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EXTREME POINTS OF CERTAIN TRANSPORTATION POLYTOPES WITH FIXED

TOTAL SUMS∗

ZHI CHEN† , ZELIN ZHU‡ , JIAWEI LI‡ , LIZHEN YANG‡ , AND LEI CAO§

Abstract. Transportation matrices are m×n nonnegative matrices with given row sum vector R and column sum vector S.

All such matrices form the convex polytope U(R,S) which is called a transportation polytope and its extreme points have been

classified. In this article, we consider a new class of convex polytopes ∆(R̄, S̄, σ) consisting of certain transportation polytopes

satisfying that the sum of all elements is σ, and the row and column sum vectors are dominated componentwise by the given

positive vectors R̄ and S̄, respectively. We characterize the extreme points of ∆(R̄, S̄, σ). Moreover, we give the minimal term

rank and maximal permanent of ∆(R̄, S̄, σ).
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1. Introduction. Let R = (r1, . . . , rm) and S = (s1, . . . , sn) be nonnegative vectors satisfying

(1.1) σ =

m∑
i=1

ri =

n∑
j=1

sj .

The transportation polytope U(R,S) is the set of all m×n nonnegative matrices with row sum vector R and

column sum vector S. The matrices in U(R,S) are called transportation matrices. Transportation polytopes

model the transportation of goods from m supply locations to n demand locations. The ith supply location

supplies a quantity of ri, while the jth demand location demands a quantity of sj . A matrix A = [ai,j ] in

U(R,S) models the scenario where ai,j is the amount of material transported from the ith supply location

to the jth demand location. The ith row sum of A is denoted by ri(A), and the jth column sum of A is

denoted by sj(A). Denote by R(A) the row sum vector of a matrix A and by S(A) the column sum vector

of A, i.e.

R(A) = (r1(A), . . . , rm(A)), S(A) = (s1(A), . . . , sn(A)).

The polytope U(R,S) is nonempty if and only if (1.1) holds. Due to the applications in many optimization

problems, transportation polytopes have been intensively studied by many mathematicians, e.g. [3, 17, 20,

16, 13, 15]. Given an m × n matrix A, let P(A) denote the (0, 1)-matrix with 1’s in the position of the

nonzero entries of A and 0’s elsewhere. P(A) is called the pattern of A. The bipartite graph BG(A) of A is

a graph with vertex set {r1, . . . , rm} ∪ {s1, . . . , sn}, where there is an edge between ri and sj if and only if
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ai,j 6= 0. A line of a matrix A means either a row or a column of A. Denote the set of extremal matrices of

U(R,S) by E(R,S), which was first investigated by Jurkat and Ryser in [17].

We summarize the results in the following Proposition.

Proposition 1.1 ([12, 17]). If A ∈ U(R,S), then the following conditions are equivalent:

(i) A ∈ E(R,S).

(ii) Every submatrix of A contains a line with at most one positive entry.

(iii) Every submatrix A′ of A of size m′ × n′ has at most m′ + n′ − 1 positive entries.

(iv) There is no matrix B ∈ U(R,S) such that B 6= A and P(B) = P(A).

(v) BG(A) is a forest with no isolated vertex.

Given nonnegative vectors R = (r1, . . . , rm) and S = (s1, . . . , sn) satisfying (1.1), denote by U≤(R,S) the

convex set of all m × n nonnegative matrices with row sum vectors dominated componentwise by R and

column sum vectors dominated componentwise by S. We say that the ith row sum (resp. jth column sum)

of a matrix B in U≤(R,S) is unattained if ri(B) < ri (resp. sj(B) < sj). Equivalently, we also say the ith

row (resp. jth column) vertex in BG(B) is unattained. Denote the set of all extreme points in U≤(R,S)

by E≤(R,S). In [4], Brualdi gave a combinatorial classification of the extreme points of U≤(R,S) as the

following theorem.

Proposition 1.2 ([4]). If B ∈ U≤(R,S), then the following conditions are equivalent:

(i) B ∈ E≤(R,S).

(ii) BG(B) is a forest where at most one vertex of each tree corresponds to a row or a column of B whose

sum in B is unattained.

(iii) There exists some extreme point A of U(R,S), such that BG(B) can be obtained by deleting a set

(possibly empty) of edges of a subtree from each connected components in BG(A). Thus B can be

obtained by replacing by zero the positive entries of A corresponding to the deleted edges.

By specializing m = n and R = S = (1, . . . , 1) ∈ Rn in U(R,S), we obtain the convex polytope Ωn of all

n×n doubly stochastic matrices. The extreme points of Ωn were characterized by Birkhoff [1] to be all n×n
permutation matrices. Mirsky [23] investigated the convex polytope ωn of all n × n doubly substochastic

matrices which are nonnegative matrices whose row and column sums are at most 1. He proved that the

extreme points of ωn are all n× n subpermutation matrices. In [18] and [19], Katz gave the extreme points

of the polytopes of symmetric doubly stochastic matrices and symmetric doubly substochastic matrices,

respectively. In 1977, Cruse [7] characterized the extreme points of the polytope of centrosymmetric doubly

stochastic even matrices, while the odd case was solved by Brualdi and Cao [6] in 2018. Later on, Chen, Cao

and Wang [11] characterized the extreme points of the polytope of centrosymmetric doubly substochastic

matrices. Moreover, Cao and Chen [9] studied the convex set ωsn of all n× n doubly substochastic matrices

with the sum of all elements equal to s.

