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UPPER BOUNDS ON THE ALGEBRAIC CONNECTIVITY OF GRAPHS∗

ZHEN LIN† AND LIANYING MIAO‡

Abstract. The algebraic connectivity of a connected graph G is the second smallest eigenvalue of the Laplacian matrix

of G. In this paper, some new upper bounds on algebraic connectivity are obtained by applying generalized interlacing to an

appropriate quotient matrix.

Key words. Algebraic connectivity, Quotient matrix, Upper bound.

AMS subject classifications. 05C50, 05C82.

1. Introduction. Let G be a simple undirected graph with vertex set V (G) and edge set E(G). For

v ∈ V (G), dG(v) denotes the degree of vertex v in G. Let m(v) =
∑

uv∈E(G) dG(u)/dG(v) be the average

of the degrees of the vertices adjacent to v. Let Pn and Cn denote the path and the cycle with n vertices,

respectively. The Laplacian matrix of G, denoted by L(G), is given by L(G) = D(G) − A(G), where A(G)

and D(G) are the adjacency matrix and the degree diagonal matrix of G, respectively. As usual, we shall

index the eigenvalues of L(G) in nonincreasing order, and denote them as:

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0,

where µn−1(G) is called algebraic connectivity by Fiedler [5], denoted by a(G). It is well known that a graph

is connected if and only if its algebraic connectivity is nonzero.

The algebraic connectivity of graphs is an important topic in graph theory [1, 2, 11]. In addition, the

algebraic connectivity plays an important role on, among others, synchronization of coupled oscillators,

network robustness, consensus problems, belief propagation, graph partitioning, and distributed filtering in

sensor networks [6, 8, 10, 14, 15]. In particular, it is of considerable interest in finding the upper bound

of the algebraic connectivity in the above research areas. The following classical results are obtained in a

connected graph G.

In 1973, Fiedler [5] showed that

a(G) ≤ κ(G) ≤ κ′(G) ≤ δ(G), (1.1)

and

a(G) ≤ n− α(G), (1.2)

where κ(G), κ′(G), δ(G), and α(G) are the vertex connectivity, the edge connectivity, the minimal degree,

and the independence number, respectively.
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In 2003, Fallat et al. [7] presented an upper bound in terms of edge density, that is,

a(G) ≤ |V ||EX |
|X||Xc|

, (1.3)

where X is a nonempty subset of V , Xc = V −X and EX is the set of all edges with one end in X and the

other end in Xc.

In 2005, Belhaiza et al. [3] gave an upper bound, that is,

a(G) ≤ b−1 +
√

1 + 2mc, (1.4)

where m is the number of edges in G.

In 2005, Lu et al. [12] obtained an upper bound in terms of domination number γ, that is,

a(G) ≤ n− γ +
n− γ2

n− γ
. (1.5)

In 2007, Nikiforov [13] presented an upper bound in terms of domination number γ, that is,

a(G) ≤ n− γ. (1.6)

Let V (G) = V1∪V2 be a partition of G. Then e(V1, V2) stands for the number of edges joining vertices of

V1 to vertices of V2. In this paper, a new upper bound on the algebraic connectivity is obtained by applying

generalized interlacing inequalities to an appropriate quotient matrix as follows:

Theorem 1.1. Let G be a connected graph with n vertices, and let V (G) = V1 ∪ V2 ∪ V3 be a partition

of G with ni = |Vi| ≤ n− 2 for i = 1, 2, 3. Then

a(G) ≤ min

{
B −

√
B2 − 4AC

2A

}
, (1.7)

where A = n1n2n3, B = (t1 + t2)n2n3 + (t2 + t3)n1n2 + (t1 + t3)n1n3, C = n(t1t2 + t2t3 + t1t3), and

t1 = e(V1, V2), t2 = e(V1, V3) and t3 = e(V2, V3).

Remark 1.2. Let G be the following graph in Fig. 1. Let V (G) = V1 ∪ V2 ∪ V3 be a partition of G with

V1 = {v1}, V2 = {v2, v3} and V3 = {v4, v5, v6}. Applying (1.7), we have a(G) ≤ 8
3 ≈ 2.66667. However,

applying (1.1)-(1.6), we get a(G) ≤ 3, a(G) ≤ 4, a(G) ≤ 3, a(G) ≤ 3, a(G) ≤ 6, and a(G) ≤ 5, respectively.

In fact, a(G) ≈ 2.38196. This example shows that our result is better than known results.

Figure 1. The graph G.
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2. The proof of Theorem 1.1. Let M be a real symmetric partitioned matrix of order n described

in the following block form: M11 · · · M1t

...
. . .

