THE TRIANGLE GRAPH T_{6} IS NOT SPN*

STEPHEN DRURY ${ }^{\dagger}$

Abstract

A real symmetric matrix A is copositive if $x^{\prime} A x \geq 0$ for every nonnegative vector x. A matrix is SPN if it is a sum of a real positive semidefinite matrix and a nonnegative matrix. Every SPN matrix is copositive, but the converse does not hold for matrices of order greater than 4. A graph G is an SPN graph if every copositive matrix whose graph is G is SPN. It is shown that the triangle graph T_{6} is not SPN.

Key words. Copositive matrices, SPN matrices.

AMS subject classifications. 15B48, 15B35.

1. Introduction. A real symmetric matrix A is said to be copositive (COP) if $x^{\prime} A x \geq 0$ for every nonnegative vector x. It is said to be SPN if it can be expressed as a sum of a real positive semidefinite matrix and a nonnegative matrix. It is immediate that every SPN matrix is COP. Diananda [2] showed that every COP matrix of order less than or equal to 4 is SPN. A more comprehensive discussion of this situation is given in [5].

For matrices of order 5 and more, not every COP matrix is SPN. The question then becomes to understand which non-zero patterns allow one to deduce SPN from COP. This is done in terms of a graph G, the matrix under consideration only being allowed to have non-zero entries on the diagonal and where the adjacency matrix of G is non-zero. A graph G is said to be SPN if this additional restriction forces a COP matrix to be SPN.

In [6], Shaked-Monderer gives a comprehensive and fascinating discussion of this topic. Unfortunately the article contains an unfortunate error, see [7]. In a further paper [4], further progress is made and a number of conjectures are stated. In particular, it is conjectured that the triangle graph T_{n} is SPN for all $n \geq 5$. The graph T_{n} has vertices 1 and 2 joined by an edge and further vertices $3,4, \ldots, n$ each joined only to the vertices 1 and 2 .

The object of this article is to show that T_{6} is not an SPN graph and one may conclude that T_{n} is also not an SPN graph for $n \geq 6$. It is known that T_{5} is an SPN graph [7].
2. The example. Let

$$
A=\left(\begin{array}{cccccc}
1 & -\cos (\theta) & \cos (2 \theta) & -\cos (\theta) & -\sin (\theta) & 1 \tag{2.1}\\
-\cos (\theta) & 1 & -\cos (\theta) & \cos (2 \theta) & 1 & -\sin (\theta) \\
\cos (2 \theta) & -\cos (\theta) & 1 & 0 & 0 & 0 \\
-\cos (\theta) & \cos (2 \theta) & 0 & 1 & 0 & 0 \\
-\sin (\theta) & 1 & 0 & 0 & 1 & 0 \\
1 & -\sin (\theta) & 0 & 0 & 0 & 1
\end{array}\right)
$$

[^0]where θ is chosen in the range $0<\theta<\frac{\pi}{6}$. Then A is carried on the graph T_{6}. Our objective is to show that A is COP but not SPN.

Proposition 1. The matrix A is not $S P N$.
Proof. Let $v_{1}=(1,2 \cos (\theta), 1,0,0,0)^{\prime}, v_{2}=(2 \cos (\theta), 1,0,1,0,0)^{\prime}, v_{3}=(0,1, \cos (\theta), 0,0, \sin (\theta))^{\prime}$ and $v_{4}=(1,0,0, \cos (\theta), \sin (\theta), 0)^{\prime}$. Then $v_{j}^{\prime} A v_{j}=0$ for $j=1,2,3,4$. Suppose that $A=P+N$ where P is positive semidefinite and N is nonnegative then $v_{j}^{\prime} P v_{j} \geq 0$ and $v_{j}^{\prime} N v_{j} \geq 0$ since the v_{j} are nonnegative vectors. It follows that $v_{j}^{\prime} P v_{j}=0$ for $j=1,2,3,4$ and then that $P v_{j}=0$. For each j, let S_{j} be the support of v_{j}. Then since for $v_{j}^{\prime} N v_{j}=0$, it follows that $p_{i, k}=a_{i, k}$ for $(i, k) \in \bigcup_{j=1}^{4}\left(S_{j} \times S_{j}\right)$. Thus, we may write

