,

when n = 40.

3.3. From Poisson to advection-diffusion equations. We have built the whole construction using

as constraint the Poisson differential equation, this is not restrictive since the analysis can be transparently
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extended to encompass constraints given by a generic elliptic differential equations, i.e.,

(3.31) −∇2y + c · ∇y + ry = z.

The matrix sequence (2.7) maintains the same 3 × 3 block structure, but with a different (1,3) and (3,1)

block Z̄. The latter, whenever c = (c1, c2) 6= 0, is no longer symmetric since the new constraint is no longer

self–adjoint. Specifically, the new block Z̄ can be decomposed into the sum of three terms,

Z̄ = K̄ + V̄ + γM̄, (V̄ )i,j =

∫
τh

(c · ∇φi)φjdx,

with V 6= V T . Therefore, the relative scaled version is given by

(3.32) SN = D(1)
N S̄ND

(2)
N =

h4M O ZT

O αM −M
Z −M O

 , Z = K + hV + h2M.

By means of a GLT perturbation argument from Section 3.1, and exploiting the analysis in [17, Section 7.4]

for the presence of lower order differential terms, we can obtain again a characterization of the eigenvalues

of SN in (3.32) that is analogous to the one we gave in Theorem 5.

Proposition 2. The matrix sequence {SN}N from (3.32) is distributed in the eigenvalue sense as the

matrix–valued function f from Theorem 5.

Proof. Follows from Theorem 5, the techniques adopted in its proof, and from GLT5 applied to SN =

AN + YN , where

YN =

 O O hV T + h2M

O O O

hV + h2M O O

 .
4. An optimal preconditioning strategy. In this section, we analyze an effective procedure to

precondition the GMRES method for the solution of the systems (3.14), and (3.32). There exist indeed

many preconditioners for the linear systems of saddle–point type exploiting their block structure, see, e.g,

the review [5] the comparisons in [2], and, more specifically, the approaches described in [4, 24, 25, 20]. What

we present here belongs to this class, and is built with the objective of obtaining algorithmic scalability,

i.e., independence of the number of iteration from h, and optimality with respect to the parameter α, i.e.,

independence of the number of iteration also with respect to it. To achieve this kind of results the classical

techniques can be broadly divided into three classes, the case of definite Hermitian preconditioners for which

it is possible to retrieve a cluster of the eigenvalue sense from a cluster of the singular values [30, 24, 4], that

allows also for the use of the MINRES method; the case of the indefinite Hermitian preconditioners, and

non Hermitian preconditioner [25, 20]. We focus here on the last approach, while benefiting both from the

spectral distribution of the sequence {Tn(m)}n and {Tn(κ)}n of the Sections 3.2, 3.3, and from the block

form of the matrices AN and SN . Specifically, we propose the following preconditioner

(4.33) PN

z1

z2

z3

 =

O αKT O

O αM −M
K −M O

z1

z2

z3

 =

r1

r2

r3

 .
This is clearly an indefinite, and non Hermitian matrix, nevertheless, the linear systems involving it can be

easily solved by the following back–substitution procedure:
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1. Solve αKT z2 = r1;

2. Solve Mz3 = αMz2 − r2;

3. Solve Kz1 = r3 +Mz2.

We stress that this does not require the approximation of any of the possible Schur complements of AN (SN ),

thus greatly simplifying the construction of the preconditioner. Moreover, we are going to prove now that this

choice provides a strong cluster at 1 for the eigenvalues of the preconditioned linear system while obtaining

also the independence of α. We obtain this result in two steps by means of the GLT theory showing that the

matrix sequence {P−1
N AN}N is distributed in the sense of the eigenvalues as 1. First, in Proposition 3, we

show that the eigenvalues of the preconditioned matrix PN−1AN are either 1, or the generalized eigenvalues

of an auxiliary problem, then, in Lemma 1, we prove that the matrix sequence associated to the latter

is indeed distributed in the eigenvalue sense as the function 1, thus obtaining that the eigenvalues of the

preconditioned system are strictly clustered at 1.

