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HAMILTONIAN SQUARE ROOTS OF SKEW HAMILTONIAN
QUATERNIONIC MATRICES∗

LEIBA RODMAN†

Abstract. Criteria for existence of Hamiltonian quaternionic matrices that are square roots of

a given skew Hamiltonian quaternionic matrix are developed. The criteria are formulated in terms of

respective canonical forms of skew Hamiltonian quaternionic matrices. The Hamiltonian property is

understood with respect to either the quaternionic conjugation, or an involutory antiautomorphism

of the quaternions which is different from the quaternionic conjugation. Many results are stated and

proved in a more general framework of symmetric and skewsymmetric matrices with respect to an

invertible matrix which is skewsymmetric relative to an involutory antiautomorphism.
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1. Introduction. Let F be the field of real numbers R, the field of complex
numbers C, or the skew field of real quaternions H. Denote by Fm×n the set of
m × n matrices with entries in F, considered (in case F = H) as both right and left
quaternionic vector space.

Let φ : F −→ F be a continuous involutory antiautomorphism of F (note that an
antiautomorphism is automatically continuous in case F = R or F = H). In particular
φ is the identity map if F = R, and either the identity map or the complex conjugation
if F = C. For A ∈ Hm×n, we denote by Aφ the n ×m quaternionic matrix obtained
by applying φ entrywise to the transposed matrix AT . Thus, for φ the complex
or quaternionic conjugation, Aφ is just the conjugate transpose A∗ of A. Note the
following algebraic properties:

(a) (αA+ βB)φ = Aφφ(α) +Bφφ(β), α, β ∈ F, A,B ∈ Fm×n.

(b) (Aα+Bβ)φ = φ(α)Aφ + φ(β)Bφ, α, β ∈ F, A,B ∈ Fm×n.

(c) (AB)φ = BφAφ, A ∈ Fm×n, B ∈ Fn×p.

(d) (Aφ)φ = A, A ∈ Fm×n.

(e) If A ∈ Fn×n is invertible, then (Aφ)−1 = (A−1)φ.
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We fix the 2n× 2n matrix

K =
[

0 In

−In 0

]
. (1.1)

Clearly, Kφ = −K = K−1. A matrix A ∈ F2n×2n is said to be (F, φ)-Hamiltonian if
the equality (KA)φ = KA, or equivalentlyKA = −AφK, holds. We will often use the
abbreviated notation φ-Hamiltonian (with F understood from context) and analogous
abbreviations in subsequent terminology. A matrix W ∈ F2n×2n is said to be φ-skew
Hamiltonian if the equality (KW )φ = −KW , or equivalently KW = WφK, holds.

A matrix U ∈ F2n×2n is said to be φ-symplectic if

UφKU = K. (1.2)

It is easy to verify that if U is φ-symplectic, then so are Uφ, U−1; also, if U, V are
φ-symplectic, then so is UV . We provide details only for the verification that if U is
φ-symplectic, then so is Uφ. Indeed, taking inverses in the equality UφKU = K, we
get

−K = K−1 = U−1K−1(Uφ)−1 = −U−1K(Uφ)−1,

hence UKUφ = K, which proves that Uφ is H-symplectic.

Note that if A is φ-Hamiltonian, resp., φ-skew Hamiltonian, and U is φ-symplectic,
then U−1AU is also φ-Hamiltonian or φ-skew Hamiltonian, as the case may be. Two
matrices X,Y ∈ Fn×n are said to be F-similar if X = S−1Y S for some invertible
matrix S ∈ Fn×n; if S is in addition φ-symplectic, we say that X and Y are φ-
symplectically similar.

In this paper we give criteria for a φ-skew Hamiltonian matrix W to have a φ-
Hamiltonian square root, in other words a φ-Hamiltonian matrix A such that A2 = W

(it is easy to see that the square of every φ-Hamiltonian matrix is φ-skew Hamilto-
nian). We also give sufficient conditions for a related property of a φ-skew Hamiltonian
matrix W , namely that every φ-skew Hamiltonian matrix W ′ which is similar to W ,
is also φ-symplectically similar. The conditions are given in terms of existence of a
φ-Hamiltonian square roots of ±W and ±W ′. In several cases, we compare existence
of φ-Hamiltonian square roots over the field of complex numbers with that over the
quaternions. Many results are stated and proved in a more general framework where
K is replaced by any invertible matrix H such that Hφ = −H .

The answers are known in two cases:

(I) F = R, with φ the identity map, i.e., Aφ = AT , the transpose of A.
(II) F = C, with φ the identity map.
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Theorem 1.1. In cases (I) and (II), an n× n matrix W is φ-skew Hamiltonian
if and only if W = A2 for some φ-Hamiltonian matrix A.

The “if” part is easily seen. The non-trivial “only if” part was proved in [8], [13];
see also [7].

Theorem 1.2. In cases (I) and (II), if two φ-skew Hamiltonian matrices are
F-similar, then they are (F, φ)-symplectically similar.

The proof follows from a canonical form of φ-skew Hamiltonian matrices (see,
e.g., [8], [15] for the real case), or using polar decomposition (see [13] for the complex
case).

Thus, in the present paper we focus on the complex case with φ the complex
conjugation (in this case, for the problem of existence of φ-Hamiltonian square roots
only a minor modification of known results is required), and on the quaternionic case
(which is essentially new).

The following notation for standard matrices will be used throughout: Jordan
blocks

Jm(λ) =




λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . . 0

...
... λ 1

0 0 · · · 0 λ



∈ Hm×m, λ ∈ H.

Standard real symmetric matrices:

Fm =




0 · · · · · · 0 1
... 1 0
... . . .

...

0 1
...

1 0 · · · · · · 0



= F−1

m ∈ Rm×m, (1.3)

Gm =




0 · · · · · · 1 0
... 0 0
... . . .

...

1 0
...

0 0 · · · · · · 0



=

[
Fm−1 0
0 0

]
∈ Rm×m. (1.4)
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2. Complex case with φ the complex conjugation. In this section we con-
sider the case

(III) F = C, and φ is the complex conjugation,

which is more involved than cases (I) and (II). Both Theorems 1.1 and 1.2 generally
fail. In this case, to obtain criteria for φ-skew Hamiltonian matrices to possess prop-
erties described in Theorems 1.1 and 1.2, we need to recall some material related to
matrices with respect to indefinite inner products in Cn×n; [11] is a general reference
on this topic.