For a positive integer n and 0 ≤ s ≤ n, denote by bsc the greatest integer less than or equal to s, and

denote by dse the smallest integer greater than or equal to s. For a vector v = (v1, . . . , vn), denote the sum

of all elements in v by |v|, i.e., |v| = v1 + · · ·+ vn. Let

vsn = (1, 1, . . . , 1︸ ︷︷ ︸
bsc

, s− bsc, 0, . . . , 0) ∈ Rn,
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which contains bsc1’s and satisfies |vsn| = s. Denote by RE(vsn) the set of all rearrangements of vsn, i.e.,

RE(vsn) = {v ∈ Rn : ∃ π ∈ Sn, π(v) = (vπ(1), vπ(2), . . . , vπ(n)) = vsn}.

For 0 ≤ α ≤ 1, let Bm(α) be the m×m matrix in the form:

Bm(α) =


α 0 · · · 0

1− α α · · · 0
...

. . .
. . .

...

0 · · · 1− α α

 .

The extreme points of ωsn can be characterized as the following proposition.

Proposition 1.3 ([9]). Let A ∈ ωsn. The fmollowing statements are equivalent:

(a) A ∈ E(ωsn).

(b) There exist R,S ∈ RE(vsn), such that A ∈ E(R,S).

(c) There exist n× n permutation matrices P and Q, such that

PAQ = Idse−m ⊕Bm(s+ 1− dse)⊕On−dse,

for some 1 ≤ m ≤ dse, where Idse−m is the identity matrix of szize dse−m and On−dse is the zero matrix

of size n− dse.
(d) Each connected component of BG(A) is either an isolated vertex or a path. For s not an integer, there

exists one path with length 1 ≤ m ≤ dse and dse − m paths with length 1 in BG(A). When s is an

integer, there are s paths with length 1 in BG(A).

Given nonnegative vectors R̄ = (r̄1, . . . , r̄m) and S̄ = (s̄1, . . . , s̄n), consider the set

(1.2) ∆(R̄, S̄, σ) =
⋃

|R|=|S|=σ
RCR̄,SCS̄

U(R,S),

where RC R̄ means R is dominated componentwise by R̄, and S C S̄ means S is dominated componentwise

by S̄. Here |R̄| is not necessarily equal to |S̄|. As we show in the following lemma, a necessary and sufficient

condition of ∆(R̄, S̄, σ) being nonempty is simply that σ ≤ min{|R̄|, |S̄|}.

Lemma 1.4. The convex polytope ∆(R̄, S̄, σ) is nonempty if and only if 0 ≤ σ ≤ min{|R̄|, |S̄|}.

Proof. “ ⇐ ” Without loss of generality, we assume that r̄1 ≤ r̄2 ≤ · · · ≤ r̄m and s̄1 ≤ s̄2 ≤ · · · ≤ s̄n.

For any 0 ≤ σ ≤ min{|R̄|, |S̄|}, there exist some i0 and j0 such that

r̄1 + · · ·+ r̄i0 < σ ≤ r̄1 + · · ·+ r̄i0 + r̄i0+1,

and

s̄1 + · · ·+ s̄j0 < σ ≤ s̄1 + · · ·+ s̄j0 + s̄j0+1.

Thus, we can take

R̄0 =

(
r̄1, . . . , r̄i0 , σ −

i0∑
i=1

r̄i, 0, . . . , 0

)
,
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and

S̄0 =

s̄1, . . . , s̄j0 , σ −
j0∑
j=1

s̄i, 0, . . . , 0

 .

Since |R0| = |S0| = σ and R0 C R̄, S0 C S̄, we have U(R0, S0) ⊆ ∆(R̄, S̄, σ). Thus ∆(R̄, S̄, σ) is nonempty.

“⇒ ” Suppose that ∆(R̄, S̄, σ) 6= ∅ and A = [ai,j ] ∈ ∆(R̄, S̄, σ). Since R(A)C R̄, S(A)C S̄,
∑n
i,j=1 ai,j =

σ, we have σ = |R(A)| ≤ |R̄| and σ = |S(A)| ≤ |S̄|. Thus 0 ≤ σ ≤ min{|R̄|, |S̄|}.

Since ∆(R̄, S̄, σ) is convex, it is natural to ask what are the extreme points of ∆(R̄, S̄, σ). We answer

this question in Section 2. In Section 3, we investigate the minimal term rank ρ̃ of the matrices in ∆(R̄, S̄, σ).

In Section 4, we study the upper bounds for the permanents of matrices in ∆(R̄, S̄, σ).

2. The extreme points of ∆(R̄, S̄, σ). Given nonnegative vectors

R̄ = (r̄1, r̄2, . . . , r̄m), S̄ = (s̄1, s̄2, . . . , s̄n),

and 0 ≤ σ ≤ min{|R̄|, |S̄|}, denote by E(∆(R̄, S̄, σ)) the set of all extreme points of ∆(R̄, S̄, σ). We then

characterize the matrices in E(∆(R̄, S̄, σ)). We say that the ith row sum (resp. the jth column sum) of a

matrix A in ∆(R̄, S̄, σ) is unattained if 0 < ri(A) < r̄i (resp. 0 < sj(A) < s̄j). Or equivalently, the ith row

sum (resp. the jth column sum) vertex in BG(A) is unattained.

Theorem 2.1. Given nonnegative vectors R̄ = (r̄1, r̄2, . . . , r̄m), S̄ = (s̄1, s̄2, . . . , s̄n), and 0 ≤ σ ≤
min{|R̄|, |S̄|}, if A ∈ E(∆(R̄, S̄, σ)) and BG(A) is connected, then at most one row vertex (resp. one column

vertex) corresponding to a row (resp. a column) in A is unattained.

Proof. Assume that both the row vertices ri and rj of the connected component corresponding to row

i and row j, respectively, are unattained. There is a path connecting ri and rj , i.e.,

ri → sj1 → ri1 → sj2 → · · · → rik−1
→ sjk → rj .

