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BOUNDS ON THE Aα-SPREAD OF A GRAPH∗

ZHEN LIN† , LIANYING MIAO‡ , AND SHU-GUANG GUO§

Abstract. Let G be a simple undirected graph. For any real number α ∈ [0, 1], Nikiforov defined the Aα-matrix of G

as Aα(G) = αD(G) + (1 − α)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of G,

respectively. The Aα-spread of a graph is defined as the difference between the largest eigenvalue and the smallest eigenvalue

of the associated Aα-matrix. In this paper, some lower and upper bounds on Aα-spread are obtained, which extend the results

of A-spread and Q-spread. Moreover, the trees with the minimum and the maximum Aα-spread are determined, respectively.
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1. Introduction. Let G be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G). For vi ∈ V (G), d(vi) = di(G) denotes the degree of vertex vi in G. The minimum and the

maximum degree of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. For any real number α ∈ [0, 1],

Nikiforov [25] defined the Aα-matrix of G as

Aα(G) = αD(G) + (1− α)A(G),

where D(G) is the diagonal matrix of the vertex degrees of G and A(G) is the adjacency matrix. It is easy

to see that Aα(G) is the adjacency matrix A(G) if α = 0, and Aα(G) is essentially equivalent to signless

Laplacian matrix Q(G) if α = 1/2. The new matrix not only can underpin a unified theory of A(G) and

Q(G), but it also brings many new interesting problems (see [25, 27, 28]). There are a considerable results

regarding Aα(G) in the literature. For related results, one may refer to [3, 5, 12, 18, 20, 21, 25, 32, 34] and

references therein.

Let λi(M) be the i-th largest eigenvalue of a symmetric matrix M . The spread of M is defined by

SM = λ1(M)− λn(M).

There is a considerable literature on the spread of a symmetric matrix [14, 15, 22, 30]. For a graph G,

Gregory et al. [10] investigated the spread of the adjacency matrix of G, called the A-spread, defined as

SA(G) = λ1(A(G))− λn(A(G)).

Liu et al. [17] and Oliveira et al. [31] proposed the signless Laplacian spread of a graph G, called the

Q-spread, defined as

SQ(G) = λ1(Q(G))− λn(Q(G)).
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There are several results concerning A-spread and Q-spread, see for example [1, 2, 7, 10, 17, 31] and the

references therein.

Motivated by the definition of A-spread and Q-spread, we define Aα-spread of a graph G as

Sα(G) = λ1(Aα(G))− λn(Aα(G)).

Since S0(G) = SA(G) and S1/2(G) = 1
2SQ(G), the Aα-spread can be regard as a common generalization of

A-spread and Q-spread.

The primary purpose of this paper is to establish the bounds of Aα-spread of graphs, which extend the

results of A-spread and Q-spread. The rest of the paper is organized as follows. In Section 2, we recall some

useful notions and lemmas used further. In Section 3, some upper bounds on the Aα-spread are obtained.

In Section 4, some lower bounds on the Aα-spread are presented. In Section 5, the trees with the minimum

and the maximum Aα-spread are determined, respectively.

2. Preliminaries. Let K1, n−1 and Kn denote the star and the complete graph with n vertices, respec-

tively. Let Kr, s denote the complete bipartite graph with r+s vertices. Let Pn and Cn denote the path and

the cycle with n vertices, respectively. A subset I of V (G) is called an independent set of a graph G if no two

vertices in I are adjacent in G. A clique of a graph G is a subset of vertices such that it induces a complete

subgraph of G. Given a graph G, the independence number a = a(G) and the clique number ω = ω(G) of

G are the numbers of vertices of the largest independent set and the largest clique in G, respectively. The

chromatic number χ = χ(G) of a graph G is the minimum number of colors such that G can be colored in

a way such that no two adjacent vertices have the same color. Denote by G the complement of a graph G.

Lemma 2.1. ([22]) Let H be an n× n matrix. Then

SH =

(
2||H||2F −

2

n
(trH)2

) 1
2

with equality if and only if H is normal and the eigenvalues h1, h2, . . . , hn of H satisfy the following condition

h2 = · · · = hn−1 =
h1 + hn

2
.

Lemma 2.2. ([33]) Let A and B be Hermitian matrices of order n, and let 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Then

λi(A) + λj(B) ≤ λi+j−n(A+B), if i+ j ≥ n+ 1,

λi(A) + λj(B) ≥ λi+j−1(A+B), if i+ j ≤ n+ 1.

In either of these inequalities, the equality holds if and only if there exists a nonzero n-vector that is an

eigenvector to each of the three eigenvalues involved.

Lemma 2.3. ([26]) Let M be a Hermitian matrix partitioned into r× r blocks so that all diagonal blocks

are zero. Then for every real diagonal matrix N of the same size as M ,

λ1(N −M) ≥ λ1
(
N +

1

r − 1
M

)
.