Throughout the rest of this section we fix an invertible hermitian matrix H ∈
Cn×n. A matrix A ∈ Cn×n is said to be H-selfadjoint if HA = A∗H , and H-unitary
if A∗HA = H . Recall the well known canonical form for H-selfadjoint matrices, or
more precisely, of the pairs (A,H); for convenience of reference, we include in the
next theorem also the real case, restricting it to the situation when all eigenvalues are
real:

Proposition 2.1. (A) Let A ∈ Cn×n be H-selfadjoint. Then there exists an
invertible matrix S ∈ Cn×n such that S−1AS and SφHS have the form

SφHS = η1Fm1 ⊕ · · · ⊕ ηpFmp ⊕ F2�1 ⊕ · · · ⊕ F2�q , (2.1)

S−1AS = Jm1(γ1)⊕ · · · ⊕ Jmp(γp)⊕
[

J�1(α1) 0
0 J�1(α1)

]
⊕

· · ·⊕
[

J�q(αq) 0
0 J�q(αq)

]
, (2.2)

where η1, . . . , ηp are signs ±1, the complex numbers α1, . . . , αq have positive imaginary
part, and γ1, . . . , γp are real.

The form (2.2) is uniquely determined by A and H, up to a simultaneous permu-
tation of the constituent blocks.

(B) If, in addition, A and H are real and all eigenvalues of A are real, then the
matrix S in part (A) can be chosen to be real as well (obviously, the parts ⊕q

j=1F2�j

and ⊕q
j=1

[
J�j (αj) 0

0 J�j (αj)

]
are then absent in (2.2)).

The signs η1, . . . , ηp in Theorem 2.2 form the sign characteristic of the pair (A,H).
Thus, the sign characteristic attaches a sign 1 or −1 to every partial multiplicity
corresponding to a real eigenvalue of A.

The following description of the sign characteristic (the second description, see
[10], [11]) will be useful. Let A ∈ Cn×n be H-selfadjoint, let λ0 be a fixed real
eigenvalue of A, and let Ψ1 ⊆ Cn be the subspace spanned by the eigenvectors of A
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corresponding to λ0. For x ∈ Ψ1 \ 0, denote by ν(x) the maximal length of a Jordan
chain of A beginning with the eigenvector x. In other words, there exists a chain of
ν(x) vectors y1 = x, y2, . . . , yν(x) such that

(A− λ0I)yj = yj−1 for j = 2, 3, . . . , ν(x), (A− λ0I)y1 = 0,

(Jordan chain), and there is no chain of ν(x) + 1 vectors with analogous properties.
Let Ψi, i = 1, 2, . . . , γ (γ = max {ν(x) | x ∈ Ψ1 \ {0}}) be the subspace of Ψ1

spanned by all x ∈ Ψ1 with ν(x) ≥ i. Then

Ker(A− λ0I) = Ψ1 ⊇ Ψ2 ⊇ · · · ⊇ Ψγ .

Proposition 2.2. ([10], [11]) For i = 1, . . . , γ, let

fi(x, y) = (x,Hy(i)), x ∈ Ψi, y ∈ Ψi \ {0},

where y = y(1), y(2), . . . , y(i) is a Jordan chain of A corresponding to a real eigenvalue
λ0 with the eigenvector y, and let fi(x, 0) = 0. Then:

(i) fi(x, y) does not depend on the choice of y(2), . . . , y(i), subject to the above
properties;

(ii) for some selfadjoint linear transformation Gi : Ψi → Ψi, we have

fi(x, y) = (x,Giy), x, y ∈ Ψi;

(iii) for the transformation Gi of (ii), Ψi+1 = KerGi (by definition Ψγ+1 = {0});
(iv) the number of positive (negative) eigenvalues of Gi, counting multiplicities,

coincides with the number of positive (negative) signs in the sign characteristic
of (A,H) corresponding to the Jordan blocks of size i associated with the
eigenvalue λ0 of A.

For later reference, we will also need the connections between the canonical form
of (A,H), where A is H-selfadjoint, and that of (−A,H):

Proposition 2.3. If ε1, . . . , εs are the signs in the sign characteristic of (A,H)
attached to the s equal partial multiplicities m, . . . ,m of the real eigenvalue γ of A,
then (−1)m−1ε1, . . . , (−1)m−1εs are the signs in the sign characteristic of (−A,H)
attached to the s equal partial multiplicities m, . . . ,m of the eigenvalue −γ of −A.

Proof. Note that we may assume without loss of generality that A and H are
given by the canonical form (2.2). Then take advantage of the equalities

(diag (1,−1, 1, . . . , (−1)m−1))(−Jm(γ))(diag (1,−1, 1, . . . , (−1)m−1)) = Jm(−γ),

(diag (1,−1, 1, . . . , (−1)m−1))Fm(diag (1,−1, 1, . . . , (−1)m−1)) = (−1)m−1Fm.
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Alternatively, we may use [11, Theorem 7.4.1].

A criterion for existence of anH-selfadjoint square root of anH-selfadjoint matrix
runs as follows:

Theorem 2.4. Let H ∈ Cn×n be invertible hermitian matrix, and let A ∈ Cn×n

be H-selfadjoint. Then there exists an H-selfadjoint matrix B ∈ Cn×n such that
B2 = A if and only if the following two conditions (1) and (2) hold:

(1) For each negative eigenvalue λ of A (if any) the part of the canonical form,
as in Proposition 2.1, of (A,H) corresponding to λ can be presented in the
form

(A1 ⊕ · · · ⊕Am, H1 ⊕ · · · ⊕Hm),

where, for i = 1, 2, . . . ,m,

Ai =
[

Jki(λ) 0
0 Jki(λ)

]
, Hi =

[
Fki(λ) 0

0 −Fki(λ)

]
.