We then add an ε to the entries

(i, j1), (i1, j2), . . . , (ik−1, jk),

and subtract an ε from the entries

(i1, j1), (i2, j2), . . . , (ik−1, jk−1), (j, jk).

The resultant matrix is denoted by A1. We can illustrate this process by the following path

ri −→+ε sj1 −→−ε ri1 −→+ε sj2 −→−ε · · · −→−ε rik−1
−→+ε sjk −→−ε rj .

Similarly, by reversing the sign of ε, we get another matrix A2 which can be illustrated by the following path

ri −→−ε sj1 −→+ε ri1 −→−ε sj2 −→+ε · · · −→+ε rik−1
−→−ε sjk −→+ε rj .

It is easy to check that

|A1| = |A2| = |A| = σ,
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and

S(A1) = S(A2) = S(A).

The row sum vectors of A1 and A2 differ from R(A) only on the ith and jth row sum entries, which can be

shown as

ri(A1) = ri(A) + ε, ri(A2) = ri(A)− ε,
rj(A1) = rj(A)− ε, rj(A2) = rj(A) + ε.

Since both ri(A) and rj(A) in R(A) are unattained, we can choose ε small enough to make sure that both

A1 and A2 are in ∆(R̄, S̄, σ). Since

A =
1

2
A1 +

1

2
A2,

A is not an extreme point of ∆(R̄, S̄, σ). This contradicts with the given condition. The case that at most

one column sum entry in S(A) is unattained can be proved similarly.

Remark 2.2. When BG(A) contains two or more connected components and A is extreme in ∆(R̄, S̄, σ),

by the similar proof as in Theorem 2.1, we conclude that each connected component of BG(A) contains at

most one row vertex (resp. one column vertex) which is unattained.

Theorem 2.3. Given nonnegative vectors R̄ = (r̄1, r̄2, . . . , r̄m), S̄ = (s̄1, s̄2, . . . , s̄n), and 0 ≤ σ ≤
min{|R̄|, |S̄|}, if A ∈ E(∆(R̄, S̄, σ)), then BG(A) contains at most one connected component with exactly

one row vertex and one column vertex which are unattained.

Proof. Assume that BG(A) has two connected components, each of which contains exactly one row

vertex and one column vertex unattained, implying that BG(A) has two disconnected paths

(2.3) ri1 → sj1 → ri2 → sj2 → · · · → rip → sjp ,

and

(2.4) ri′1 → sj′1 → ri′2 → sj′2 → · · · → ri′q → sj′q ,

which are contained in these two connected components, respectively, where ri1(A) and ri′1(A), sjp(A) and

sj′q (A) are unattained. We then add an ε to the entries

(i1, j1), (i2, j2), . . . , (ip, jp),

and subtract an ε from the entries

(i2, j1), (i3, j2), . . . , (ip, jp−1).

The i1th row sum and the jpth column sum are increased by ε while other row and column sums remain

unchanged. The total sum of all elements in the connected component containing the path (2.3) is increased

by ε. We then subtract an ε from the entries

(i′1, j
′
1), (i′2, j

′
2), . . . , (i′q, j

′
q),
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and add an ε to the entries

(i′2, j
′
1), (i′3, j

′
2), . . . , (i′q, j

′
q−1).

This will decrease the i′1th row sum and the j′qth column sum by ε. The total sum of all elements in the

connected component containing the path (2.4) is decreased by ε. Denote the resulting matrix by A+ and

note that the total sum of A+ is still equal to σ, which remains unchanged. By reversing the sign of ε, we

obtain another matrix A− with the total sum equal to σ. Since ri1(A), ri′1(A), sjp(A), sj′q (A) are unattained,

we can choose ε sufficiently small such that A+, A− are in ∆(R̄, S̄, σ). Since

A =
1

2
A+ +

1

2
A−,

A is not an extreme point in ∆(R̄, S̄, σ). This contradicts with the given condition.

Theorem 2.4. Let R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n) be nonnegative vectors, 0 ≤ σ ≤ min{|R̄|, |S̄|},
and A is a matrix in ∆(R̄, S̄, σ). A is in E(∆(R̄, S̄, σ)) if and only if BG(A) is a forest and BG(A) contains

at most one connected component with exactly one unattained row vertex and one unattained column vertex,

and all other connected components are formed by the following three types (i), (ii), (iii),

(i) All row and column sums are attained,

(ii) Exactly one row sum is not attained,

(iii) Exactly one column sum is not attained.

Proof. “⇒ ” By the definition of ∆(R̄, S̄, σ) in (1.2), we have

E(∆(R̄, S̄, σ)) ⊆
⋃

|R|=|S|=σ
RCR̄,SCS̄

E(R,S),

where E(R,S) denotes the set of all extreme points of U(R,S). If A ∈ E(∆(R̄, S̄, σ)), then there exist RC R̄
and S C S̄ with |R| = |S| = σ such that A ∈ E(R,S). By Proposition 1.1, BG(A) is a forest. Theorem 2.1

guarantees that the connected components of BG(A) are of types (i), (ii), (iii), and Theorem 2.3 guarantees

that BG(A) contains at most one connected component with exactly one unattained row vertex and one

unattained column vertex.