...

Mt1 · · · Mtt

 ,

where the diagonal blocks Mii are ni × ni matrices for any i ∈ {1, 2, . . . , t} and n = n1 + · · ·+ nt. For any

i, j ∈ {1, 2, . . . , t}, bij is the average row sum of Mij , that is, bij is the sum of all entries in Mij divided by

the number of rows. Then B(M) = (bij) is called the quotient matrix of M .

Lemma 2.1 ([9]). Let M be a symmetric partitioned matrix of order n with eigenvalues ξ1 ≥ ξ2 ≥
· · · ≥ ξn, and let B(M) be its quotient matrix with eigenvalues η1 ≥ η2 ≥ · · · ≥ ηm and n > m. Then

ξi ≥ ηi ≥ ξn−m+i for i = 1, 2, . . . ,m.

The proof of Theorem 1.1. Let B(G) be the quotient matrix of L(G) corresponding to the partition

V (G) = V1 ∪ V2 ∪ V3 of G. Then,

B(G) =


t1+t2
n1

− t1
n1

− t2
n1

− t1
n2

t1+t3
n2

− t3
n2

− t2
n3

− t3
n3

t2+t3
n3

 . (2.1)

By direct computation, the characteristic polynomial of (2.1) is

det(xIn − B(G)) =
x

A
(Ax2 −Bx+ C),

where A = n1n2n3, B = (t1 + t2)n2n3 + (t2 + t3)n1n2 + (t1 + t3)n1n3, C = n(t1t2 + t2t3 + t1t3), and

t1 = e(V1, V2), t2 = e(V1, V3), t3 = e(V2, V3), and n1 + n2 + n3 = n. Thus,

η1(G) =
B +

√
B2 − 4AC

2A
,

and

η2(G) =
B −

√
B2 − 4AC

2A
.

As V1, V2, and V3 are arbitrary, we may take

η2 = min

{
B −

√
B2 − 4AC

2A

}
.

By Lemma 2.1, we have

a(G) ≤ min

{
B −

√
B2 − 4AC

2A

}
.

By reasoning similar to that in the proof of Theorem 1.1, we can obtain a lower bound on the largest

Laplacian eigenvalue of G as follows:

Theorem 2.2. Let G be a connected graph with n vertices, and let V (G) = V1 ∪ V2 ∪ V3 be a partition

of G with ni = |Vi| ≤ n− 2 for i = 1, 2, 3. Then

µ1(G) ≥ max

{
B +

√
B2 − 4AC

2A

}
,
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where A = n1n2n3, B = (t1 + t2)n2n3 + (t2 + t3)n1n2 + (t1 + t3)n1n3, C = n(t1t2 + t2t3 + t1t3), and

t1 = e(V1, V2), t2 = e(V1, V3), and t3 = e(V2, V3).

The Laplacian spectral ratio of a connected graph G, denoted by rL(G), is defined as the quotient

between the largest and second smallest Laplacian eigenvalues of G. Barahona et al. [4] showed that a graph

G exhibits better synchronizability if the ratio rL(G) is as small as possible. By Theorems 1.1 and 2.2, we

have

Theorem 2.3. Let G be a connected graph with n vertices, and let V (G) = V1 ∪ V2 ∪ V3 be a partition

of G with ni = |Vi| ≤ n− 2 for i = 1, 2, 3. Then

rL(G) ≥ max

{
B +

√
B2 − 4AC

B −
√
B2 − 4AC

}
,

where A = n1n2n3, B = (t1 + t2)n2n3 + (t2 + t3)n1n2 + (t1 + t3)n1n3, C = n(t1t2 + t2t3 + t1t3), and

t1 = e(V1, V2), t2 = e(V1, V3), and t3 = e(V2, V3).

3. Corollaries. In this section, we obtain some corollaries by selecting different V1, V2, and V3 in

Theorem 1.1. Similarly, there are also corresponding results on the lower bounds of the largest Laplacian

eigenvalue and the Laplacian spectral ratio. In order to avoid redundancy, we omit here.

Corollary 3.1. Let G be a connected graph with n vertices. If G contains a complete bipartite induced

subgraph Ks, t with bipartition V (Ks, t) = X ∪ Y , |X| = s, |Y | = t and s+ t ≤ n− 1, then

a(G) ≤ min

{
B −

√
B2 − 4AC

2A

}
,

where A = st(n− s− t), B = (d1t+ d2s)n− d1t2 − d2s2 − 2s2t2, C = (d1d2 − s2t2)n, d1 =
∑

v∈X dG(v) and

d2 =
∑

v∈Y dG(v).