(2) If zero is an eigenvalue of A, then the part of the canonical form of (A,H)
corresponding to the zero eigenvalue can be presented in the form

(B0 ⊕B1 ⊕ · · · ⊕Bp, L0 ⊕ L1 ⊕ · · · ⊕ Lp), (2.3)

where

B0 = 0�0×�0 , L0 = Ir0 ⊕−Is0 , r0 + s0 = #0, (2.4)

and for each i = 1, 2, . . . , p, the pair (Bi, Li) is one of the following two forms:

Bi =
[

J�i(0) 0
0 J�i(0)

]
, Li =

[
F�i 0
0 −F�i

]
, #i > 1, (2.5)

or

Bi =
[

J�i(0) 0
0 J�i−1(0)

]
, Li = εi

[
F�i 0
0 F�i−1

]
, (2.6)

with #i > 1 and εi = ±1.
Theorem 2.4 was proved in [2] for H-selfadjoint matrices of the form H−1X∗HX ,

in the setting of H-polar decompositions (Theorem 4.4 in [2]). The proof for general
H-selfadjoint matrices is exactly the same. Note that the conditions on the Jordan
form of B in part (2) coincide with the well-known criteria that guarantee existence
of a (complex) square root of B [9], [5], [23].
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Observe that the presentation (2.3) - (2.6) of the part of the canonical form of
(A,H) corresponding to the eigenvalue zero need not be unique. For example, if

A = J3(0)⊕ J3(0)⊕ J2(0)⊕ J2(0),

H = F3 ⊕ (−F3)⊕ F2 ⊕ (−F2),

then one can form presentation (2.5),(2.6) in two ways:

B1 = J3(0)⊕ J3(0), B2 = J2(0)⊕ J2(0), H1 = F3 ⊕ (−F3), H2 = F2 ⊕ (−F2),

and

B1 = J3(0)⊕ J2(0), B2 = J3(0)⊕ J2(0), H1 = F3 ⊕ F2, H2 = (−F3)⊕ (−F2).

Example 2.5. Let

A =


 0 1 0

0 0 0
0 0 0


 , H1 =


 0 1 0

1 0 0
0 0 1


 , H2 =


 0 1 0

1 0 0
0 0 −1


 .

Clearly, A is H1-selfadjoint and H2-selfadjoint. According to Theorem 2.4, there
exists an H1-selfadjoint square root of A, and there does not exist an H2-selfadjoint
square root of A. Indeed, all square roots X ∈ C3×3 of A have the form

X =


 0 a b

0 0 0
0 b−1 0


 , a ∈ C, b ∈ C \ {0},

as one can check by a straightforward algebra, taking advantage of the equalities
XA = 0 and X2 = A. Clearly, X is H1-selfadjoint if and only if a is real and |b| = 1,
whereas the condition of H2-selfadjointness of X leads to the contradictory equality
|b| = −1.

Corollary 2.6. (a) If an H-selfadjoint matrix A has no real nonpositive eigen-
values, then A has an H-selfadjoint square root.

(b) Assume that invertible H-selfadjoint matrices A and B are such that each
of the four matrices ±A, ±B has an H-selfadjoint square root. Then A and B are
C-similar if and only if A and B are H-unitarily similar, i.e., A = U−1BU for some
H-unitary U .

Proof. Part (a) is obvious from Theorem 2.4.

We prove the part (b). The “if” part being trivial, we focus on the “only if” part.
Suppose A and B are C-similar. By Proposition 2.3 and Theorem 2.4, we see that
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the canonical forms of (A,H) and (B,H) are essentially the same, i.e., may differ
only in the order of the blocks: For every real eigenvalue λ of A (and therefore also
of B), and for every positive integer k, the number of signs + (resp., signs −) in the
sign characteristic of (A,H) corresponding to Jordan blocks of size k × k with the
eigenvalue λ, is equal to that in the sign characteristic of (B,H). Now the uniqueness
part of Proposition 2.1 yields the H-unitary similarity of A and B.

The hypothesis in Corollary 2.6 that A and B are invertible is essential as the
following example shows: Let

A = −B = J2(0)⊕ J1(0)⊕ J1(0), H = F2 ⊕ F1 ⊕−F1.

Then the canonical form of the pair (B,H) is

(J2(0)⊕ J1(0)⊕ J1(0), (−F2)⊕ F1 ⊕−F1)

(cf. Proposition 2.3), in other words, there exists an invertible (complex) matrix S

such that

S−1BS = J2(0)⊕ J1(0)⊕ J1(0), S∗HS = (−F2)⊕ F1 ⊕ (−F1).

By Theorem 2.4, both A and B have H-selfadjoint square roots, in fact,




0 b ±1 0
0 0 0 0
0 ±1 0 0
0 0 0 0




2

= A,




0 b 0 ±1
0 0 0 0
0 0 0 0
0 ∓1 0 0




2

= B,

where b is an arbitrary real number. Although A and B are evidently similar, they are
not H-unitarily similar, because the pairs (A,H) and (B,H) have essentially different
canonical forms.

Theorem 2.4 and Corollary 2.6 can be now applied to complex φ-Hamiltonian
and φ-skew Hamiltonian matrices, where φ is the complex conjugation. Let K̂ =
iK. Obviously, K̂ is hermitian and invertible. Clearly, a matrix A ∈ Cn×n is φ-
skew Hamiltonian if and only if A is K̂-selfadjoint, and a matrix W ∈ Cn×n is φ-
Hamiltonian if and only if iW is K̂-selfadjoint. Thus, Theorem 2.4 and Corollary 2.6
yield the following result:

Theorem 2.7. (a) A φ-skew Hamiltonian matrix A ∈ Cn×n has a complex φ-
Hamiltonian square root if and only the canonical form of the pair (−A, iK), where −A

is iK-selfadjoint, satisfies conditions (1) and (2) of Theorem 2.4. In particular, if A

has no real nonnegative eigenvalues, then there is a φ-Hamiltonian matrix X ∈ Cn×n

such that X2 = A.
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(b) Assume that invertible φ-skew Hamiltonian matrices A,B ∈ Cn×n are such
that each of the four matrices ±A, ±B has a φ-Hamiltonian square root. Then A

and B are similar (with a complex similarity matrix) if and only if A and B are
φ-symplectically similar.

Remark 2.8. Using Proposition 2.3 it is easy to see that the following three
conditions are equivalent:

(a) The pair (−A, iK) satisfies conditions (1) and (2) of Theorem 2.4;
(b) The pair (−A,−iK) satisfies conditions (1) and (2) of Theorem 2.4;
(c) The pair (A, iK) satisfies conditions (1) and (2) of Theorem 2.4 with “neg-

ative“ replaced by “positive” in (1) and with
[

F�i 0
0 F�i−1

]
replaced by[

F�i 0
0 −F�i−1

]
in (2).

Remark 2.9. Theorem 2.7 and Remark 2.8 are valid, with the same proof, in a
more general framework whereK is replaced by any invertible skewhermitian matrix.

3. Quaternionic case, φ a nonstandard involutory antiautomorphism.
From now on in this paper we assume that F = H. The standard quaternionic
units are denoted by i, j, k with the standard multiplication table. The complex field
will be thought of as embedded in H using i as the complex imaginary unit; thus,
C = SpanR {1, i}, where we denote by SpanR X the real vector space generated by a
subset X of H.