Lemma 2.4. ([25]) Let G be a graph with n vertices. If 0 ≤ α ≤ 1/2, then λ1(Aα) ≥ α(∆ + 1). If

1/2 ≤ α < 1, then λ1(Aα) ≥ α∆ + (1−α)2
α .
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Lemma 2.5. ([25]) Let G be a graph with n vertices. If 0 ≤ α ≤ 1, then λn(Aα) ≤ αδ.

Lemma 2.6. ([16]) Let G be a graph of order n with m edges and 1/2 ≤ α ≤ 1. If G has isolated vertices,

then λn(Aα(G)) = 0. Otherwise,

λn(Aα(G)) ≤
(

2m

n
+ 1

)
α− 1

with equality if and only if G ∼= tKq with α < 1, where n = qt, t ≥ 1 and q > 1, or G is a regular graph with

α = 1.

Lemma 2.7. ([25]) If G is a connected graph of diameter D, then Aα(G) has at least D + 1 distinct

eigenvalues.

Lemma 2.8. ([9]) Let M be a Hermitian matrix of order n with λ1 ≥ λ2 ≥ · · · ≥ λn as eigenvalues, and

B a principal submatrix of order p, and let B have eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µp. Then the inequalities

λn−p+i ≤ µi ≤ λi hold.

Lemma 2.9. ([1]) Let M be a real symmetric matrix of order n. Then

SM ≥ 2 max
X∈Bn

√
XTM2X − (XTMX)2,

where Bn denote the unit ball in Rn, that is, the set of vectors in Rn such that ||X|| ≤ 1.

The first Zagreb index are defined as M1 = M1(G) =
∑n
i=1 d

2
i (G). There is a wealth of literature relating

to the first Zagreb index, the reader is referred to the survey [4, 8] and the references therein.

Lemma 2.10. ([4, 8]) Let G be a graph with n vertices and m edges. Then

M1(G) ≤ 4m2

n
+
n

4
(∆− δ)2.

Lemma 2.11. ([4, 24]) Let G be a graph with n vertices and m edges. Then

M1(G) ≥ 4m2

n
+

1

2
(∆− δ)2

with equality if and only if G has the property d2 = d3 = · · · = dn−1 = (∆ + δ)/2, which includes also the

regular graphs.

Lemma 2.12. ([23]) Let (a1, . . . , an) and (b1, . . . , bn) be two vectors with 0 < a ≤ ai ≤ A and 0 < b ≤
bi ≤ B, for i = 1, . . . , n, for some constants a, b, A and B. Then(

n∑
i=1

a2i

)(
n∑
i=1

b2i

)
−

(
n∑
i=1

aibi

)2

≤ n2

4
(AB − ab)2.

Lemma 2.13. ([15]) Let M = (mij) be an n× n Hermitian matrix. Then

SM ≥ max
i 6=j

(mii −mjj)
2 + 2

∑
k 6=i

|mik|2 + 2
∑
k 6=j

|mjk|2 + 4eij

 1
2

,

where eij = 2fij if mii = mjj and otherwise

eij = min

{
(mii −mjj)

2 + 2|(mii −mjj)
2 − fij |,

f2ij
(mii −mjj)2

}
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with

fij =

∣∣∣∣∣∣
∑
k 6=i

|mik|2 −
∑
k 6=j

|mjk|2
∣∣∣∣∣∣ .

Let M be a real symmetric partitioned matrix of order n described in the following block formM11 · · · M1t

...
. . .

...

Mt1 · · · Mtt

 ,

where the diagonal blocks Mii are ni × ni matrices for any i ∈ {1, 2, . . . , t} and n = n1 + · · ·+ nt. For any

i, j ∈ {1, 2, . . . , t}, let bij denote the average row sum of Mij , i.e., bij is the sum of all entries in Mij divided

by the number of rows. Then B(M) = (bij) (simply by B) is called the quotient matrix of M .

Lemma 2.14. ([11]) Let A be a symmetric partitioned matrix of order n with eigenvalues ξ1 ≥ ξ2 ≥ · · · ≥
ξn, and let B be its quotient matrix with eigenvalues η1 ≥ η2 ≥ · · · ≥ ηm and n > m. Then ξi ≥ ηi ≥ ξn−m+i

for i = 1, 2, . . . ,m.

Lemma 2.15. ([29, 35]) Let G be a connected graph with α ∈ [0, 1). For u, v ∈ V (G), suppose N ⊆
N(v) \ (N(u) ∪ {u}). Let G′ = G − {vw : w ∈ N} + {uw : w ∈ N}. Let X be a unit eigenvector of Aα(G)

corresponding to λ1(Aα(G)). If N 6= Φ and xu ≥ xv, then λ1(Aα(G′)) > λ1(Aα(G)).