Proposition 3. Let AN (SN ) be the coefficient matrix in (3.14) (respectively in (3.32)), and let PN be

the associated preconditioner from (4.33). Then, the eigenvalues of the preconditioned matrix P−1
N AN are

• λj = 1 for j = 1, . . . , 2N(n),

• λj for j = 2N(n) + 1, . . . , N(3,n) given by the solution of the generalized eigenvalue problem(
h4

α
M +KTM−1K

)
x1 = λKTM−1Kx1,

with x1 6= 0 ∈ RN(n).

Proof. For each n, λ is an eigenvalue of the matrix P−1
N AN if (λ,x) is an eigenpair of the eigenvalue

problem

ANx = λPNx,

with

x =

x1

x2

x3

 6= 0 ∈ RN(3,n).

That is (λ,x) is solution ofh4M O KT

O αM −M
K −M O

x1

x2

x3

 = λ

O αKT O

O αM −M
K −M O

x1

x2

x3

 .
It is clear from the second and the third “block” equations that (1,x) is an eigenpair for the latter problem

for all the vectors in the N(2,n) subspace of RN(3,n)x =

x1

x2

x3

 s.t. x3 = αx2 − h4K−TMx1, ∀x1,x2 ∈ RN(n)

 .

Otherwise, if λ 6= 1, from the third “block” equation

(1− λ)Kx1 = (1− λ)Mx2,
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follows

x2 = M−1Kx1.

And thus, by substitution, we easily find

x3 = αM−1Kx1,

and thus, the remaining eigenpairs are given by the solution of(
h4

α
M +KTM−1K

)
x1 = λKTM−1Kx1.

Lemma 1. The matrix sequence{(
KTM−1K

)−1
(
h4

α
M +KTM−1K

)}
n

,

associated to the generalized eigenvalue problem(
h4

α
M +KTM−1K

)
x1 = λKTM−1Kx1,

is distributed in the eigenvalue sense as 1 over I+
2 .

Proof. The statement is equivalent to{
(Tn(κ)T−1

n (m)Tn(κ))−1

(
h4

α
Tn(m) + Tn(κ)T−1

n (m)Tn(κ)

)}
n

∼λ (1, I+
2 ),

since, from (3.15) and (3.16), we have that M and K are the symmetric and positive definite matrices Tn(m)

and Tn(κ), respectively.

Moreover, the sequence

{
h4

α Tn(m)

}
n

is distribuited in the singular value sense as 0 over I+
2 . Hence,

from property GLT4 plus properties GLT2–GLT3, we have that the following GLT results hold:{
h4

α
Tn(m)

}
n

∼GLT 0,

and

{Tn(m)}n ∼GLT m, {Tn(κ)}n ∼GLT κ,

{T−1
n (m)}n ∼GLT

1

m
, {T−1

n (κ)}n ∼GLT
1

κ
.

Exploiting again GLT 2–GLT4, we obtain that

{Tn(κ)T−1
n (m)Tn(κ)}n ∼GLT

m

κ2

and {
h4

α
Tn(m) + Tn(κ)T−1

n (m)Tn(κ)

}
n

∼GLT
κ2

m
.
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Since the matrix Tn(κ)T−1
n (m)Tn(κ) is positive definite, then Theorem 4 implies{

(Tn(κ)T−1
n (m)Tn(κ))−1

(
h4

α
Tn(m) + Tn(κ)T−1

n (m)Tn(κ)

)}
n

∼GLT,σ,λ (1, I+
2 )

and, hence, the thesis.

Remark 4. Let us stress that the conclusion in Lemma 1 is again an asymptotic result for h→ 0 that is

then valid for a fixed value of the parameter α. Furthermore, it permits also an answer to Q3 characterizing

the condition number of the preconditioned matrix sequence. Specifically, if we let X be the matrix of the

generalized eigenvectors for the pencil (K,M), i.e., if X is an invertible matrix such that

KX = MXD, with

XTKX = diag(d
(K)
1 , . . . , d

(K)
n ) ≡ D(K),

XTMX = diag(d
(M)
1 , . . . , d

(M)
n ) ≡ D(M),

D = diag

(
d
(K)
1

d
(M)
1

, . . . ,
d(K)
n

d
(M)
n

)
,

then we find(
KTM−1K

)−1
(
h4

α
M +KTM−1K

)
=
(
X−TD(K)X−1XD(M)−1

XTX−TD(K)X−1
)−1

(
h4

α
X−TD(M)X−1 +X−TD(K)X−1XD(M)−1

XTX−TD(K)X−1

)
= XD(M)(D(K))−2

(
h4

α
D(M) + (D(K))2(D(M))−1

)
X−1.