In this section we further assume that the fixed involutory antiautomophism (in
short, iaa) φ of H is nonstandard, i.e., different from the quaternionic conjugation.
(The case when φ is the quaternionic conjugation will be considered in the next
section.) In this case there are exactly two quaternions β such that φ(β) = −β and
|β| = 1; in fact, one of them is the negative of the other, and moreover β2 = −1. We
fix one of them, denoted β, throughout this section. We denote by Inv (φ) the set of
all quaternions fixed by φ; Inv (φ) is a three-dimensional real vector space spanned
by 1, α1, α2, where α1, α2 ∈ H are certain square roots of −1. (For these and other
well-known properties of iaa’s see, for example, [1], [16], or [17].)

Let H ∈ Hn×n be an invertible matrix which is also φ-skewsymmetric, i.e., such
that

Hφ = −H. (3.1)

The matrix H will be fixed throughout this section.

A matrix A ∈ Hn×n is said to be H-symmetric if the equality HA = AφH holds.
In turn, the equality HA = AφH is equivalent to (HA)φ = −HA. Also, a matrix
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A ∈ Hn×n is said to be H-skewsymmetric if the equality (HA)φ = HA holds.

In this section we will develop criteria for existence of H-skewsymmetric square
roots of H-symmetric matrices. In the particular case when H is given by (1.1), a
matrix is φ-skew Hamiltonian if and only if it is H-symmetric, and a matrix is φ-
Hamiltonian if and only if it is H-skewsymmetric. Thus, as a particular case, criteria
for existence of φ-Hamiltonian square roots of φ-skew Hamiltonian matrices will be
obtained (however, we will not formulate these particular cases separately).

3.1. Preliminaries: Canonical forms. It is easy to see that A is H-symmetric
if and only if S−1AS is SφHS-symmetric, for any invertible matrix S ∈ Hn×n. Canon-
ical form under this action is given next.

Proposition 3.1. Let H = −Hφ ∈ Hn×n be an invertible matrix, and let A be
H-symmetric. Then there exists an invertible matrix S such that the matrices S−1AS

and SφHS have the form

SφHS = η1βFm1 ⊕ · · · ⊕ ηpβFmp ⊕
[

0 F�1

−F�1 0

]
⊕ · · · ⊕

[
0 F�q

−F�q 0

]
,(3.2)

S−1AS = Jm1(γ1)⊕ · · · ⊕ Jmp(γp)⊕
[

J�1(α1) 0
0 J�1(α1)

]
⊕

· · ·⊕
[

J�q(αq) 0
0 J�q(αq)

]
, (3.3)

where η1, . . . , ηp are signs ±1, the quaternions α1, . . . , αq ∈ Inv (φ) \ R, and
γ1, . . . , γp are real.

Moreover, the form (3.3) is unique up to permutations of the diagonal blocks, and
up to replacements of each αj by a similar quaternion βj ∈ Inv (φ).

Several versions of the canonical form are available in the literature, some more
explicit than others, see, e. g., [3], [6], [12], [21], [4]; often, the canonical forms for
H-symmetric matrices are derived from canonical forms for pairs of φ-skewsymmetric
quaternionic matrices. In this form, Proposition 3.1 was proved with full details in
[17].

Next, a canonical form for matrices that are H-skewsymmetric is given. First,
we describe the primitive forms:

(α) L = κβFk, A = βJk(0), where κ = 1 if k is even, and κ = ±1 if k is odd;
(β)

L =
[

0 F�

−F� 0

]
, A =

[ −J�(α) 0
0 J�(α)

]
,
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where α ∈ Inv (φ), R(α) > 0.
(γ) L = δβFs, A = βJs(τ), where δ = ±1 and τ is a negative real number.

Proposition 3.2. Let A ∈ Hn×n be H-skewsymmetric, where H ∈ Hn×n is
invertible and φ-skewsymmetric. Then there exists an invertible quaternionic matrix
S such that SφHS and S−1AS have the following block diagonal form:

SφHS = L1 ⊕ L2 ⊕ · · · ⊕ Lm, S−1AS = A1 ⊕A2 ⊕ · · · ⊕Am, (3.4)

where each pair (Li, Ai) has one of the forms (α), (β), (γ). Moreover, the form
(3.4) is uniquely determined by the pair (H,A), up to a permutation of blocks and up
to a replacement of each α in the form (β) with a similar quaternion α′ such that
φ(α′) = α′.

As with Proposition 3.1, several equivalent versions of the canonical form of H-
skew-symmetric matrices are known; we mention here only the books [3], [4]; usually,
they are derived from the canonical forms for pairs of quaternionic matrices, where
one matrix is φ-symmetric and the other one is φ-skewsymmetric. A detailed proof
of the canonical form as in Proposition 3.2 can be found in [18].

3.2. Main results. A criterion for existence of a quaternionicH-skewsymmetric
square roots of H-symmetric matrices is given in the following theorem:

Theorem 3.3. Let H ∈ Hn×n be an invertible skewsymmetric matrix, and let
A ∈ Hn×n be H-symmetric. Then there exists an H-skewsymmetric matrix B ∈ Hn×n

such that B2 = A if and only if the following two conditions (1) and (2) hold:

(1) For each positive eigenvalue λ of A (if any) the part of the canonical form,
as in Proposition 3.1, of (A,H) corresponding to λ can be presented in the
form

(A1 ⊕ · · · ⊕Am, H1 ⊕ · · · ⊕Hm),

where, for i = 1, 2, . . . ,m,

Ai =
[

Jki(λ) 0
0 Jki(λ)

]
, Hi =

[
βFki 0
0 −βFki

]
.

(2) If zero is an eigenvalue of A, then the part of the canonical form of (A,H)
corresponding to the zero eigenvalue can be presented in the form

(B0 ⊕B1 ⊕ · · · ⊕Bp, L0 ⊕ L1 ⊕ · · · ⊕ Lp), (3.5)

where

B0 = 0�0×�0 , L0 = βIr0 ⊕−βIs0 , r0 + s0 = #0, (3.6)
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and for each i = 1, 2, . . . , p, the pair (Bi, Li) is one of the following two forms:

Bi =
[

J�i(0) 0
0 J�i(0)

]
, Li =

[
βF�i(λ) 0

0 −βF�i(λ)

]
, #i > 1,

(3.7)
or

Bi =
[

J�i(0) 0
0 J�i−1(0)

]
, Li = εi

[
βF�i(λ) 0

0 −βF�i−1(λ)

]
, (3.8)

with #i > 1 and εi = ±1.
We single out a particular case of Theorem 3.3 and a corollary that expresses

the property of some H-symmetric matrices for which similarity is equivalent to H-
symplectic similarity, in terms of existence of H-skewsymmetric square roots:

Corollary 3.4. (1) If an H-symmetric matrix A ∈ Hn×n has no nonnegative
real eigenvalues then A admits quaternionic H-skewsymmetric square roots.