$$
P=\left(\begin{array}{cccccc}
1 & -\cos (\theta) & \cos (2 \theta) & -\cos (\theta) & -\sin (\theta) & p_{1,6} \\
-\cos (\theta) & 1 & -\cos (\theta) & \cos (2 \theta) & p_{2,5} & -\sin (\theta) \\
\cos (2 \theta) & -\cos (\theta) & 1 & p_{3,4} & p_{3,5} & 0 \\
-\cos (\theta) & \cos (2 \theta) & p_{3,4} & 1 & 0 & p_{4,6} \\
-\sin (\theta) & p_{2,5} & p_{3,5} & 0 & 1 & p_{5,6} \\
p_{1,6} & -\sin (\theta) & 0 & p_{4,6} & p_{5,6} & 1
\end{array}\right) .
$$

Next, we study the 24 equations coming from $P v_{j}=0$ for $j=1,2,3,4$. These amount to

$$
\begin{aligned}
& 0=p_{1,6}-\sin (2 \theta) \\
& 0=p_{2,5}-\sin (2 \theta) \\
& 0=p_{3,4}+\cos (3 \theta) \\
& 0=p_{1,6}+\cos (\theta) p_{4,6}+\sin (\theta) p_{5,6}, \\
& 0=p_{2,5}+\cos (\theta) p_{3,5}+\sin (\theta) p_{5,6}, \\
& 0=\sin (2 \theta) p_{1,6}+p_{4,6} \\
& 0=\sin (2 \theta) p_{2,5}+p_{3,5} \\
& 0=\cos (2 \theta)+\cos (\theta) p_{3,4}+\sin (\theta) p_{4,6}, \\
& 0=\cos (2 \theta)+\cos (\theta) p_{3,4}+\sin (\theta) p_{3,5}
\end{aligned}
$$

and for $0<\theta<\frac{\pi}{2}$, the only solution is

$$
p_{1,6}=p_{2,5}=\sin (2 \theta), \quad p_{3,5}=p_{4,6}=\left(1-4 \cos (\theta)^{2}\right) \sin (\theta), \quad-p_{3,4}=p_{5,6}=\cos (3 \theta)
$$

Thus, unless $\cos (3 \theta)=0, n_{3,4}$ and $n_{5,6}$ have opposite signs. This contradiction shows that the decomposition $A=P+N$ cannot exist.

We need the following from [3, Lemma 3.1].
LEMMA 2. Let A be a real symmetric matrix with $a_{i, i}=1$ for $i=1, \ldots, n$. Suppose that every principal submatrix B of A, in which each off-diagonal entry is less than 1, is copositive. Then A is copositive.

Proposition 3. The matrix A is $C O P$.
Proof. By Lemma 2 and using the fact that it is sufficient to consider only maximal subsets with the stated property, we see that we need only consider the four subsets $Q_{1}=\{1,2,3,4\}, Q_{2}=\{1,3,4,5\}$, $Q_{3}=\{2,3,4,6\}$ and $Q_{4}=\{3,4,5,6\}$ and the corresponding principal submatrices B_{j} for $j=1,2,3,4$. Since these matrices are 4×4, it will suffice by the result of Diananda [2] to show that they are SPN.

We see that $B_{4}=I$ is positive semidefinite. Also

$$
B_{2}=\left(\begin{array}{cccc}
1 & 0 & -\cos (\theta) & -\sin (\theta) \\
0 & 1 & 0 & 0 \\
-\cos (\theta) & 0 & 1 & 0 \\
-\sin (\theta) & 0 & 0 & 1
\end{array}\right)+\left(\begin{array}{cccc}
0 & \cos (2 \theta) & 0 & 0 \\
\cos (2 \theta) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

is SPN since $\cos (2 \theta) \geq 0$ and the first matrix in the sum is positive semidefinite. The matrix B_{3} is similar to B_{2}. We have

$$
B_{1}=\left(\begin{array}{cccc}
1 & -\cos (\theta) & \cos (2 \theta) & -\cos (\theta) \\
-\cos (\theta) & 1 & -\cos (\theta) & \cos (2 \theta) \\
\cos (2 \theta) & -\cos (\theta) & 1 & -\cos (3 \theta) \\
-\cos (\theta) & \cos (2 \theta) & -\cos (3 \theta) & 1
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos (3 \theta) \\
0 & 0 & \cos (3 \theta) & 0
\end{array}\right)
$$

where the first matrix in the sum is positive semidefinite of rank 2 and the second is nonnegative since $\cos (3 \theta) \geq 0$. Thus, the B_{j} are SPN for $j=1,2,3,4$.
3. Comments. For a real symmetric $n \times n$ matrix A, one may define

$$
\operatorname{copv}(A)=\inf \left\{x^{\prime} A x: x \in \mathbb{R}_{+}^{n},\|x\| \leq 1\right\}
$$

where $\|x\|$ denotes the euclidean norm of the vector x. One may also define

$$
\begin{equation*}
\operatorname{spnv}(A)=\sup \left\{\lambda_{\min }(A-N): N \text { a nonnegative matrix }\right\} \tag{3.2}
\end{equation*}
$$