3. Upper bounds for Aα-spread.

Theorem 3.1. Let G be a graph with n vertices and m edges. If 0 ≤ α ≤ 1, then

Sα(G) ≤
√

2α2M1 + 4m(1− α)2 − 8α2m2

n
.(3.1)

If G is a complete bipartite graph Kn
2 ,

n
2
, then equality holds.

Proof. Since Aα(G) is a normal matrix, by Lemma 2.1, we have

Sα(G) ≤
(

2||Aα(G)||2F −
2

n
(trAα(G))2

) 1
2

=

√
2α2M1 + 4m(1− α)2 − 8α2m2

n
.

It is easy to verify that the equality holds when G is a complete bipartite graph Kn
2 ,

n
2

.

Problem 3.2. Find all cases of equality in (3.1).

Corollary 3.3. Let G be a connected k-regular graph with n vertices. If 0 ≤ α ≤ 1, then

Sα(G) ≤ (1− α)
√

2kn.

If G is a complete bipartite graph Kn
2 ,

n
2
, then equality holds.

The following result is direct corollary of Lemma 2.10 and Theorem 3.1.

Corollary 3.4. Let G be a graph with n vertices and m edges. If 0 ≤ α ≤ 1, then

Sα(G) ≤
√

2

2

√
α2n(∆− δ)2 + 8m(1− α)2.

If G is a complete bipartite graph Kn
2 ,

n
2
, then equality holds.
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Theorem 3.5. Let G be a graph with n vertices.

(i) If 0 ≤ α ≤ 1, then Sα(G) ≤ α(∆− δ) + (1− α)SA(G);

(ii) If 0 ≤ α < 1/2, then Sα(G) ≤ αSQ(G) + (1− 2α)SA(G);

(iii) If 1/2 ≤ α ≤ 1, then Sα(G) ≤ (1− α)SQ(G) + (2α− 1)(∆− δ);

(iv) If 0 ≤ α ≤ 1, then S1−α(G)− Sα(G) ≤ SQ(G) ≤ S1−α(G) + Sα(G);

(v) If 0 ≤ β ≤ α ≤ 1, then Sα(G) + Sβ(G) ≥ (α − β)λ1(L(G)), where L(G) = D(G) − A(G) is the

Laplacian matrix of G.

If G is a regular graph, then equality holds in (i)–(iii).

Proof. (i) Since Aα(G) = αD(G) + (1− α)A(G), by Lemma 2.2, we have

λ1(Aα(G)) ≤ αλ1(D(G)) + (1− α)λ1(A(G))

and

λn(Aα(G)) ≥ αλn(D(G)) + (1− α)λn(A(G)).

Thus, Sα(G) ≤ α(∆− δ) + (1− α)SA(G).

(ii) Since Aα(G) = αD(G) + (1− α)A(G) = αQ(G) + (1− 2α)A(G), by Lemma 2.2, we have

λ1(Aα(G)) ≤ αλ1(Q(G)) + (1− 2α)λ1(A(G))

and

λn(Aα(G)) ≥ αλn(Q(G)) + (1− 2α)λn(A(G))

for 0 ≤ α < 1/2. Thus, Sα(G) ≤ αSQ(G) + (1− 2α)SA(G).

(iii) Since Aα(G) = αD(G) + (1− α)A(G) = (1− α)Q(G) + (2α− 1)D(G), by Lemma 2.2, we have

λ1(Aα(G)) ≤ (1− α)λ1(Q(G)) + (2α− 1)λ1(D(G))

and

λn(Aα(G)) ≥ (1− α)λn(Q(G)) + (2α− 1)λn(D(G))

for 1/2 ≤ α ≤ 1. Thus, Sα(G) ≤ (1− α)SQ(G) + (2α− 1)(∆− δ).

(iv) Since A1−α(G) +Aα(G) = Q(G), by Lemma 2.2, we have

λ1(A1−α(G)) + λn(Aα(G)) ≤ λ1(Q(G)) ≤ λ1(A1−α(G)) + λ1(Aα(G))

and

λn(A1−α(G)) + λn(Aα(G)) ≤ λn(Q(G)) ≤ λ1(Aα(G)) + λn(A1−α(G))

for 0 ≤ α ≤ 1. Thus, S1−α(G)− Sα(G) ≤ SQ(G) ≤ S1−α(G) + Sα(G).

(v) Since Aα(G)−Aβ(G) = (α− β)L(G), by Lemma 2.2, we have

(α− β)λ1(L(G)) ≤ λ1(Aα(G))− λn(Aβ(G))
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and

(α− β)λn(L(G)) ≥ λn(Aα(G))− λ1(Aβ(G))

for 0 ≤ β ≤ α ≤ 1. It is well known that λn(L(G)) = 0. Thus, Sα(G) + Sβ(G) ≥ (α − β)λ1(L(G)). This

completes the proof.