(2) Assume that invertible H-symmetric matrices A,B ∈ Hn×n are such that each
of the four matrices ±A,±B admits H-skewsymmetric square roots. Then A and B

are H-similar if and only if A and B are H-symplectically similar, i. e.,

A = U−1BU (3.9)

for some U ∈ Hn×n such that UφHU = H.

Proof. Part (1) follows immediately from Theorem 3.3. For part (2), assume
that A and B are similar. The hypotheses on A and B, together with Theorem 3.3
imply that the pairs (A,H) and (B,H) have the same canonical form as set forth in
Proposition 3.1. Thus,

(S1)φHS1 = (S2)φHS2, S−1
1 AS1 = S−1

2 BS2

for some invertible S1, S2 ∈ Hn×n. Then (3.9) is satisfied with U = S2S
−1
1 .

By combining Theorem 3.3 with Theorem 2.7 and Remark 2.8, the following
comparison result is obtained (the “if” part there is trivial):

Corollary 3.5. Let H ∈ Cn×n be invertible skewhermitian matrix, and let A ∈
Cn×n be H-symmetric in the sense of complex conjugation, in other words HA =
A∗H. Let φ be the (unique) nonstandard iaa of H such that φ(i) = −i. Then A

admits quaternionic H-skewsymmetric square roots if and only if A admits complex
H-skewsymmetric square roots, i. e., there exists a matrix B ∈ Cn×n such that
B2 = A and HB = −B∗H.

The next subsection is devoted to the proof of Theorem 3.3.
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3.3. Proof of Theorem 3.3. We start with a lemma. Recall that the spectrum
σ(X) of a quaternionic matrix X ∈ Hm×m consists of all λ ∈ H (eigenvalues) such
that Ax = xλ holds for some nonzero vector x ∈ Hm×1. Observe that if λ ∈ σ(X),
then also µλµ−1 ∈ σ(X) for every nonzero µ ∈ H.

Lemma 3.6. Let

X = X1 ⊕ · · · ⊕Xp ∈ Hm×m, Xj ∈ Hmj×mj , for j = 1, 2, . . . , p,

where m = m1 + · · ·+mp, and assume that

σ(Xj) ∩ σ(Xk) = ∅, ∀ j �= k.

If Y ∈ Hm×m commutes with X, then Y has the form

Y = Y1 ⊕ · · · ⊕ Yp ∈ Hm×m, Yj ∈ Hmj×mj , for j = 1, 2, . . . , p,

where XjYj = YjXj for j = 1, 2, . . . , p.

The proof is easily reduced to the case of complex matrices (where the result is
well known), by using the standard representation of quaternions as 2 × 2 complex
matrices.

Proof of Theorem 3.3. In view of Proposition 3.1, without loss of generality
we may (and do) assume that H and A are given by the right hand sides of (3.2) and
(3.3), respectively. Since a square root of A obviously commutes with A, by Lemma
3.6 we may further assume that one of the following two cases hold: 1. σ(A) = {γ},
where γ is real; 2. σ(A) = {µαµ−1 : µ ∈ H \ {0}}, where α is a fixed nonreal
quaternion.

Consider the first case. Then

H = η1βFm1 ⊕ · · · ⊕ ηsβFms , A = Jm1(γ)⊕ · · · ⊕ Jms(γ),

where γ ∈ R and the ηj ’s are signs ±1. Assume first that conditions (1) and (2)
of Theorem 3.3 hold. We may identify the real vector space SpanR {1, β} spanned
by 1 and β with C, via identification of i ∈ C with β; then φ acts as the complex
conjugation on SpanR {1, β}. Now the existence of H-skewsymmetric square root of
A follows from Theorem 2.4 and Remark 2.8 (the equivalence of (a) and (c)); the
H-skewsymmetric square root of A exists already in SpanR {1, β}.

Conversely, suppose that there exists an H-skewsymmetric matrix B such that
B2 = A. We have to show that conditions (1) and (2) of Theorem 3.3 hold true. The
conditions are vacuous if γ is negative; so assume γ ≥ 0, and consider separately the
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case when γ > 0 and the case when γ = 0. If γ > 0, then the canonical form for B

(Proposition 3.2) shows that

SφHS =
[

0 F�1

−F�1 0

]
⊕ · · · ⊕

[
0 F�s

−F�s 0

]
,

S−1BS =
[ −J�1(α) 0

0 J�1(α)

]
⊕ · · · ⊕

[ −J�s(α) 0
0 J�s(α)

]
,

for some invertible S ∈ Hn×n, where α is the positive square root of γ. Then

S−1AS =
[

J�1(α)2 0
0 J�1(α)

2

]
⊕ · · · ⊕

[
J�s(α)2 0

0 J�s(α)
2

]
,

and to complete the consideration of the case when γ > 0 we only need to exhibit an
invertible matrix T ∈ H�×� such that

T−1

[
J�(α)2 0

0 J�(α)2

]
T =

[
J�(γ) 0
0 J�(γ)

]

and

Tφ

[
0 F�

−F� 0

]
T =

[
βF� 0
0 −βF�

]
.

We take T in the form

T =
[

X X

βX −βX

]
,

where the matrix X ∈ R�×� satisfies the equalities

XTF�X =
1
2
F�, J�(α)2X = XJ�(γ). (3.10)

We now proceed to show that there exists a (necessarily invertible) real matrix X

satisfying (3.10). Indeed, the canonical form of the real F�-selfadjoint matrix J�(α)2

(see, for example, [11], [14]) shows that there exists a real invertible matrix X̂ such
that

X̂TF�X̂ = εF�, J�(α)2X̂ = X̂J�(γ), (3.11)

where ε = ±1. However, ε coincides with the sign of eT
1 F�y, where y ∈ R�×1 is taken

to satisfy the condition (J�(α)2 − γI)�−1y = e1. (See Proposition 2.2). We can take
y = 1

(2α)�−1 e�, so eT
1 F�y = 1

(2α)�−1 , and therefore ε = 1. Now clearly X = (
√
2)−1X̂

satisfies (3.10).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 168-191, April 2008



ELA

182 Leiba Rodman

Finally, consider the case γ = 0. Since B is H-skewsymmetric, by Proposition
3.2 we have

SφHS = βF2k1 ⊕ · · · ⊕ βF2kr

⊕
κ1βF2�1−1 ⊕ · · · ⊕ κsβF2�s−1,

S−1BS = βJ2k1(0)⊕ · · · ⊕ βJ2ks(0)
⊕

βJ2�1−1(0)⊕ · · · ⊕ βJ2�s−1(0),

where S ∈ Hn×n is invertible, and where the kj ’s and #j ’s are positive integers and
the κj ’s are signs ±1. To verify that condition (2) of Theorem 3.3 holds true, all what
we need to show is the following two claims:

Claim 3.7. There exists an invertible matrix T ∈ R2k×2k such that

Tφ(βF2k)T =
[

βFk 0
0 −βFk

]
, T−1(βJ2k(0))2T =

[
Jk(0) 0
0 Jk(0)

]
, (3.12)

where k is a positive integer.