It is then straightforward to use (3.15) and (3.16) to estimate the maximum eigenvalues of the generalized

eigenvalue problem in Proposition 3 as an O(α−1). This means that the asymptotic regime described in

Lemma 1 is evident whenever h4 becomes smaller than the fixed value of α of the given problem.

We can now answer to question Q3 for both the matrix sequences {P−1
N AN}N , and {P−1

N SN}N of

Subsection 3.3, where in the definition of the preconditioner (4.33) Z plays the same role of K.

Theorem 6. The matrix sequences {P−1
N AN}N ∼λ (1, I+

2 ), {P−1
N SN}N ∼λ (1, I+

2 ) independently of α.

Moreover, an analogous spectral result to Theorem 6 can be given for the sequence {P−1
BCTAN}N (re-

spectively, {P−1
BCTSN}N ), for

PBCT =

O O KT

O αM −M
K −M O

 .
Theorem 7. The matrix sequences {P−1

BCTAN}N ∼λ (1, I+
2 ), {P−1

BCTSN}N ∼λ (1, I+
2 ) independently

of α.

Proof. The proof follows the proofs of the Proposition 3 and Lemma 1, replacing the expression of PN
with that of PBCT.

This is indeed an example of a block–counter–triangular preconditioner in the style of [4].

Remark 5. The preconditioner proposed in [4] takes the lower anti–triangular part of a different per-

mutation of the system matrix AN , and considers also a different scaling. By this approach, the term that
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is dropped out in the preconditioner is not a correction of “small” norm, and this makes a substantial differ-

ence in the performances of the two approaches. Specifically, comparing the results of Proposition 3, with [4,

Theorem 3.1], it is straightforward to observe that in the latter case it is not possible to infer a cluster of

the eigenvalues of the preconditioned system, specifically, for the rearranged system

P̃−1
BCTÃN =

 O O −M
O h4M KT

−M K O

−1 αM O −M
O h4M KT

−M K O

 .
The non-unit eigenvalues are the one of the matrix sequence {I + αh−4M−1KM−1KT }N , for which the

clustering at one cannot be concluded. Similar observation can be made also for the null–space based block

anti–triangular preconditioners [24] arising from the block anti–triangular factorization of the saddle–point

matrix. Furthermore, one could consider the preconditioner which neglects the (3,2) block of ĀN , avoiding

the reordering and the scaling. This would bring to the case where the non-unit eigenvalues are the solution

of the following generalized eigenvalue problemh2M O KT

O αh2M −h2M

K −h2M O

x1

x2

x3

 = λ

h2M O KT

O αh2M −h2M

K O O

x1

x2

x3

 ,
and, then, we have a behavior analogous to the case with preconditioner P̃BCT (i.e., the absence of a provable

cluster of the preconditioned sequence). Precisely, the non-unit eigenvalues are of the form λi = 1+µi, where,

µi are the reciprocal of the eigenvalues of the matrix sequence { αh4M
−1KM−1KT }N .

4.1. Approximate iterative solution of the auxiliary linear systems. The application of the

proposed preconditioners requires the solution of auxiliary linear systems with the matrices K ,KT , and M

or, respectively, Z, ZT , and M obtained from (4.33). In both cases we are dealing with very common linear

systems for which there exist highly efficient and specific solvers, e.g., fast Poisson solvers, multigrid methods

of geometric, and algebraic type, inner–outer Krylov solver with incomplete factorization preconditioner, and

several combinations of all the previous. Potentially, any optimal preconditioner for these matrices could be

included in the present framework without spoiling the overall construction, the actual choice is indeed a

matter of computational framework; see, e.g., [8, Chapter 3.8]. For the solution of the systems involving the

mass matrix M a straightforward solution is using the unpreconditioned CG method or its preconditioned

version. In the latter case, we use either a modified incomplete Cholesky factorization with drop–tolerance