Corollary 3.6. Let Pn denote the path with n vertices.

(i) If 0 ≤ α ≤ 1, then Sα(Pn) ≤ α+ 4(1− α)cos
(

π
n+1

)
;

(ii) If 0 ≤ α < 1/2, then Sα(Pn) ≤ 2α
(
1 + cos

(
π
n

))
+ 4(1− 2α)cos

(
π
n+1

)
;

(iii) If 1/2 ≤ α ≤ 1, then Sα(Pn) ≤ 1 + 2(1− α)cos
(
π
n

)
.

Gregory et al. [10] proved that SA(G) ≤ λ1(A(G)) +
√

2m− λ21(A(G)) with equality if and only if

G = Kr, s for some r, s with r+s = n. Let χ be the chromatic number of G. Nikiforov and Rojo [28] showed

that Aα(G) is not positive semi-definite for α < 1/χ. In this case, we give an upper bound on Aα-spread

under chromatic number condition.

Theorem 3.7. Let 0 < α ≤ 1/χ, and G be a connected graph with n ≥ 2 vertices and m edges. Then

Sα(G) ≤ λ1(Aα(G)) +
√

2(1− α)2m+ α2M1 − λ21(Aα(G)).

The equality holds if and only if G is a complete graph Kn and α = 1
n .

Proof. Since λ21(Aα(G)) + λ22(Aα(G)) + · · · + λ2n(Aα(G)) = Tr(A2
α(G)), it follows that λ21(Aα(G)) +

λ2n(Aα(G)) ≤ 2(1− α)2m+ α2M1. Noting that 0 < α ≤ 1/χ, we have

Sα(G) = λ1(Aα(G)) + |λn(Aα(G))| ≤ λ1(Aα(G)) +
√

2(1− α)2m+ α2M1 − λ21(Aα(G)).

If the equality holds, then λ2(Aα(G)) = · · · = λn−1(Aα(G)) = 0. Let D be the diameter of G. By

Lemma 2.7, we have D ≤ 2. In the case when D = 2, let u, v ∈ V (G) such that uv /∈ E(G), and A′2 be the

principal submatrix of Aα(G) corresponding to vertices u and v. Namely,

A′2 =

(
αd(u) 0

0 αd(v)

)
.

Without loss of generality, we may assume that d(u) ≥ d(v). By Lemma 2.8, we have 0 = λ2(Aα(G)) ≥ αd(v)

for α > 0, a contradiction. Hence, D = 1, that is, G = Kn. From Proposition 36 in [25], we have

λi(Kn) = αn − 1 for i = 2, . . . , n. Since λi(A1/n(Kn)) = 0 for i = 2, . . . , n − 1, it follows that α = 1
n .

Conversely, it is easy to verify that the equality holds when G = Kn and α = 1
n . The proof is completed.

Theorem 3.8. Let G be a graph with n vertices. If (1− α)(χ− 1) = 1, then

Sα(G) ≤ α(∆− δ)− (2− α)λn(A(G)).

Proof. In this proof, we use Lemma 2.3 with r = χ, N = αD(G) and M = A(G). Since (1−α)(χ−1) = 1,

it follows that

λ1(Aα(G)) = λ1(αD(G) + (1− α)A(G)) ≤ λ1(αD(G)−A(G)).

By Lemma 2.2, we have
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λ1(Aα(G)) ≤ α∆− λn(A(G)) and λn(Aα(G)) ≥ αδ + (1− α)λn(A(G)).

Thus, Sα(G) ≤ α(∆− δ)− (2− α)λn(A(G)). The proof is completed.

For a graph G, Hong and Shu [13] showed that λn(A(G)) ≥ −
√

2(n− χ) for n ≥ 3. By Theorem 3.8,

we have

Corollary 3.9. Let G be a graph with n ≥ 3 vertices. If (1− α)(χ− 1) = 1, then

Sα(G) ≤ α(∆− δ) + (2− α)
√

2(n− χ).

4. Lower bounds for Aα-spread.

Theorem 4.1. Let G be a graph with n vertices. If 0 ≤ α ≤ 1/2, then

Sα(G) ≥ α(∆− δ) + α.

If 1/2 ≤ α < 1, then

Sα(G) ≥ α(∆− δ) +
(1− α)2

α
.

Proof. By Lemmas 2.4 and 2.5, we have the proof.

Theorem 4.2. Let 1/2 ≤ α ≤ 1, and G be a graph with n vertices and m edges. If G has no isolated

vertices, then

Sα(G) ≥ (1− α)

(
2m

n
+ 1

)
with equality if and only if G ∼= tKq with α < 1, where n = qt, t ≥ 1 and q > 1, or G is a regular graph with

α = 1.