Claim 3.8. There exists an invertible matrix T ∈ R(2�−1)×(2�−1) such that

Tφ(βF2�−1)T = (−1)�
[

βF� 0
0 −βF�−1

]

and

T−1(βJ2�−1(0))2T =
[

J�(0) 0
0 J�−1(0)

]
,

where # > 1 is an integer.

Consider first Claim 3.7. Since the real matrix −J2k(0)2 is F2k-selfadjoint, and
the Jordan form of −J2k(0)2 is Jk(0) ⊕ Jk(0), by Proposition 2.1(B) there exists an
invertible T ∈ R2k×2k such that

TφF2kT = (ε1Fk)⊕ (ε2Fk), T−1(−J2k(0)2)T = Jk(0)⊕ Jk(0),

where εj = ±1. To determine εj , j = 1, 2, we use Proposition 2.2. In the notation of
that theorem, we have γ = k,

Ψ1 = · · · = Ψγ = Span {e1, e2},
and, choosing the orthonormal basis {e1, e2}, the selfadjoint linear transformation
Gγ : Ψγ −→ Ψγ is represented by the 2 × 2 hermitian matrix Ĝ. The matrix Ĝ is
defined by the property that

[c∗ d∗]Ĝ
[

a

b

]
= 〈ae1 + be2, F2k

(
(−1)k−1ce2k−1 + (−1)k−1de2k

)〉, a, b, c, d ∈ C.

(3.13)
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We denote here by 〈x, y〉 = y∗x, x, y ∈ C2k, the standard inner product in C2k. To
obtain formula (3.13), we took advantage of the equality

(−J2k(0)2)k−1((−1)k−1ce2k−1 + (−1)k−1de2k) = ce1 + de2.

The right hand side in (3.13) is easily computed to be

[d∗ c∗]
[
(−1)k−1 0

0 (−1)k−1

] [
a

b

]
,

so

Ĝ =
[

0 (−1)k−1

(−1)k−1 0

]
,

the matrix Ĝ has one positive and one negative eigenvalue, and we may take ε1 = 1,
ε2 = −1. This proves Claim 3.7.

Claim 3.8 is proved by using analogous considerations, again taking advantage of
Proposition 2.1(B) and Proposition 2.2. There exists an invertible T ∈ R(2�−1)×(2�−1)

such that

TφF2�−1T = (ε1F�)⊕ (ε2F�−1), T−1(−J2�−1(0)2)T = J�(0)⊕ J�−1(0),

where εj = ±1. In the notation of Proposition 2.2, we have γ = #,

Ψ1 = · · · = Ψγ−1 = Span {e1, e2}, Ψγ = Span {e1}.

The selfadjoint linear transformation Gγ−1 is represented (with respect to the basis
{e1, e2}) by the matrix Ĝγ−1 defined by

[c∗ d∗]Ĝγ−1

[
a

b

]
= 〈ae1 + be2, F2�−1

(
(−1)�ce2�−3 + (−1)�de2�−2

)〉, a, b, c, d ∈ C.

(3.14)
Again, to obtain (3.14), the following equality was used:

(−J2�−1(0)2)�−2
(
(−1)�ce2�−3 + (−1)�de2�−2

)
= ce1 + de2.

Thus,

Ĝγ−1 =
[
0 0
0 (−1)�

]
,

and ε1 = (−1)�. Next, the linear transformation Gγ with respect to the basis {e1}
for Ψγ is represented by the 1× 1 matrix (−1)�−1, and therefore ε2 = (−1)�−1.

Theorem 3.3 is proved.
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4. Quaternionic case, φ the quaternionic conjugation. In this section we
assume that the fixed involutory antiautomophism φ of H is the quaternionic conju-
gation. Then Aφ = A∗, where ∗ stands for the conjugate transpose.

Let H ∈ Hn×n be a skewhermitian (H = −H∗) invertible matrix. The matrix H

will be fixed throughout this section.

A matrix A ∈ Hn×n is said to be H-symmetric if the equality HA = A∗H ,
equivalently (HA)∗ = −HA holds. A matrixA ∈ Hn×n is said to beH-skewsymmetric
if the equality (HA)∗ = HA holds. It is easy to see that if A and B are commuting
H-skewsymmetric matrices, then AB is H-symmetric.

Our main result on existence of H-skewsymmetric square roots of H-symmetric
matrices is given in Theorem 4.1 below. Again, a criterion concerning existence of φ-
Hamiltonian square roots of φ-skew Hamiltonian matrices is contained as a particular
case, but will not be separately stated.

In the next theorem, it will be convenient to use the notation V(γ) = a1i+a2j+a3k

and R(γ) = a0, where γ = a0 + a1i + a2j + a3k ∈ H, a0, a1, a2, a3 ∈ R.

Theorem 4.1. An H-symmetric matrix A ∈ Hn×n admits an H-skewsymmetric
square root if and only if the following two conditions are satisfied for the Jordan form

J�1(β1)⊕ · · · ⊕ J�q(βq), β1 . . . , βq ∈ H, (4.1)

of A:

(a) for every eigenvalue βj of A which is not real nonpositive, the partial mul-
tiplicities corresponding to βj are double; in other words, for every positive
integer k and for every γ ∈ H such that either V(γ) �= 0 or V(γ) = 0 and
R(γ) > 0, the number of indices j in (4.1) that satisfy the equalities

#j = k, R(βj) = R(γ), and |V(βj)| = |V(γ)|
is even;

(b) If zero is an eigenvalue of A, then the part of the Jordan form of A corre-
sponding to the zero eigenvalue can be presented in the form

B0 ⊕B1 ⊕ · · · ⊕Bp, (4.2)

where

B0 = 0m0×m0 , (4.3)

and for each i = 1, 2, . . . , p, the matrix Bi has one of the following two forms:

Bi =
[

Jmi(0) 0
0 Jmi(0)

]
, mi > 1, (4.4)
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or

Bi =
[

Jmi(0) 0
0 Jmi−1(0)

]
, mi > 1. (4.5)

The following corollary is evident from Theorem 4.1.