“ ⇐ ” Let A be a matrix in ∆(R̄, S̄, σ) and BG(A) satisfy the given conditions. Suppose that there

exist A1 and A2 both in ∆(R̄, S̄, σ) such that

(2.5) A = λA1 + (1− λ)A2,

for some 0 < λ < 1. By Proposition 1.1, A ∈ E(R(A), S(A)) where |R(A)| = |S(A)| = σ and R(A) C
R̄, S(A) C S̄. Since the bipartite graphs BG(A1) and BG(A2) are subgraphs of BG(A), both BG(A1)

and BG(A2) are forests. Therefore, A1 ∈ E(R(A1), S(A1)) and A2 ∈ E(R(A2), S(A2)), where |R(A1)| =

|S(A1)| = |R(A2)| = |S(A2)| = σ and R(A1)C R̄, S(A1)C S̄, R(A2)C R̄, S(A2)C S̄. Moreover, if ri(A) (resp.

sj(A)) is attained, by (2.5) both ri(A1) (resp. sj(A1)) and ri(A2) (resp. sj(A2)) are attained. Since the

connected component of BG(A) which is of type (i), (ii), or (iii) contains at most one unattained vertex,

BG(A1) and BG(A2) must have exactly the same connected components as those in BG(A) which are of

types (i), (ii), (iii). If BG(A) contains at most one connected component with exactly one unattained row

vertex and one unattained column vertex, then in this connected component, the only unattained row sum

and the only unattained column sum are uniquely determined since the rest row and column sums are all
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attained. Therefore, we claim that R(A1) = R(A2) = R(A), S(A1) = S(A2) = S(A). This implies that

A,A1, A2 ∈ E(R(A), S(A)) and A = A1 = A2. Thus, A is extreme in ∆(R̄, S̄, σ).

Corollary 2.5. If R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n) are nonnegative vectors with |R̄| = |S̄| and

0 ≤ σ ≤ |R̄|, then

{B ∈ E≤(R̄, S̄)| |B| = σ} ⊆ E(∆(R̄, S̄, σ)).

Proof. This follows from the fact that ∆(R̄, S̄, σ) = {A ∈ U≤(R̄, S̄)| |A| = σ} ⊆ U≤(R̄, S̄) and {B ∈
E≤(R̄, S̄)| |B| = σ} ⊆ ∆(R̄, S̄, σ).

Corollary 2.6. Let R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n) be nonnegative vectors satisfying that |R̄| = |S̄|,
0 ≤ σ < |R̄|, and B is extreme in U≤(R̄, S̄) with |B| > σ. If there exists one edge connecting ri and sj
in BG(B), such that either ri or sj is the only possible unattained vertex in its connected component, and

bi,j ≥ |B|−σ, then the matrix obtained from B by decreasing bi,j by |B|−σ is an extreme point of ∆(R̄, S̄, σ).

Proof. From Proposition 1.2, BG(B) is a forest and each connected component in BG(B) contains

at most one vertex unattained. By decreasing the element bi,j , BG(B) contains at most one connected

component with exactly one unattained row vertex and one unattained column vertex. Thus by Theorem 2.4,

the matrix obtained from B by decreasing bi,j by |B| − σ is an extreme point in ∆(R̄, S̄, σ).

However, ∆(R̄, S̄, σ) contains more extreme points than those in Corollary 2.6. To explicitly obtain the

matrices in E(∆(R̄, S̄, σ)), we first find out all possible row sum vectors and column sum vectors for matrices

in E(∆(R̄, S̄, σ)). To do that, we introduce some notations.

Denote the set {r̄1, . . . , r̄m} by SR̄, and the set {s̄1, . . . , s̄n} by SS̄ . Let

R̄∑ :=

{∑
r∈W

r

∣∣∣∣∣ W ⊆ SR̄
}
, S̄∑ :=

{∑
s∈T

s

∣∣∣∣∣ T ⊆ SS̄
}
.

If T or W is ∅, then
∑
r∈∅ r := 0,

∑
s∈∅ s := 0. Also let

Diff(R̄∑, S̄∑) :=
{
r − s

∣∣ r − s ≥ 0, r ∈ R̄∑, s ∈ S̄∑} ,
Diff(S̄∑, R̄∑) :=

{
s− r

∣∣ s− r ≥ 0, r ∈ R̄∑, s ∈ S̄∑} ,
Sum(R̄∑, S̄∑) :=

{
r + s

∣∣ r ∈ R̄∑, s ∈ S̄∑} ,
Diff(σ, Sum(R̄∑, S̄∑)) :=

{
σ − t

∣∣ σ − t ≥ 0, t ∈ Sum(R̄∑, S̄∑)
}
.

Since 0 ∈ R̄∑ and also 0 ∈ S̄∑, R̄∑ ⊆ Diff(R̄∑, S̄∑) and S̄∑ ⊆ Diff(S̄∑, R̄∑).

Define

R :=
{
r ≤ σ : r ∈ SR̄ ∪Diff(S̄∑, R̄∑) ∪Diff(σ, Sum(R̄∑, S̄∑))

}
,

and

S :=
{
s ≤ σ : s ∈ SS̄ ∪Diff(R̄∑, S̄∑) ∪Diff(σ, Sum(R̄∑, S̄∑))

}
.

Lemma 2.7. If R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n) are nonnegative vectors with 0 ≤ σ ≤ min{|R̄|, |S̄|},
and A ∈ E(∆(R̄, S̄, σ)), then all row sums of A are in the set R and all column sums of A are in the set S.
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Proof. By Theorem 2.4, BG(A) contains at most one connected component with exactly one unattained

row vertex and one unattained column vertex, and all other connected components are of three types (i),

(ii) and (iii). If the connected component is of type (i) or type (iii), then the corresponding row sums are

all attained which are in SR̄. If the connected component is of type (ii), then the unattained row sum is in

Diff(S̄∑, R̄∑) due to the compatibility of the connected component. If the connected component has exactly

one unattained row vertex and one unattained column vertex, then the only unattained row sum can then

be calculated by taking the difference of σ and the rest row sums, which is in Diff(σ, Sum(S̄∑, R̄∑)). Since

this type of component can appear in BG(A) at most once, R(A) should contain at most one element which

is generated in this way. The column sum case can be proved similarly.