1e-2 or a standard algebraic multigrid. We stress that the solution of the system involving the stiffness

matrix can be machine-dependent; see, e.g., Figure 5. We easily observe that the fastest solution with the

required accuracy for the system involving the K = Tn(k) is obtained by using the PCG with a standard

AMG preconditioner. On the other hand, for the non symmetric case we can use the BiCGstab method

together with a modified incomplete LU factorization of Crout type. Nevertheless, as we discuss in the next

Section 5, the time–efficiency in the auxiliary solve it is not so crucial, observe that already the direct method

gives acceptable results under this aspect. What really matters is the combination of the achieved accuracy

of the auxiliary solve with the presence, and the possible accumulation, of the α factor in the right–hand

side of the auxiliary linear systems. This will cause for their solution by a direct method to return better

performances for the lowest value of α.

5. Numerical examples. In this section, we test the application of the preconditioners analyzed in

Section 4 on some test problems. All the numerical tests are made on a laptop running Linux with 8 Gb
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Figure 5: Comparison of solving routines for the auxiliary linear systems, on the left we compare the solution

for the system involving the mass matrix M , while on the right the comparison is for the Hermitian stiffness

matrix K. The comparisons do not take into account the building time for the various preconditioner since

it is then distributed among the repeated solution. The maximum number of allowed PCG iterations is the

size of the problem, while the stopping criterion on the relative residual is set to a tolerance of 1e-8.

memory and CPU Intel R© CoreTM i7–4710HQ CPU with clock 2.50 GHz and MATLAB version 9.4.0.813654

(R2018a). We recall again that all the relevant matrices and right–hand sides are generated by means of the

FEniCS library (v.2018.1.0) [1, 21]; see again Section 2 for the details.

We test the solution procedure with the un–restarted GMRES method set to achieve a tolerance on

the residual of tol = 1e-6, and a maximum number of iteration maxit = 100, and measure the number

of iterations, and the timings in second. As test problem we consider an instance of a Poisson control

problem (2.4), and one with the diffusion–advection–reaction constraint from Section 3.3.

Poisson. The first test problem is an instance of the Poisson control problem (2.4), in which we want

to obtain the desired state,

yd(x1, x2) = − sin(8πx1) sin(8πx2) + sin(πx1) sin(πx2),

while using the forcing term

z(x1, x2) = 2π2 sin(πx1) +
1

128π2
sin(8πx1) sin(8πx2).

We test the solution for regularization parameter α = 1.0e-03, 1.0e-06, 1.0e-09, and collect the results in

Table 2. The approximate preconditioners are applied inside the Flexible–GMRES method as discussed in

Section 4.1. What we observe is that the approximate solution are at an advantage for the higher value of

α, while perform poorly for the smallest α = 1.0e-09. We stress that this effect is more connected to the

behavior of the accuracy in the computation of the Krylov vectors inside the FGMRES method, than to the
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GMRES FGMRES+PCG+IC

IN PN PBCT PN PBCT

α N IT T(s) IT T(s) IT T(s) IT T(s) IT T(s)