Proof. From [6] and [25], we have λ1(Aα(G)) ≥ λ1(A(G)) ≥ 2m
n with equality if and only if G is a

regular graph. By Lemma 2.6, we have

Sα(G) = λ1(Aα(G))− λn(Aα(G)) ≥ 2m

n
−
(

2m

n
+ 1

)
α+ 1 = (1− α)

(
2m

n
+ 1

)
with equality if and only if G ∼= tKq with α < 1, where n = qt, t ≥ 1 and q > 1, or G is a regular graph with

α = 1. The proof is completed.

Theorem 4.3. Let G be a graph with n vertices. If 0 ≤ α ≤ 1, then

Sα(G) ≥ 2

n

√
nM1 − 4m2.

Proof. Let X = 1√
n

(1, . . . , 1)T . Then

XTA2
α(G)X = XT (αD(G) + (1− α)A(G))2X

= α2XTD2(G)X + (1− α)2XTA2(G)X

+α(1− α)XTD(G)A(G)X + α(1− α)XTA(G)D(G)X

=
M1

n

and

XTAα(G)X = XT (αD(G) + (1− α)A(G))X = αXTD(G)X + (1− α)XTA(G)X =
2m

n
.
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By Lemma 2.9, we have

Sα(G) ≥ 2 max
X∈Bn

√
XTA2

α(G)X − (XTAα(G)X)2 =
2

n

√
nM1 − 4m2.

This completes the proof.

Theorem 4.4. Let G be a connected graph with n vertices. If 1/2 < α ≤ 1, then

Sα(G) ≥ 2

n

√
2(1− α)2mn+ α2nM1 − 4α2m2.

Proof. In this proof, we use Lemma 2.12 with ai = λi(Aα(G)) and bi = 1 for 1 ≤ i ≤ n. Since

0 < λn(Aα(G)) ≤ ai ≤ λ1(Aα(G)), and bi = 1, 1 ≤ i ≤ n. Thus, AB = λ1(Aα(G)) and ab = λn(Aα(G)).

By Lemma 2.12, we have

n∑
i=1

λ2i (Aα(G))

n∑
i=1

12 −

(
n∑
i=1

λi(Aα(G))

)2

≤ n2

4
(λ1(Aα(G))− λn(Aα(G)))2.

Then

n(2(1− α)2m+ α2M1)− 4α2m2 ≤ n2

4
S2
α(G),

that is,

Sα(G) ≥ 2

n

√
2(1− α)2mn+ α2nM1 − 4α2m2.

Thus, the result follows.

By Lemma 2.11, Theorems 4.3 and 4.4, we get the following corollaries, respectively.

Corollary 4.5. Let G be a graph with n vertices. If 0 ≤ α ≤ 1, then

Sα(G) ≥ (∆− δ)
√

2

n
.

Corollary 4.6. Let G be a connected graph with n vertices and m edges. If 1/2 < α ≤ 1, then

Sα(G) ≥ 1

n

√
8(1− α)2mn+ 2α2n(∆− δ)2.

Theorem 4.7. Let G be a connected graph. If 0 ≤ α ≤ 1 and ∆− δ ≥ (1− 1
α )2, then

Sα(G) ≥
√
α2(∆− δ)2 + 2(1− α)2(∆ + δ) +

4(1− α)4

α2
.

If 0 ≤ α ≤ 1 and ∆− δ < (1− 1
α )2, then

Sα(G) ≥
√

2(1− α)2(5∆− 3δ)− 3α2(∆− δ)2.

Proof. Let V (∆) = {v ∈ V (G) : d(v) = ∆} and V (δ) = {v ∈ V (G) : d(v) = δ}. By Lemma 2.13, we

have

Sα(G) = S(Aα(G)) ≥ Υ,
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where

Υ = max
i6=j

(aii − ajj)2 + 2
∑
k 6=i

|aik|2 + 2
∑
k 6=j

|ajk|2 + 4eij

 1
2

and eij and fij are given in Lemma 2.13.

Let vi0 ∈ V (∆) and vj0 ∈ V (δ). If aj0j0 = ai0i0 , then ei0j0 = 2fi0j0 ; otherwise

ei0j0 = min

{
(ai0i0 − aj0j0)2 + 2|(ai0i0 − aj0j0)2 − fi0j0 |,

f2i0j0
(ai0i0 − aj0j0)2

}

with

fi0j0 =

∣∣∣∣∣∣
∑
k 6=i0

|ai0k|2 −
∑
k 6=j0

|aj0k|2
∣∣∣∣∣∣ =

∣∣(1− α)2(d(vi0)− d(vj0))
∣∣ = (1− α)2(∆− δ).