From Theorem 2.4, we have the following proposition and corollary.

Proposition 2.8. Given nonnegative vectors R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n), and 0 ≤ σ ≤
min{|R̄|, |S̄|}, if A ∈ E(∆(R̄, S̄, σ)), then the number of unattained line sums in A does not exceed the

number of connected components in BG(A) plus one.

Corollary 2.9. Given nonnegative vectors R̄ = (r̄1, . . . , r̄m), S̄ = (s̄1, . . . , s̄n), and 0 ≤ σ ≤
min{|R̄|, |S̄|}, if A ∈ E(∆(R̄, S̄, σ)), then the number of unattained line sums in A is at most min{m,n}+ 1.

Proof. Since in BG(A) the number of connected components containing at least one edge is at most

min{m,n}, together with Theorem 2.4, there are at most min{m,n}+ 1 unattained vertices.

Corollary 2.9 helps us to exclude those pairs (R̃, S̃) whose corresponding transportation polytopes do

not contain any extreme points of ∆(R̄, S̄, σ), and we have

(2.6) E(∆(R̄, S̄, σ)) ⊆
⋃

|R̃|=|S̃|=σ
R̃CR̄,S̃CS̄

E(R̃, S̃),

where R̃, S̃ satisfy the conditions in Lemma 2.7 and Corollary 2.9. When σ < min{|R̄|, |S̄|},E(∆(R̄, S̄, σ))

is a proper subset of
⋃
E(R̃, S̃), where |R̃| = |S̃| = σ and R̃ C R̄, S̃ C S̄. This is because not all matrices in

E(R̃, S̃) satisfy Theorem 2.4. In order to obtain the matrices in E(∆(R̄, S̄, σ)), we first find out all extreme

points of U(R̃, S̃) as long as R̃ and S̃ satisfy the conditions in Lemma 2.7 and Corollary 2.9. Then remove

those matrices in E(R̃, S̃) whose bipartite graphs do not satisfy the conditions in Theorem 2.4.

Here, we use an example to illustrate how to find the right pairs of R̃ and S̃.

Example 2.10. Given σ = 4, R̄ = (2, 3), S̄ = (1, 2, 3), we have SR̄ = {2, 3}, SS̄ = {1, 2, 3} and

R̄Σ = {0, 2, 3, 5}, S̄Σ = {0, 1, 2, 3, 4, 5, 6},
Diff(R̄∑, S̄∑) = {0, 1, 2, 3, 4, 5},
Diff(S̄∑, R̄∑) = {0, 1, 2, 3, 4, 5, 6},
Sum(R̄∑, S̄∑) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
Diff(σ, Sum(R̄∑, S̄∑)) = {0, 1, 2, 3, 4},
R = S = {0, 1, 2, 3, 4}.

The row and column sum vectors of the polytopes satisfying Corollary 2.9 are as follows.

1. R̃1 = (1, 3), S̃1 = (0, 1, 3);

2. R̃2 = (1, 3), S̃2 = (0, 2, 2);
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3. R̃3 = (1, 3), S̃3 = (1, 0, 3);

4. R̃4 = (1, 3), S̃4 = (1, 1, 2);

5. R̃5 = (1, 3), S̃5 = (1, 2, 1);

6. R̃6 = (2, 2), S̃6 = (0, 1, 3);

7. R̃7 = (2, 2), S̃7 = (0, 2, 2);

8. R̃8 = (2, 2), S̃8 = (1, 0, 3);

9. R̃9 = (2, 2), S̃9 = (1, 1, 2);

10. R̃10 = (2, 2), S̃10 = (1, 2, 1).

Once we have all possible R̃ and S̃, we can also modify the Ryser’s algorithm ([5, 17]) to obtain the

extreme points of ∆(R̄, S̄, σ).

(i) Let R̃ = (r̃1, . . . , r̃m) and S̃ = (s̃1, . . . , s̃n) where r̃1 + · · ·+ r̃m = s̃1 + · · ·+ s̃n = σ. Begin with R̂ = R̃

and Ŝ = S̃, and A = [ai,j ] equal to zero matrix of size m× n.

(ii) Choose r̃i and s̃j and replace ai,j with min{r̃i, s̃j}. Let

R̂ = (r̃1, . . . , r̃i −min{r̃i, s̃j}, . . . , r̃m),

and

Ŝ = (s̃1, . . . , s̃j −min{r̃i, s̃j}, . . . , s̃n).

If r̃i < r̄i unattained, then all the row vertices in the same connected component containing row vertex ri must

be attained. If s̃j < s̄j unattained, then all the column vertices in the same connected component containing

column vertex sj must be attained. Once there is a connected component in BG(A) which contains exactly

one row vertex and one column vertex which are both unattained, then all the other connected components

should only contain at most one unattained vertex. Otherwise, we stop the procedure and output empty.

(iii) Repeat Step(ii) until R̂ and Ŝ are zero vectors.

Example 2.11. Following the results of Example 2.10, we can find all the extreme points of ∆(R̄, S̄, σ)

where σ = 4, R̄ = (2, 3), S̄ = (1, 2, 3) as listed below[
0 1 0

0 0 3

]
,

[
0 0 1

0 1 2

]
,

[
0 1 0

0 1 2

]
,

[
0 0 1

0 2 1

]
,

[
1 0 0

0 0 3

]
,

[
0 0 1

1 0 2

]
,[

0 1 0

1 0 2

]
,

[
1 0 0

0 2 1

]
,

[
0 1 0

1 1 1

]
,

[
0 0 1

1 2 0

]
,

[
0 1 1

0 0 2

]
,

[
0 0 2

0 1 1

]
,[

0 2 0

0 0 2

]
,

[
0 0 2

0 2 0

]
,

[
1 0 1

0 0 2

]
,

[
0 0 2

1 0 1

]
,

[
1 1 0

0 0 2

]
,

[
0 0 2

1 1 0

]
,[

1 0 1

0 2 0

]
,

[
1 1 0

0 1 1

]
,

[
0 1 1

1 1 0

]
,

[
0 2 0

1 0 1

]
.