Here, we have denoted $\lambda_{\min }(X)$ the smallest eigenvalue of a real symmetric matrix X. Clearly, $\operatorname{spnv}(A) \leq$ $\operatorname{copv}(A), A$ is COP if and only if $\operatorname{copv}(A) \geq 0$, and A is SPN if and only if $\operatorname{spnv}(A) \geq 0$.

It is hard to compute $\operatorname{copv}(A)$ numerically, but $\operatorname{spnv}(A)$ can be computed for real symmetric matrices A with constant diagonal (i.e., all diagonal entries equal) using semidefinite programming. To see this first observe that the definition of $\operatorname{spnv}(A)$ is unchanged if we restrict N to be a nonnegative matrix with zero diagonal in (3.2). Then we will have

$$
\begin{equation*}
\operatorname{spnv}(A)=\sup \{t: A-N-X-t I=0, N \text { nonnegative with zero diagonal, } X \text { psd. }\} \tag{3.3}
\end{equation*}
$$

But in (3.3) X is forced to have a constant diagonal. Therefore,

$$
\operatorname{spnv}(A)=\sup \left\{-x_{1,1}: X \text { psd. with constant diagonal, } X \leq A \text { off diagonal }\right\}
$$

Thus, the computation of $\operatorname{spnv}(A)$ becomes a semidefinite programming problem over $n \times n$ real psd. matrices X with objective function $X \mapsto-x_{1,1}$, linear constraints $x_{1,1}-x_{j, j}=0$ for $j=2, \ldots, n$ and linear inequalities $x_{j, k} \leq a_{j, k}$ for $1 \leq j<k \leq n$.

The counterexample presented above was obtained by a computer search seeking to maximize the ratio (of negative numbers) $\operatorname{spnv}(A) / \operatorname{copv}(A)$ for matrices A with zero diagonal carried on the graph. For this, we used the well established software packages CSDP [1] and SDPA [8] to estimate $\operatorname{spnv}(A)$. Heuristic estimates were used for $\operatorname{copv}(A)$. Further comments are available at http://www.math.mcgill.ca/drury/research/spn/. The optimal value of θ is close to 0.366032 and in this case, the diagonal entries of A need to be replaced with 1.002873 to render the resulting matrix SPN.

Acknowledgment. I thank the referee for a very speedy referee's report and for showing me how to write the paper without reference to numerics.

REFERENCES

[1] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and Software, 11(1-4):613-623, Interior Point Methods, 1999.
[2] P.H. Diananda. On non-negative forms in real variables some or all of which are non-negative. Mathematical Proceedings of the Cambridge Philosophical Society, 58:17-25, 1962.
[3] A.J. Hoffman and F. Pereira. On copositive matrices with $-1,0,1$ entries. Journal of Combinatorial Theory, Series A, 14:302-309, 1973.
[4] L. Hogben and N. Shaked-Monderer. SPN Graphs. Electronic Journal of Linear Algebra, 35:376-386, 2019.
[5] P. Li and Y.-Y. Feng. Criteria for copositive matrices of order four. Linear Algebra and its Applications, 194:109-124, 1993.
[6] N. Shaked-Monderer. SPN graphs: When copositive = SPN. Linear Algebra and its Applications, 509:82-113, 2016.
[7] N. Shaked-Monderer. Corrigendum to "SPN graphs: When copositive = SPN". Linear Algebra and its Applications, 541:285-286, 2018.
[8] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi, and K. Goto. A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460, Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan, September, 2010.

[^0]: *Received by the editors on December 20, 2019. Accepted for publication on January 6, 2020. Handling Editor: Michael Tsatsomeros.
 \dagger Department of Mathematics and Statistics, McGill University, Montreal, Canada H3A 0B9 (stephen.drury@mcgill.ca).