Therefore,

ei0j0 = min

{
α2(∆− δ)2 + 2

∣∣α2(∆− δ)2 − (1− α)2(∆− δ)
∣∣ , (1− α)4

α2

}
=

{
(1−α)4
α2 , if ∆− δ ≥

(
1− 1

α

)2
;

2(1− α)2(∆− δ)− α2(∆− δ)2, if ∆− δ <
(
1− 1

α

)2
.

Thus,

Υ ≥


√
α2(∆− δ)2 + 2(1− α)2(∆ + δ) + 4(1−α)4

α2 , if ∆− δ ≥
(
1− 1

α

)2
;√

2(1− α)2(5∆− 3δ)− 3α2(∆− δ)2, if ∆− δ <
(
1− 1

α

)2
.

The proof is completed.

Let V (G) = V1 ∪ V2 be a partition of G. Then e(V1, V2) stands for the number of edges joining vertices

of V1 to vertices of V2.

Theorem 4.8. Let G be a connected graph with n vertices, and let V (G) = V1 ∪ V2 be a partition of G

with ni := |Vi| for i = 1, 2. If 0 ≤ α ≤ 1, then

Sα(G) ≥

√
(d1 − d2)2 − 2t(1− α)(d1 − d2)

(
1

n1
− 1

n2

)
+ t2(1− α)2

(
1

n1
+

1

n2

)2

,

where t = e(V1, V2), d1 =
∑
v∈V1

d(v)/n1 and d2 =
∑
v∈V2

d(v)/n2.

Proof. Let B(G) be the quotient matrix of Aα(G) corresponding to the partition V (G) = V1 ∪ V2 of G.

Then

(4.1) B(G) =

 d1 − t(1−α)
n1

t(1−α)
n1

t(1−α)
n2

d2 − t(1−α)
n2

 .

By direct computing, we know the characteristic polynomial of (4.1) is as follows:

det(xIn − B(G)) = x2 −
(
d1 + d2 −

t(1− α)

n1
− t(1− α)

n2

)
x+ d1d2 −

t(1− α)d2
n1

− t(1− α)d1
n2

.
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By Lemma 2.14, we have

Sα(G) ≥ η1(B)− η2(B)

=
√

(η1(B) + η2(B))2 − 4η1(B)η2(B)

=

√
(d1 − d2)2 − 2t(1− α)(d1 − d2)

(
1

n1
− 1

n2

)
+ t2(1− α)2

(
1

n1
+

1

n2

)2

.

The proof is completed.

Corollary 4.9. Let G be a connected k-regular graph with n vertices, and let V (G) = V1 ∪ V2 be a

partition of G with ni := |Vi| for i = 1, 2. Then

Sα(G) ≥ t(1− α)

(
1

n1
+

1

n2

)
,

where t = e(V1, V2).

Further, let V1 in Corollary 4.9 be the largest independent set and the largest clique, respectively. Then

the following corollaries are obtained.

Corollary 4.10. Let G be a connected k-regular graph with n vertices and independence number a.

Then

Sα(G) ≥ kn(1− α)

n− a
.

Corollary 4.11. Let G be a connected k-regular graph with n vertices and clique number ω. Then

Sα(G) ≥ n(1− α)(k − ω + 1)

n− ω
.

Theorem 4.12. If 0 ≤ α ≤ 1 and G is a graph with n vertices, then

Sα(G) + Sα(G) ≥ (1− α)n.

Proof. From Proposition 36 in [25], we have λ1(Aα(Kn)) = n − 1 and λn(Aα(Kn)) = αn − 1. Noting

that Aα(G) +Aα(G) = Aα(Kn), by Lemma 2.2, we have

λ1(Aα(Kn)) ≤ λ1(Aα(G)) + λ1(Aα(G))

and

λn(Aα(Kn)) ≥ λn(Aα(G)) + λn(Aα(G)).

These imply that Sα(G) + Sα(G) ≥ (1− α)n. The proof is completed.

The Cartesian product of G1 and G2 is the graph G1�G2, whose vertex set is V = V1 × V2 and where

two vertices (ui, vs) and (uj , vt) are adjacent if and only if either ui = uj and vsvt ∈ E(G2) or vs = vt and

uiuj ∈ E(G1).

Lemma 4.13. ([19]) Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Then the Aα-

eigenvalues of G1�G2 are all possible sums λi(Aα(G1)) + λj(Aα(G2)), 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

Theorem 4.14. If 0 ≤ α ≤ 1 and G = G1�G2, then

Sα(G) = Sα(G1) + Sα(G2).
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Proof. As a consequence of Lemma 4.13, we have

λ1(Aα(G)) = λ1(Aα(G1)) + λ1(Aα(G2)), λn(Aα(G)) = λn(Aα(G1)) + λn(Aα(G2)).