1.0e-03 147 † - 3 3.0e-03 3 2.5e-03 3 4.4e-03 3 4.5e-03

675 † - 3 6.4e-03 3 3.7e-03 3 4.7e-03 3 4.6e-03

2883 † - 3 1.0e-02 3 9.9e-03 3 7.3e-03 3 7.3e-03

11907 † - 2 3.1e-02 2 3.0e-02 2 2.3e-02 2 2.3e-02

48387 † - 2 2.1e-01 2 1.7e-01 2 1.5e-01 2 1.5e-01

195075 † - 2 9.4e-01 2 9.0e-01 2 7.3e-01 2 7.4e-01

783363 † - 1 2.1e+00 1 2.0e+00 1 2.9e+00 1 2.9e+00

1.0e-06 147 † - 15 4.3e-03 15 4.1e-03 15 1.5e-03 15 1.5e-03

675 † - 14 1.3e-02 14 1.2e-02 14 1.7e-02 14 1.7e-02

2883 † - 9 3.0e-02 9 3.0e-02 10 2.4e-02 10 2.4e-02

11907 † - 6 1.0e-01 6 9.3e-02 6 7.0e-02 6 7.4e-02

48387 † - 4 3.1e-01 4 3.0e-01 4 2.5e-01 4 2.1e-01

195075 86 3.8e+00 2 8.7e-01 2 8.4e-01 2 7.8e-01 2 7.6e-01

783363 80 3.0e+01 2 4.3e+00 2 4.3e+00 2 4.5e+00 2 4.6e+00

1.0e-09 147 † - 27 9.6e-03 27 8.7e-03 27 3.2e-03 27 3.4e-03

675 † - 54 6.3e-02 54 5.8e-02 54 7.9e-02 54 7.9e-02

2883 † - 52 2.0e-01 52 2.1e-01 52 1.6e-01 52 1.6e-01

11907 † - 33 5.8e-01 33 6.1e-01 33 5.2e-01 33 5.5e-01

48387 † - 20 1.5e+00 20 1.5e+00 43 4.8e+00 42 4.8e+00

195075 86 2.8e+00 33 1.3e+01 33 1.3e+01 37 3.0e+01 36 2.9e+01

783363 80 3.0e+01 33 2.5e+01 33 2.5e+01 † - † -

Table 2: Poisson Control Problem. We compare both the number of iterations, and the solution time for the

various preconditioners. Best timings are highlighted in bold face. When the method fails to converge, i.e.,

the method reaches the maximum number of iterations, a † is reported. The inner tolerance for the PCG is

set to 1e-8.

optimal behavior of the auxiliary problems. Secondarily, what we observe is indeed the optimal behavior with

respect to the iteration discussed in Theorem 7. Indeed, the preconditioning routine becomes asymptotically

better with the size of the problem, i.e., we get fewer iteration for bigger problems. Moreover, the decreasing

of the α introduces just a latency effect in the solution, i.e., the asymptotic regimes kicks in for slightly bigger

problems when α is smaller, we stress that this is exactly the phenomenon described in Remark 4 regarding

the asymptotic relation between the value of h going to zero, and the value of α being fixed independently

of h. To overcome this limitation, one could decouple the system by neglecting the matrix αM̄−1, i.e., the
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(2, 2) block in (2.7), thus obtaining the preconditioner

(5.34) PD =



M̄ O K̄T

O O −M̄

K̄ −M̄ O


.

By computation analogous to the one in Remark 5, we find that the non-unit eigenvalues for this precon-

ditioner are the ones of the matrix sequence
{
I + α

h4M
−1KM−1KT

}
N

. The non-unit eigenvalues tend to

cluster at one whenever αh−4 ∝ αN4 goes to zero. This means that PD is efficient for small values of α and

moderate values of N and worsen for diverging values of N (keeping fixed α), indeed this is confirmed by

the numerical test in Table 3.

GMRES preconditioned by PD

α = 1.0e-09

N 147 675 2883 11907 48387 195075 783363

IT 4 5 6 † † † †
T(s) 1.0e-02 5.4e-03 1.7e-02 - - - -

Table 3: Poisson Control Problem. We report both the number of iterations, and the solution time for the

PD preconditioner in (5.34), compare these entries with the last block of rows of Table 2.

Diffusion–Convection–Reaction. The second case we consider is the problem (1.2) in which the constraint

e(y, u) is given by the Equation (3.31), with coefficients r = 1, and c = (2, 3). The desired state is given by

the sum of the two impulses

yd(x1, x2) =
0.5

0.07
√

2π
e
− (x1−0.2)2+(x2−0.2)2

2(0.07)2 +
0.8

0.05
√

2π
e
− (x1−0.6)2+(x2−0.6)2

2(0.05)2 ,

while the forcing term is given by

z(x1, x2) = sin(πx1) sin(πx2).