Remark 2.12. Denote Ln = (1, 1, . . . , 1) ∈ Rn. Note that ωsn = ∆(Ln, Ln, s) where 0 ≤ s ≤ n. By

Lemma 2.7, R = S = {0, 1, s− bsc}. Therefore, Proposition 1.3 easily follows from Theorem 2.4.

3. The minimal term rank. Let A = [ai,j ] be an m × n nonnegative matrix. The term rank of A

is the maximal number ρ(A) of positive elements of A with no two of them on a line. The fundamental



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 256-271, March 2021.

265 Extreme points of certain transportation polytopes with fixed total sums

minimax theorem of König-Egerváry asserts that ρ(A) equals the minimal number of lines in A that contain

all positive elements in A [5]. In this section, we investigate the minimal term rank ρ̃ of the matrices in the

class ∆(R̄, S̄, σ). Given set S, denote by ρ̃(S) the minimal term rank of the matrices in S. We first show

that the minimal term rank can only be achieved on the extreme points of ∆(R̄, S̄, σ).

Lemma 3.1. Let S be a bounded convex polytope of m× n matrices, and E(S) be the set of all extreme

points of S which is nonempty. Then

ρ̃(S) = ρ̃(E(S)).

Proof. Since E(S) ⊆ S, ρ̃(S) ≤ ρ̃(E(S)). On the other hand, for any A ∈ S, there exist A1, . . . , Ak ∈ E(S)

such that

A = λ1A1 + · · ·+ λkAk,

where 0 ≤ λ1, . . . , λk ≤ 1 and λ1 + · · · + λk = 1. Thus, a cover of A is also a cover of Ai for 1 ≤ i ≤ k.

By the minimax theorem this implies that ρ(A) ≥ ρ(Ai) for 1 ≤ i ≤ k, and ρ̃(S) ≥ ρ̃(E(S)). Therefore, the

lemma holds.

Theorem 3.2. Let R̄ = (r̄1, . . . , r̄m) and S̄ = (s̄1, . . . , s̄n) be nonnegative vectors, and 0 ≤ σ ≤
min{|R̄|, |S̄|}. We have

ρ̃(∆(R̄, S̄, σ)) = min{ρ̃(E(R̃, S̃)) : |R̃| = |S̃| = σ, R̃C R̄, S̃ C S̄},

where R̃, S̃ satisfy the conditions in Lemma 2.7 and Corollary 2.9.

Proof. Recall that (2.6) says

E(∆(R̄, S̄, σ)) ⊆
⋃

|R̃|=|S̃|=σ
R̃CR̄,S̃CS̄

E(R̃, S̃) ⊆ ∆(R̄, S̄, σ)),

where R̃, S̃ satisfy the conditions in Lemma 2.7 and Corollary 2.9. Therefore,

ρ̃(E(∆(R̄, S̄, σ))) ≥ min{ρ̃(E(R̃, S̃)) : |R̃| = |S̃| = σ, R̃C R̄, S̃ C S̄} ≥ ρ̃(∆(R̄, S̄, σ)).

By Lemma 3.1, ρ̃(∆(R̄, S̄, σ)) = ρ̃(E(∆(R̄, S̄, σ))). Therefore the theorem holds.

For any nonnegative real vector R = (a1, a2, . . . , al), denote the rearrangement of the elements in R in

ascending order by

a′1 ≤ a′2 ≤ · · · ≤ a′l,

and in descending order by

a∗1 ≥ a∗2 ≥ · · · ≥ a∗l .

We denote

R′ = (a′1, a
′
2, . . . , a

′
l), R

∗ = (a∗1, a
∗
2, . . . , a

∗
l ).

The following theorem comes from Jurkat and Ryser [17].
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Theorem 3.3 ([17]). Let R = (r1, . . . , rm) and S = (s1, . . . , sn) be nonnegative vectors satisfying

|R| = |S| = σ. Then

ρ̃(U(R,S)) = ρ(ER′,S∗),

where ER′,S∗ ∈ E(R′, S∗) is constructed inductively by choosing the position (1, 1) in the submatrix under

consideration. Moreover,

ρ(ER′,S∗) = min{e+ f},

where the minimum is taken over all pairs e ≥ 0, f ≥ 0 satisfying

r∗1 + r∗2 + · · ·+ r∗e + s∗1 + s∗2 + · · ·+ s∗f ≥ σ.

Given R̄, S̄ nonnegative vectors and 0 ≤ σ ≤ min{|R̄|, |S̄|}, there exist iσ and jσ such that

r̄∗1 + r̄∗2 + · · ·+ r̄∗iσ−1 < σ ≤ r̄∗1 + r̄∗2 + · · ·+ r̄∗iσ ,

and

s̄∗1 + s̄∗2 + · · ·+ s̄∗jσ−1 < σ ≤ s̄∗1 + s̄∗2 + · · ·+ s̄∗jσ .

Let

R∗ρ :=

(
r̄∗1 , . . . , r̄

∗
iσ−1, σ −

iσ−1∑
s=1

r̄∗s , 0, . . . , 0

)
,

S∗ρ :=

(
s̄∗1, . . . , s̄

∗
jσ−1, σ −

jσ−1∑
t=1

s̄∗t , 0, . . . , 0

)
.