Thus, Sα(G) = Sα(G1) + Sα(G2) follows.

5. The Aα-spread of trees. For all connected graphs with n vertices, Gregory et al. [10] showed that

S0(G) ≥ S0(Pn) with equality if and only if G = Pn, and Fan and Fallat [7] proved that S1/2(G) ≥ 1+cos
(
π
n

)
with equality if and only if G = Pn or G = Cn in case of odd n. The union of two graphs G1 and G2 is

the graph G1 ∪ G2 with vertex set V1(G) ∪ V2(G) and edge set E(G1) ∪ E(G2). For two vertex disjoint

graphs G1 and G2, the join G1 ∨ G2 is obtained from G1 ∪ G2 by adding to it all edges between vertices

from V (G1) and V (G2). Gregory et al. [10] conjectured the maximum spread S0(G) of the graphs of order

n is attained only by Kb2n/3c ∨ Kn−b2n/3c. For all connected graphs with n vertices, Oliveira et al. [31]

conjectured S1/2(G) ≤ S1/2(K1 ∪K1, n−2) with equality if and only if G = K1 ∪K1, n−2. For Aα-spread, an

interesting question naturally arises:

Problem 5.1. Which graphs minimize (or maximize) the Aα-spread among all graphs with n vertices?

Based on our numerical calculation, we find that even for all connected graphs with five vertices the

problem of finding graphs which minimize or maximum Aα-spread is difficult, even though it may be in

sight. Let Tn be the set of trees with n vertices.

Theorem 5.2. If 5+
√
5

10 ≤ α ≤ 1 and T ∈ Tn, then Sα(Pn) ≤ Sα(T ), and the equality holds if and only

if T = Pn.

Proof. For T ∈ Tn with ∆(T ) ≥ 3, by Theorem 4.1 and Corollary 3.6, we have

Sα(T ) ≥ 2α+
(1− α)2

α
≥ 3− 2α > 1 + 2(1− α)cos

(π
n

)
≥ Sα(Pn).

Therefore, Sα(T ) ≥ Sα(Pn) for T ∈ Tn. Clearly, the equality holds if and only if T = Pn. This completes

the proof.

Let N(v) = {w ∈ V (G) : vw ∈ E(G)}, and let R(p, q) be the graph obtained from K2 by attaching p

pendant edges to a vertex and q pendant edges to the other.

Lemma 5.3. Let T ∈ Tn \ {K1, n−1, R(1, n− 3)}. Then λ1(Aα(T )) < λ1(Aα(R(1, n− 3))).

Proof. Let T ∈ Tn \{K1, n−1, R(1, n−3)} with the largest Aα-spectral radius, and X = {x1, x2, . . . , xn}
be a unit eigenvector of Aα(T ) corresponding to λ1(Aα(T )).

We first show that T has only one non-pendant edge. Otherwise, suppose that T has more than one

non-pendant edges, and let uv be a non-pendant edge of T . Without lose the generality, we may assume

xu ≥ xv. Let

T1 = T −
∑

w∈N(v)

vw +
∑

w∈N(v)

uw.

Clearly, T1 ∈ Tn\{K1, n−1, R(1, n−3)}. By Lemma 2.15, we have λ1(Aα(T )) < λ1(Aα(T1)), a contradiction.

Hence, T has only one non-pendant edge, denoted by uv. Namely, T = R(s, t) with s+t = n−2, d(u) = s+1

and d(v) = t+ 1.

Without loss of the generality, we may assume s ≤ t. Since T 6= R(1, n − 3), it follows that s ≥ 2. By

the similar reason as the above, we can prove that λ1(Aα(T )) < λ1(Aα(R(1, n − 3))). This completes the

proof.
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Theorem 5.4. If n ≥ 4, 1
2 ≤ α ≤

8
15 and T ∈ Tn, then

Sα(T ) ≤
√
α2n2 + 4(n− 1)(1− 2α),

and the equality holds if and only if T = K1, n−1.

Proof. Let φα(G, x) be the characteristic polynomial of Aα(G). By direct computation, we have

φα(R(1, n− 3), x) = (x− α)n−4f(x),

where

f(x) = x4 − α(n+ 2)x3 + ((3α2 + 2α− 1)n− 2α2 − 2α+ 1)x2

− ((α3 + 8α2 − 4α)n− 16α2 + 8α)x+ (2α3 + 3α2 − 4α+ 1)n

− 2α3 − 11α2 + 12α− 3.