Proof. Let V1 = X and V2 = Y . Then, |V1| = s, |V2| = t and |V3| = n − s − t. Further, we have

e(V1, V2) = st, e(V1, V3) = d1 − st and e(V2, V3) = d2 − st, where d1 =
∑

v∈X dG(v) and d2 =
∑

v∈Y dG(v).

Thus, A = st(n− s− t), B = (d1t+ d2s)n− d1t2 − d2s2 − 2s2t2 and C = (d1d2 − s2t2)n. By Theorem 1.1,

we have the proof.

Remark 3.2. If G is a connected graph with n vertices, we take K1, 1 = uv, then

a(G) ≤ min

{
(n− 1)A1 − 2−

√
((n− 1)A1 − 2)2 − 4n(n− 2)(B1 − 1)

2(n− 2)
: uv ∈ E(G)

}
, (3.1)

where A1 = dG(u) + dG(v), B1 = dG(u)dG(v). It is clearly that the equality holds in (3.1) if G is a

star K1, n−1 or a complete graph Kn. Let G be the following graph in Fig. 2. Applying (3.1), we have

a(G) ≤ 5−
√
10

3 ≈ 0.6126. However, applying (1.1)-(1.6), we get a(G) ≤ 1, a(G) ≤ 2, a(G) ≤ 5
6 ≈ 0.8333,

a(G) ≤ 2, a(G) ≤ 10
3 and a(G) ≤ 3, respectively. In fact, a(G) ≈ 0.5188. This example shows that our result

is better than known results.

Remark 3.3. If G is a connected k-regular graph with n vertices, by inequality (3.1), then

a(G) ≤ n(k − 1)

n− 2
. (3.2)

It is easy to see that if k < n
2 , then (3.2) is better than (1.1) for a(G) ≤ δ(G).
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Figure 2. The graph G.

Remark 3.4. Let G be a connected k-regular graph with n vertices. If G contains a complete bipartite

induced subgraph Ks, t and s+ t ≤ n− 1, then

a(G) ≤
2kn− ks− kt− 2st−

√
(2kn− ks− kt− 2st)2 − 4(n− s− t)(k2 − st)n

2(n− s− t)
.

Remark 3.5. If G is a connected triangle-free graph with n vertices, then no two neighbors of a vertex

v can be adjacent. Thus, there is an induced K1, dG(v) in G. By Corollary 3.1, we have

a(G) ≤ min

{
B2 −

√
B2

2 − 4A2C2

2A2

}
,

where A2 = n− dG(v)− 1, B2 = ndG(v) + nm(v)− d2G(v)− 2dG(v)−m(v), and C2 = ndG(v)(m(v)− 1). In

particular, if G is a connected k-regular triangle-free graph with n vertices, then

a(G) ≤
k(2n− k − 3)−

√
k(k3 + 6k2 + 9k + 4n2 − 4n− 12kn)

2(n− k − 1)
, (3.3)

and the equality holds if G is a Petersen graph or a complete bipartite graph Kn
2 , n

2
. Moreover, for a cycle

C9, the upper bound in (3.3) is better than that of (1.1)-(1.6), respectively.

A subset S of V (G) is an independent set of G if no two vertices in S are adjacent in G. A clique of G is

a subset of vertices such that it induces a complete subgraph of G. Given a graph G, define α(G) and ω(G)

(α and ω for short), the independence number and the clique number of G to be the numbers of vertices of

the largest independent set and the largest clique in G, respectively. A complete split graph Sr, ω is a graph

obtained from an independent set on r vertices and a clique on ω vertices by adding all edges between them.

Corollary 3.6. Let G be a connected graph with n vertices. If G contains a complete split induced

subgraph Sr, ω with bipartition V (Sr, ω) = R ∪W , |R| = r, |W | = ω and r + ω ≤ n− 1, then

a(G) ≤ B −
√
B2 − 4AC

2A
,

where A = rω(n− r−ω), B = ωd1n−ω2d1− r2ω2 + rnd2− rnω2 + rnω− r2d2− r2ω, C = (−r2ω2 + d1d2−
ω2d1 + wd1)n, d1 =

∑
v∈R dG(v), and d2 =

∑
v∈W dG(v).