Corollary 4.2. If an H-symmetric matrix has only real negative eigenvalues,
then it admits H-skewsymmetric square roots.

We conclude with an example showing that in case bothH and A are complex, the
existence of a quaternionic H-skewsymmetric square root of an H-symmetric matrix
A does not imply existence of a complex H-skewsymmetric square root of A.

Example 4.3. Let

A = J2(0)⊕ J1(0), H = iF2 ⊕ iF1.

Then A is H-symmetric, and Theorem 2.7 together with Remarks 2.8 and 2.9 imply
that A has no complex H-skewsymmetric square roots. In contrast, one verifies that
all quaternionic H-skewsymmetric square roots X of A are given by the formula

X =


 0 ia jb+ kc

0 0 0
0 −jb− kc 0


 ,

where a, b, c are real numbers such that b2 + c2 = 1.

Example 4.3 is an illustration of the following general statement:

Corollary 4.4. Let H ∈ Cn×n be a skewhermitian invertible matrix, and let
A ∈ Cn×n be H-symmetric. Assume that A either has a positive eigenvalue, or at
least one partial multiplicity corresponding to the zero eigenvalue of A is larger than
1, or both. Assume also that A has quaternionic H-skewsymmetric square roots.
Then there exists an invertible skewhermitian matrix H ′ ∈ Cn×n such that A is H ′-
symmetric, but there do not exist complex H ′-skewsymmetric square roots of A.

Note that by Theorem 4.1 existence of quaternionic H ′-skewsymmetric square
roots of A is guaranteed under the hypotheses of Corollary 4.4. Note also that if
the spectral conditions on A in Corollary 4.4 do no hold, i.e., if A has no positive
eigenvalues and the partial multiplicities corresponding to the zero eigenvalue (if zero
is an eigenvalue) of A are all equal to 1, then by Theorem 2.7 (see also Remark 2.9)
A has complex H-skewsymmetric square roots.

Proof. We may assume that A is in the Jordan form, so let A be given by the
right hand side of (2.2). Then take iH to be the right hand side of (2.1) with all signs
ηj equal +1. By Theorem 2.7 A has no complex H ′-skewsymmetric square roots.
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4.1. Proof of Theorem 4.1.. We start by recalling the relevant canonical
forms.

Let H ∈ Hn×n be an invertible skewhermitian matrix.

Define

Ξm(α) :=




0 0 · · · 0 α

0 0 · · · −α 0
...

... . . .
...

...
0 (−1)m−2α · · · 0 0

(−1)m−1α 0 · · · 0 0



∈ Hm×m, α ∈ H. (4.6)

Note that

Ξm(α) = (−1)m−1(Ξm(α))T , α ∈ H;

in particular Ξm(α) = (−1)m(Ξm(α))∗ if the real part of α is zero.

Proposition 4.5. Let H ∈ Hn×n be an invertible skewhermitian matrix, and let
X ∈ Hn×n be H-skewsymmetric. Then for some invertible quaternionic matrix S, the
matrices S∗HS and S−1XS have simultaneously the following form:

S∗HS =
r⊕

j=1

ηj iF�j ⊕
s⊕

v=1

[
0 Fpv

−Fpv 0

]
⊕

q⊕
u=1

ζuΞmu(i
mu), (4.7)

S−1XS =
r⊕

j=1

J�j (0)⊕
s⊕

v=1

[ −Jpv ((αv)∗) 0
0 Jpv (αv)

]
⊕

q⊕
u=1

Jmu(γu), (4.8)

where ηj , ζu are signs ±1 with the additional condition that ηj = 1 if #j is odd, the
quaternions α1, . . . , αs have positive real parts, the quaternions γ1, . . . , γq are nonzero
with zero real parts, and in addition iγj is real if mj is odd.

The form (4.7), (4.8) is uniquely determined by the pair (X,H), up to a permu-
tation of primitive blocks, up to replacements of some αk with similar quaternions,
and up to replacements of some γj with similar quaternions, subject to the additional
condition that iγj is real if mj is odd.

Proposition 4.6. Let A ∈ Hn×n be H-symmetric. Then there exists an invertible
matrix S ∈ Hn×n such that

S−1AS = J�1(β1)⊕ · · · ⊕ J�q(βq), S∗HS = iF�1 ⊕ · · · ⊕ iF�q , (4.9)

where β1, . . . , βq are quaternions such that iβj (j = 1, 2, . . . , q) have zero real parts.
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The form (4.9) is uniquely determined by the pair (A,H) up to a simultaneous
permutation of blocks in S−1AS and S∗HS, and up to replacement of each βj by a
similar quaternion β′

j subject to the condition that iβ′
j has zero real part.

Thus, the quaternions βp in (4.9) are of the form βp = ap + cpj + dpk, where
ap, cp, dp ∈ R.

Again, the canonical forms of H-skewsymmetric and H-symmetric matrices Z

under the transformations Z −→ S−1ZS, H −→ S∗HS, S ∈ Hn×n is invertible,
are well known; see, e.g., [3, 4, 22]. Complete proofs of Propositions 4.5 and 4.6 using
matrix techniques are given in [19].

It follows from Proposition 4.6 that two H-symmetric matrices are H-similar if
and only if they are H-symplectically similar. Also, every n× n quaternionic matrix
is H-similar to an H-symmetric matrix.