Since 0 < σ −
∑iσ−1
s=1 r̄∗s ≤ r̄∗iσ , 0 < σ −

∑jσ−1
t=1 s̄∗t ≤ s̄∗jσ , the only possible unattained row sum in R∗ρ is the

iσth row sum, and the only possible unattained column sum in S∗ρ is the jσth column sum. By Theorem 2.4

E(R∗ρ, S
∗
ρ) ⊆ E(∆(R̄, S̄, σ)),

which implies that

(3.7) ρ̃(U(R∗ρ, S
∗
ρ)) ≥ ρ̃(∆(R̄, S̄, σ)).

On the other hand, for any R̃, S̃ satisfying R̃C R̄, S̃ C S̄, and |R̃| = |S̃| = σ, by Theorem 3.3 we have

(3.8) ρ̃(U(R̃, S̃)) ≥ ρ̃(U(R∗ρ, S
∗
ρ)).

(3.7) and (3.8) together give us the following theorem.

Theorem 3.4. Let R̄ = (r̄1, . . . , r̄m) and S̄ = (s̄1, . . . , s̄n) be nonnegative vectors, and 0 ≤ σ ≤
min{|R̄|, |S̄|}. Then

ρ̃(∆(R̄, S̄, σ)) = ρ̃(E(R∗ρ, S
∗
ρ)).

Corollary 3.5. For 0 ≤ s ≤ n, we have

ρ̃(ωsn) = ρ̃(∆(Ln, Ln, s)) = ρ̃(E(vsn, v
s
n)) = dse.
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4. The maximal permanent. In this section, we consider ∆(R̄, S̄, σ) where R̄ and S̄ are both n

dimensional nonnegative real vectors. For an n× n matrix A, the permanent of A is defined by

per(A) =
∑
π∈Sn

a1,π(1)a2,π(2) · · · an,π(n),

where Sn is the symmetric group of size n. The following theorem is given by Jurkat and Ryser [17].

Theorem 4.1 ([17]). Let A be a matrix in U(R,S), then

(4.9) per(A) ≤
n∏
i=1

min{r′i, s′i},

and equality is attained in (4.9) by a matrix A in E(R′, S′) with the main diagonal

ai,i = min{r′i, s′i}, for all 1 ≤ i ≤ n.

We then have the following lemma.

Lemma 4.2. Given nonnegative vectors R̄ = (r̄1, . . . , r̄n), S̄ = (s̄1, . . . , s̄n), and 0 ≤ σ ≤ min{|R̄|, |S̄|},
let A be a matrix in ∆(R̄, S̄, σ). Then

(4.10) per(A) ≤
n∏
i=1

min{r̄′i, s̄′i}.

Moreover, when σ ≥
∑n
i=1 min{r̄′i, s̄′i}, there exist matrices with the main diagonal ai,i = min{r̄′i, s̄′i} for all

1 ≤ i ≤ n which make (4.10) hold as an equality.

Proof. Recall that

∆(R̄, S̄, σ) =
⋃

|R|=|S|=σ
RCR̄,SCS̄

U(R,S).

For any R,S satisfying RC R̄, and S C S̄, |R| = |S| = σ, we have

r′1 ≤ r̄′1, r′2 ≤ r̄′2, . . . , r′n ≤ r̄′n, s′1 ≤ s̄′1, s′2 ≤ s̄′2, . . . , s′n ≤ s̄′n.

Therefore, U(R′, S′) ⊆ ∆(R̄′, S̄′, σ) and for all 1 ≤ i ≤ n we have min{r′i, s′i} ≤ min{r̄′i, s̄′i}. This implies

that

n∏
i=1

min{r′i, s′i} ≤
n∏
i=1

min{r̄′i, s̄′i}.

Moreover, by Theorem 4.1, for any A ∈ U(R,S),

per(A) ≤
n∏
i=1

min{r′i, s′i}.

Thus for all A ∈ ∆(R̄, S̄, σ),

per(A) ≤
n∏
i=1

min{r̄′i, s̄′i}.
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When
∑n
i=1 min{r̄′i, s̄′i} ≤ σ ≤ min{|R̄|, |S̄|}, there exist R = (r1, . . . , rm), S = (s1, . . . , sn) satisfying that

|R| = |S| = σ and for all 1 ≤ i ≤ n,

min{r̄′i, s̄′i} ≤ r′i ≤ r̄′i, min{r̄′i, s̄′i} ≤ s′i ≤ s̄′i.

In this case there exists a matrix A ∈ U(R,S) such that there exists exactly one diagonal of A formed by

min{r̄′1, s̄′1}, . . . ,min{r̄′n, s̄′n}. Thus, the equality in (4.10) can be achieved.

When m = n, R̄ = S̄ = (1, . . . , 1) ∈ Rn, and 0 ≤ σ ≤ n, ∆(R̄, S̄, σ) is the set of all doubly substochastic

matrices with total sum equal to σ. By Lemma 4.2, for all A ∈ ∆(R̄, S̄, σ), per(A) ≤ 1, where per(A) = 1 if

and only if σ = n and A is a permutation matrix ([10, 21]).

Lemma 4.3. Let X = (x1, . . . , xn), X̄ = (x̄1, . . . , x̄n) be nonnegative vectors satisfying that 0 ≤ xi ≤ x̄i
for all 1 ≤ i ≤ n, x̄1 ≤ . . . ≤ x̄n and |X| = x1 + · · ·+ xn = σ which is fixed. Let 1 ≤ iσ ≤ n satisfying that

x̄iσ <
σ −

∑iσ−1
i=1 x̄i

n− iσ + 1
, x̄iσ+1 ≥

σ −
∑iσ
i=1 x̄i

n− iσ
.