Proof. Let V1 = R and V2 = W . Then, |V1| = r, |V2| = ω and |V3| = n − r − ω. Further, we have

e(V1, V2) = rω, e(V1, V3) = d1 − rω, and e(V2, V3) = d2 − ω(r + ω − 1), where d1 =
∑

v∈R dG(v) and

d2 =
∑

v∈W dG(v). Thus, A = rω(n− r − ω), B = ωd1n− ω2d1 − r2ω2 + rnd2 − rnω2 + rnω − r2d2 − r2ω,

and C = (−r2ω2 + d1d2 − ω2d1 + wd1)n. By Theorem 1.1, we have the proof.
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Remark 3.7. Let G be a connected k-regular graph with n vertices. If G contains a complete split

induced subgraph Sr, ω and r + ω ≤ n− 1, then

a(G) ≤ B1 −
√
B2

1 − 4A1C1

2A1
,

where A1 = n− r−ω, B1 = 2kn− kr− kω− rω−nω+n− r, and C1 = (k2− kω− rω+ k)n. In particular,

if ω = 2, then the graph Sr, 2 is called book graph, that is, the graph Sr, 2 consists of r triangles sharing an

edge. Let G be a connected k-regular graph with n vertices. If G contains a book induced subgraph Sr, 2

and r ≤ n− 3, then

a(G) ≤ B2 −
√
B2

2 − 4A2C2

2A2
,

where A2 = n − r − 2, B2 = 2kn − kr − 2k − n − 3r, and C2 = (k2 − k − 2r)n. In particular, if G is a

connected k-regular graph with n vertices and at least one triangle, then

a(G) ≤ (k − 2)n

n− 3
,

and the equality holds if G is a triangular prism or a complete graph Kn.

Corollary 3.8. Let G be a connected graph with n vertices and independence number α = |S| ≥ 2, and

let V (G) = V1 ∪ V2 ∪ V3 be a partition of G. If V1 ∪ V2 = V (S) and ni = |Vi| ≤ n− 2 for i = 1, 2, then

a(G) ≤
b−

√
b2 − 4n(n− α)c

2(n− α)
,

where b = (d∗1 − d∗2)n1 + (d∗1 + d∗2)n− d∗1α, c = d∗1d
∗
2, d

∗
1 =

∑
v∈V1

dG(v)/n1, and d
∗
2 =

∑
v∈V2

dG(v)/n2.

Proof. By hypothesis, we have V3 = V (G)− V1 − V2 and |V3| = n− α. Further, we have e(V1, V2) = 0,

e(V1, V3) =
∑

v∈V1
dG(v), and e(V2, V3) =

∑
v∈V2

dG(v). Thus, A = n1n2(n − α), B = n1n2[(d∗1 − d∗2)n1 +

(d∗1 + d∗2)n− d∗1α], and C = nn1n2d
∗
1d
∗
2. By Theorem 1.1, we have the proof.

Corollary 3.9. Let G be a connected graph with n vertices and clique number ω, and let V (G) =

V1 ∪ V2 ∪ V3 be a partition of G. If V1 ∪ V2 = V (Kω) and ni = |Vi| ≤ n− 2 for i = 1, 2, then

a(G) ≤
b−

√
b2 − 4n(n− ω)c

2(n− ω)
,

where b = (d∗1 − d∗2)n1 + (d∗1 + d∗2 + 2)n− (n+ d∗1 + 1)ω, c = (d∗1 − d∗2)n1 − (d∗1 + 1)ω + d∗1d
∗
2 + d∗1 + d∗2 + 1,

d∗1 =
∑

v∈V1
dG(v)/n1, and d

∗
2 =

∑
v∈V2

dG(v)/n2.

Proof. By hypothesis, we have V3 = V (G)−V1−V2 and |V3| = n−ω. Further, we have e(V1, V2) = n1n2,

e(V1, V3) =
∑

v∈V1
dG(v) − r(ω − 1), and e(V2, V3) =

∑
v∈V2

dG(v) − s(ω − 1). Thus, A = n1n2(n − ω),

B = n1n2[(d∗1−d∗2)n1+(d∗1+d∗2+2)n−(n+d∗1+1)ω], and C = nn1n2[(d∗1−d∗2)n1−(d∗1+1)ω+d∗1d
∗
2+d∗1+d∗2+1].

By Theorem 1.1, we have the proof.

Recall that the diameter of a connected graph G is the maximum distance between any two vertices of

G, denoted by d(G) (d for short). The girth of G, denoted by g(G) (g for short), is the length of a shortest

cycle in G, with the girth of an acyclic graph being infinite.

Corollary 3.10. Let G be a connected graph with n vertices and diameter d, and let V (G) = V1 ∪V2 ∪
V3 = {v1, v2, . . . , vn} be a partition of G and V1 ∪ V2 = V (Pd+1) = {v1, v2, . . . , vd+1}, then
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(i) If d is an odd integer and V1 = {v1, v3, . . . , vd}, then

a(G) ≤
bo −

√
b2o − 16nco

2(d+ 1)(n− d− 1)
,

where bo = (2n − d − 1)(d1 + d2) − 2d2 − 2d, co = (n − d − 1)(d1d2 − d2), d1 =
∑

v∈V1
dG(v), and

d2 =
∑

v∈V2
dG(v).