For the proof of Theorem 4.1, we first of all note that by Proposition 4.6, without
loss of generality we may (and do) assume that A and H are given by

A = J�1(β1)⊕ · · · ⊕ J�q(βq), H = iF�1 ⊕ · · · ⊕ iF�q , (4.10)

where β1, . . . , βq are quaternions such that iβj (j = 1, 2, . . . , q) have zero real parts.
Furthermore, by Lemma (3.6), we may assume that one of the three cases holds:

(1) σ(A) = {0};
(2) σ(A) = {µ}, where µ is real and negative;
(3) σ(A) = {ν−1µν : ν ∈ H \ {0}}, where either µ is nonreal, or µ is real and

positive (in the latter case σ(A) = {µ}).
We prove first the “only if” part. Thus, assume that there exists a square root

X of A that is H-skewsymmetric. Clearly, (σ(X))2 = σ(A) (as easily follows, for
example, from the Jordan form of X). In case (2) the conditions (a) and (b) of
Theorem 4.1 are vacuous. Notice that in case (1), the condition (b) of Theorem 4.1
represents a criterion for existence of a quaternionic square root (irrespective of H-
skewsymmetry) of A, and therefore (b) is obviously satisfied; cf. [5], for example.
Finally, suppose (3) holds. Since the square of any nonzero quaternion with zero real
part is real negative number, a comparison with the Jordan form of X given by (4.8)
shows that A is H-similar to

s⊕
v=1

[
(Jpv ((αv)∗))2 0

0 (Jpv (αv))2

]
,

where the quaternions α1, . . . , αv have positive real parts and are such that α2
1, . . . , α

2
v

are similar to µ. However, the matrix (Jpv (αv))2 is H-similar to Jpv (µ), and (since
((αv)∗)2 = ((αv)2)∗) the matrix (Jpv ((αv)∗))2 is H-similar to Jpv ((µ)∗), which in turn
is H-similar to Jpv (µ). The condition (a) of Theorem 4.1 follows.
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We now turn to the “if” part of Theorem 4.1. Thus, assume that (a) and (b) of
Theorem 4.1 hold. Consider first the case when σ(A) = {0}. In view of the condition
(b), and leaving aside the trivial case of B = 0, we only need to prove the following
two claims:

Claim 4.7. Let H = iFm ⊕ iFm−1, where m > 1. Then there exists an H-
skewsymmetric matrix X such that

X2 = Jm(0)⊕ Jm−1(0).

Claim 4.8. Let H = iFm ⊕ iFm, where m > 1. Then there exists an H-
skewsymmetric matrix X such that

X2 = Jm(0)⊕ Jm(0).

To satisfy the statement of Claim 4.7, take

X =


 0m

[
jIm−1

0

]
[
0 −jIm−1

]
0m−1


 .

For Claim 4.8, it will be convenient to do a preliminary transformation. First,
note that there exists an invertible T ∈ H2m×2m such that

T−1(Jm(0)⊕ Jm(0))T = (−Jm(0))⊕ (−Jm(0)), T ∗(iFm ⊕ iFm)T = Ĥ,

where

Ĥ = iFm ⊕ (−iFm).

Indeed, the following equalities

(diag (1,−1, 1, . . . , (−1)m−1))−1Jm(0)(diag (1,−1, 1, . . . , (−1)m−1)) = −Jm(0),

(diag (1,−1, 1, . . . , (−1)m−1))∗(iFm)(diag (1,−1, 1, . . . , (−1)m−1)) = (−1)m−1(iFm),

and

(diag (j,−j, j, . . . , (−1)m−1j))−1Jm(0)(diag (j,−j, j, . . . , (−1)m−1j)) = −Jm(0),

(diag (j,−j, j, . . . , (−1)m−1j))∗(iFm)(diag (j,−j, j, . . . , (−1)m−1j)) = (−1)m(iFm),
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easily yield existence of T with the required properties. Thus, it will suffice to find
an Ĥ-skewsymmetric matrix Y such that

Y 2 = (−Jm(0))⊕ (−Jm(0)). (4.11)

Let S ∈ R2m×2m be defined as follows (a construction borrowed from the proof of [2,
Theorem 4.4]): The columns of S from left to right are

1√
2
(e1 + em+1),

1√
2
(e1 − em+1),

1√
2
(e2 + em+2),

1√
2
(e2 − em+2), . . . ,

1√
2
(em−1 + e2m−1),

1√
2
(em−1 − e2m−1),

1√
2
(em + e2m),

1√
2
(em − e2m),

where ek stands for the kth unit coordinate vector in R2m×1 (1 in the kth position
and zeros in all other positions). One verifies that S is invertible, and (cf. the proof
of [2, Theorem 4.4])

S−1 ((−Jm(0))⊕ (−Jm(0)))S = −J2m(0)2, S∗ĤS = iF2m. (4.12)

Now take Y = S(iJ2m(0))S−1. Using equalities (4.12), a straightforward calculation
shows that Y is Ĥ-skewsymmetric and equality (4.11) is satisfied.

Next, consider the case (3). Since we suppose that condition (a) of Theorem 4.1
holds, we may (and do) assume that

A = Jm(µ1)⊕ Jm(µ2), H = iFm ⊕ iFm,

where µ1, µ2 ∈ H are not real nonpositive, and have the properties that iµ1 and iµ2

have zero real parts, and µ1 and µ2 are similar to each other. First, we show that
without loss of generality we may take µ1 = µ2. Indeed, this is obvious if µ1 is real
positive. If µ1 and µ2 are nonreal and similar, and if iµ1 and iµ2 have zero real
parts, then a straightforward computation shows that we have µ1 = α−1µ2α for some
α ∈ SpanR {1, i} with |α| = 1. Obviously, α∗iα = i. Now

Jm(µ1) = (αI)−1Jm(µ2)(αI), iFm = (αI)∗(iFm)(αI),

and the replacement of µ2 with µ1 is justified. Thus, assume µ1 = µ2 = µ. We seek
a matrix X such that X2 = A and HX is hermitian in the form

X =
[

0 X1

−X1 0

]
,

where

X1 =




a1 a2 a3 · · · am

0 a1 a2 · · · am−1

0 0 a1 · · · am−2

...
...

...
. . .

...
0 0 0 · · · a1




Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 168-191, April 2008



ELA

190 Leiba Rodman

is an upper triangular Toeplitz matrix with entries aj ∈ SpanR {1, j, k}. Then HX is
hermitian (use the equality iX1 = X1i to verify that), and the condition that X2 = A

amounts to

X2
1 = −Jm(µ). (4.13)

Clearly, there exists X1 that satisfies (4.13) and has entries in SpanR {1, j, k} (if µ is
non real, there is such an X1 already in SpanR {1, µ}).

Finally, we consider the case (2): σ(A) = {µ}, where µ is real and negative. In
this case, the conditions (a) and (b) are vacuous. Therefore, we need to prove that
there exists an iFm-skewsymmetric matrix X such that X2 = Jm(µ). It is easy to see
that there is a square root of Jm(µ) of the form

X = i




x1 x2 x3 · · · xm

0 x1 x2 · · · xm−1

0 0 x1 · · · xm−2

...
...

...
. . .

...
0 0 0 · · · x1



, x1, . . . , xm ∈ R.

(For example, x1 =
√−µ.) Then iFmX is hermitian, and we are done.

This completes the proof of Theorem 4.1.
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