Noting that n ≥ 4 and 1
2 ≤ α <

8
15 , by derivative, we know that f ′(x) > 0 for x ∈ [αn− 1,+∞). Therefore,

f(x) is strictly increasing on x ∈ [αn− 1,+∞). Since

f(αn− 1) = α2(α2 + α− 1)n3 − (3α4 + 10α3 − 4α2 − 2α)n2

+ (23α3 + 4α2 − 11α)n− 2α3 − 29α2 + 20α− 1

< 0

and

f(αn− 1

4
) = α2

(
α2 +

7

4
α− 1

)
n3 −

(
3α4 + 10α3 − 67

16
α2 − 1

2
α

)
n2

+

(
77

4
α3 − 35

16
α2 − 347

64
α+

15

16

)
n− 2α3 − 121

8
α2 +

445

32
α− 751

256

> 0,

it follows that λ1(Aα(R(1, n− 3))) < αn− 1
4 . For T ∈ Tn \ {K1, n−1, R(1, n− 3)}, By Lemma 5.3 we have

λ1(Aα(T )) < λ1(Aα(R(1, n−3))). From Proposition 7 in [25], we know that Aα(G) is a positive semi-definite

matrix for 1/2 ≤ α ≤ 1. This means that Sα(T ) < αn − 1
4 for T ∈ Tn \ {K1, n−1}. From Proposition 39 in

[25], we have

Sα(K1, n−1) =
√
α2n2 + 4(n− 1)(1− 2α) > αn− 1

4

for 1
2 ≤ α ≤ 8

15 . Therefore, Sα(T ) ≤
√
α2n2 + 4(n− 1)(1− 2α) for 1

2 ≤ α ≤ 8
15 , and the equality holds if

and only if T = K1, n−1. This completes the proof.

In the case when α = 0, it is well known that S0(T ) = SA(T ) ≤ SA(K1, n−1) with equality if and only if

T = K1, n−1. Combining Theorems 5.2 and 5.4, we have the following conjecture.

Conjecture 5.5. If 0 ≤ α ≤ 1 and T ∈ Tn, then

Sα(Pn) ≤ Sα(T ) ≤ Sα(K1, n−1),

where the left (right) equality holds if and only if T = Pn (T = K1, n−1).
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[4] B. Borovićanin, K.Ch. Das, B. Furtula, and I. Gutman. Bounds for Zagreb indices. MATCH Commun. Math. Comput.

Chem., 78:17–100, 2017.

[5] Y. Chen, D. Li, and J. Meng. On the second largest Aα-eigenvalues of graphs. Linear Algebra Appl., 580:343–358, 2019.

[6] L. Collatz and U. Sinogowitz. Spectren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg, 21:63–77, 1957.

[7] Y. Fan and S. Fallat. Edge bipartiteness and signless Laplacian spread of graphs. Appl. Anal. Discrete Math., 6:31–45,

2012.

[8] G.H. Fath-Tabar. Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem., 65:79–84, 2011.

[9] C.D. Godsil and G. Royle. Algebraic Graph Theory. Spring-Verlag, Berlin, 2001.

[10] D.A. Gregory, D. Hershkowitz, and S.J. Kirkland. The spread of the spectrum of a graph. Linear Algebra Appl., 332-

334:23–35, 2001.

[11] W.H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra Appl., 226-228:593–616, 1995.

[12] X. Huang, H. Lin, and J. Xue. The Nordhaus-Gaddum type inequalities of Aα-matrix. Appl. Math. Comput., 365:124716,

2020.

[13] Y. Hong and J. Shu. Sharp lower bounds of the least eigenvalue of planar graphs. Linear Algebra Appl., 296:227–232,

1999.

[14] C.R. Johnson, R. Kumar, and H. Wolkowicz. Lower bounds for the spread of a matrix. Linear Algebra Appl., 71:161–173,

1985.

[15] E. Jiang and X. Zhan. Lower bounds for the spread of a Hermitian matrix. Linear Algebra Appl., 256:153–163, 1997.

[16] S. Liu, K.Ch. Das, S. Sun, and J. Shu. On the least eigenvalue of Aα-matrix of graphs. Linear Algebra Appl., 586:347–376,

2020.

[17] M. Liu and B. Liu. The signless Laplacian spread. Linear Algebra Appl., 432:505–514, 2010.

[18] H. Lin, X. Liu, and J. Xue. Graphs determined by their Aα-spectra. Discrete Math., 342:441–450, 2019.

[19] S. Li and S. Wang. The Aα-spectrum of graph product. Electron. J. Linear Algebra, 35:473–481, 2019.

[20] J. Liu, X. Wu, J. Chen, and B. Liu. The Aα spectral radius characterization of some digraphs. Linear Algebra Appl.,

563:63–74, 2019.

[21] H. Lin, J. Xue, and J. Shu. On the Aα-spectra of graphs. Linear Algebra Appl., 556:210–219, 2018.

[22] L. Mirsky. The spread of a matrix. Mathematika, 3:127–130, 1956.
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