(ii) If d is an even integer and V1 = {v1, v3, . . . , vd+1}, then

a(G) ≤
be −

√
b2e − 16nce

2d(d+ 2)(n− d− 1)
,

where be = d(2n − d)(d1 + d2) + 4(n − d − 1)d2 − 2d3 − 4d2, ce = d(d + 2)(n − d − 1)(d1d2 − d2),

d1 =
∑

v∈V1
dG(v), and d2 =

∑
v∈V2

dG(v).

Proof.

(i) If d is an odd integer and V1 = {v1, v3, . . . , vd}, then we have |V1| = |V2| = d+1
2 . Thus, V3 =

V (G)−V1−V2 and |V3| = n−d−1. Further, e(V1, V2) = d, e(V1, V3) =
∑

v∈V1
dG(v)−d, e(V2, V3) =∑

v∈V2
dG(v)−d. Therefore, we have A = (n−d−1)(d+1)2

4 , B = 1
4 (d+1)[(2n−d−1)(d1+d2)−2d2−2d]

and C = n(d1d2 − d2). By Theorem 1.1, we have the proof.

(ii) If d is an even integer and V1 = {v1, v3, . . . , vd+1}, then we have |V1| = d+2
2 and |V2| = d

2 . Thus,

V3 = V (G) − V1 − V2 and |V3| = n − d − 1. Further, e(V1, V2) = d, e(V1, V3) =
∑

v∈V1
dG(v) − d,

e(V2, V3) =
∑

v∈V2
dG(v) − d. Therefore, we have A = d(d+2)(n−d−1)

4 , B = 1
4 [d(2n − d)(d1 + d2) +

4(n− d− 1)d2 − 2d3 − 4d2] and C = n(d1d2 − d2). By Theorem 1.1, we have the proof.

Corollary 3.11. Let G be a connected graph with n vertices and girth g, and let V (G) = V1∪V2∪V3 =

{v1, v2, . . . , vn} be a partition of G and V1 ∪ V2 = V (Cg) = {v1, v2, . . . , vg}.

(i) If g is an even integer and V1 = {v1, v3, . . . , vg−1}, then

a(G) ≤
be −

√
b2e − 16nce

2g(n− g)
,

where be = (2n−g)(d1+d2)−2g2, ce = (n−g)(d1d2−g2), d1 =
∑

v∈V1
dG(v) and d2 =

∑
v∈V2

dG(v).

(ii) If g is an odd integer and V1 = {v1, v3, . . . , vg}, then

a(G) ≤
bo −

√
b2o − 16nco

2(g2 − 1)(n− g)
,

where bo = (2gn − g2 − 1)(d1 + d2 − 2) − 2(n − g)(d1 − d2) − 2(g − 1)(g2 + 1) + 4(n − 1), co =

(g2 − 1)(n− g)[d1d2 − 2d2 − (g − 1)2], d1 =
∑

v∈V1
dG(v), and d2 =

∑
v∈V2

dG(v).

Proof.

(i) If g is an even integer and V1 = {v1, v3, . . . , vg−1}, then we have |V1| = |V2| = g
2 . Thus, V3 =

V (G)− V1 − V2 and |V3| = n− g. Further, e(V1, V2) = g, e(V1, V3) =
∑

v∈V1
dG(v)− g, e(V2, V3) =∑

v∈V2
dG(v) − g. Therefore, we have A = (n−g)g2

4 , B = g
4 [(2n − g)(d1 + d2) − 2g2] and C =

n(d1d2 − g2). By Theorem 1.1, we have the proof.
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(ii) If g is an odd integer and V1 = {v1, v3, . . . , vg}, then we have |V1| = g+1
2 and |V2| = g−1

2 . Thus,

V3 = V (G)− V1 − V2 and |V3| = n− g. Further, e(V1, V2) = g− 1, e(V1, V3) =
∑

v∈V1
dG(v)− g− 1,

e(V2, V3) =
∑

v∈V2
dG(v) − g + 1. Therefore, we have A = (g2−1)(n−g)

4 , B = 1
4 [(2gn − g2 − 1)(d1 +

d2 − 2) − 2(n − g)(d1 − d2) − 2(g − 1)(g2 + 1) + 4(n − 1)], and C = n[d1d2 − 2d2 − (g − 1)2]. By

Theorem 1.1, we have the proof.
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