We test the solution for regularization parameter α = 1.0e-03, 1.0e-06, 1.0e-09, and collect the results in

Table 4. The results are completely analogous to the one for the Poisson case. We observe a higher number

of iteration that is due to the fact that we are using an asymptotic argument both for the sequence SN , and

for its block; see Proposition 2, and the discussion in Remark 4 for the asymptotic relationship between h,

and α.

6. Conclusions and future developments. In this paper, we have produced a characterization for

the saddle–point matrices arising from the application of the discretize–then–optimize approach to quadratic

optimization problems with elliptic PDE constraints highlighting the presence of an hidden Generalized

Locally Toeplitz structure, i.e., we have proposed an analysis that is sharper and more informative than the

one that can be obtained by looking only at the saddle–point structure. We have produced a localization of
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FGMRES

GMRES PCG/BiCGstab+IC/ILU

IN PN PBCT PN PBCT

α N IT T(s) IT T(s) IT T(s) IT T(s) IT T(s)

1.0e-03 147 † - 5 8.7e-01 5 4.7e-03 5 7.7e-03 5 7.0e-03

675 † - 5 9.6e-03 5 8.7e-03 5 7.1e-03 5 6.4e-03

2883 † - 4 7.2e-02 4 2.7e-02 4 1.4e-01 4 9.5e-03

11907 † - 3 8.6e-01 3 8.9e-02 3 4.8e-02 3 3.4e-02

48387 † - 3 1.1e+00 3 4.4e-01 3 3.9e-01 3 2.5e-01

195075 † - 2 1.7e+00 2 1.7e+00 2 1.7e+00 2 1.1e+00

783363 † - 2 8.5e+00 2 8.9e+00 2 7.1e+00 2 7.4e+00

1.0e-06 147 † - 24 1.5e-02 24 1.4e-02 24 2.9e-02 24 2.4e-02

675 † - 26 4.7e-02 26 4.6e-02 26 3.6e-02 27 3.3e-02

2883 † - 24 1.7e-01 24 1.6e-01 24 7.2e-02 25 6.0e-02

11907 † - 22 6.9e-01 22 7.0e-01 22 4.0e-01 24 2.9e-01

48387 † - 19 2.8e+00 19 2.8e+00 19 2.5e+00 22 1.9e+00

195075 † - 17 1.4e+01 17 1.4e+01 17 1.4e+01 18 1.2e+01

783363 † - 14 5.9e+01 14 6.1e+01 14 7.9e+01 14 5.9e+01

1.0e-09 147 † - 38 3.8e-02 38 3.5e-02 38 4.2e-02 38 4.4e-02

675 † - 73 1.5e-01 73 1.6e-01 73 1.2e-01 87 1.4e-01

2883 † - 84 6.5e-01 73 6.5e-01 86 3.3e-01 73 3.7e-01

11907 † - 94 3.5e+00 94 3.4e+00 97 2.1e+00 97 1.9e+00

48387 † - 87 1.4e+01 87 1.4e+01 87 1.2e+01 87 1.1e+01

195075 † - 77 6.8e+01 77 6.8e+01 † - † -

783363 † - 66 5.2e+02 66 5.4e+02 † - † -

Table 4: Diffusion–Convection–Reaction Control Problem. We compare both the number of iterations, and

the solution time for the various preconditioners. Best timings are highlighted in bold face. When the

method fails to converge, i.e., the method reaches the maximum number of iterations, a † is reported. The

tolerances for the inner solvers are set to 1e-8.

the spectrum in three intervals, up to a number of outliers infinitesimal in the dimension of the problem, and

used this characterization to produce an asymptotically optimal preconditioner, i.e., a preconditioner that is

independent of the value of the regularization parameter α, and whose performance increases for finer grids.

We plan to extend this analysis in order that it can cover more general constraints, i.e., we would like

to discuss also the case of sparse optimization, and bounded controls. Moreover, the GLT spectral analysis

techniques we are using have been recently extended for becoming tools for the fast and reliable computation

of generalized eigenvalues see, e.g., [13, 14], since we have analyzed the structure of the eigenvectors of

our preconditioned problems (Proposition 3), we plan to investigate the possible application of deflation

techniques to further accelerate our iterative methods.
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