Then

(4.11)

n∏
i=1

xi ≤
iσ∏
i=1

x̄i

(
σ −

∑iσ
i=1 x̄i

n− iσ

)n−iσ
.

Proof. If x1 = 0, then
∏n
i=1 xi = 0 and (4.11) holds. If x1 = x̄1 > 0, then cancel x1 from both sides

of (4.11) and consider X ′ = (x2, . . . , xn), X̄ ′ = (x̄2, . . . , x̄n), |X ′| = x2 + · · · + xn = σ − x1. Thus without

loss of generality, we suppose 0 < x1 < x̄1 and first prove the following inequality

(4.12)

iσ∏
i=1

x̄i

(
σ −

∑iσ
i=1 x̄i

n− iσ

)n−iσ
> x1

iσ∏
i=2

x̄i

(
σ − x1 −

∑iσ
i=2 x̄i

n− iσ

)n−iσ
,

which is equivalent to

(4.13)
x̄1

x1
>

(
σ − x1 −

∑iσ
i=2 x̄i

σ −
∑iσ
i=1 x̄i

)n−iσ
.

To show (4.13), we consider the function f(x) = lnx+ (n− iσ) ln(σ−
∑iσ
i=2 x̄i− x), where x ∈ (0, x̄1]. Since

f ′(x) =
1

x
− n− iσ
σ −

∑iσ
i=2 x̄i − x

,

and

f ′′(x) = − 1

x2
− n− iσ

(σ −
∑iσ
i=2 x̄i − x)2

< 0,

f ′(x) is decreasing on (0, x̄1]. Thus for x ∈ (0, x̄1),

f ′(x) > f ′(x̄1) =
1

x̄1
− n− iσ
σ −

∑iσ
i=1 x̄i

=
σ −

∑iσ
i=1 x̄i − (n− iσ)x̄1

x̄1(σ −
∑iσ
i=1 x̄i)

≥ (n− iσ)(x̄iσ − x̄1)

x̄1(σ −
∑iσ
i=1 x̄i)

≥ 0.
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Therefore, f(x) is increasing on (0, x̄1], which implies that f(x1) < f(x̄1) if x1 < x̄1, i.e.

ln x̄1 + (n− iσ) ln

(
σ −

iσ∑
i=2

x̄i − x̄1

)
≥ lnx1 + (n− iσ) ln

(
σ −

iσ∑
i=2

x̄i − x1

)
.

From the above inequality, we can easily obtain (4.13). Thus (4.12) holds and we have

iσ∏
i=1

x̄i

(
σ −

∑iσ
i=1 x̄i

n− iσ

)n−iσ
> x1

iσ∏
i=2

x̄i

(
σ − x1 −

∑iσ
i=2 x̄i

n− iσ

)n−iσ

> x1x2

iσ∏
i=3

x̄i

(
σ − x1 − x2 −

∑iσ
i=3 x̄i

n− iσ

)n−iσ

> · · · >
iσ∏
i=1

xi

(
σ −

∑iσ
i=1 xi

n− iσ

)n−iσ
.

By the arithmetic-geometric inequality,(
σ −

∑iσ
i=1 xi

n− iσ

)n−iσ
≥ xiσ+1 · · ·xn.

Thus, the lemma holds.

For any A ∈ ∆(R̄, S̄, σ), by Lemma 4.2

per(A) ≤ max

{
n∏
i=1

min{r′i, s′i} : |R| = |S| = σ,RC R̄, S C S̄

}
.

For all 1 ≤ i ≤ n,min{r′i, s′i} ≤ t̄i where t̄i = min{r̄′i, s̄′i}. Note that
∑n
i=1 min{r′i, s′i} ≤ σ. Lemma 4.2 and

Lemma 4.3 imply the following theorem.

Theorem 4.4. Given nonnegative vectors R̄ = (r̄1, . . . , r̄n), S̄ = (s̄1, . . . , s̄n), 0 ≤ σ ≤ min{|R̄|, |S̄|}, let

t̄i = min{r̄′i, s̄′i} and A be a matrix in ∆(R̄, S̄, σ).

1. If 0 ≤ σ ≤
∑n
i=1 t̄i, 0 ≤ iσ ≤ n such that for iσ 6= 0,

t̄iσ <
σ −

∑iσ−1
i=1 t̄i

n− iσ + 1
, t̄iσ+1 ≥

σ −
∑iσ
i=1 t̄i

n− iσ
,

and set iσ = 0 when t̄1 ≥ σ
n , then

per(A) ≤


∏iσ
i=1 t̄i

(
σ−

∑iσ
i=1 t̄i

n−iσ

)n−iσ
if iσ 6= 0(

σ
n

)n
if iσ = 0

.

The equality holds when A = [ai,j ] is a diagonal matrix such that if iσ 6= 0, then

ai,i =

{
t̄i if 1 ≤ i ≤ iσ
σ−

∑iσ
i=1 t̄i

n−iσ if iσ + 1 ≤ i ≤ n
,
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and if iσ = 0, then

ai,i =
σ

n
for 1 ≤ i ≤ n.

2. If
∑n
i=1 t̄i ≤ σ ≤ min{|R̄|, |S̄|}, then

per(A) ≤
n∏
i=1

t̄i.

The equality holds when A is in E(R,S) where R C R̄, S C S̄, |R| = |S| = σ, and there exist two

rearrangements i1, . . . , in; j1, . . . , jn of 1, . . . , n such that

aik,jk = min{r̄′i, s̄′i} = t̄i, (k, i = 1, . . . , n).

Corollary 4.5. For 0 ≤ s ≤ n and A ∈ ωsn,

per(A) ≤
( s
n

)n
.
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