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Abstract. The spectrum of a Johnson graph is known to be given by the Eberlein polynomial.

In this paper, a straightforward representation-theoretic derivation of this fact is presented. Also

discussed are some consequences of this formula, such as the fact that infinitely many of them are

Ramanujan.
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1. Introduction. Johnson graphs are heavily studied objects. The spectrum
of any graph—that is, the multiset of eigenvalues of its adjacency matrix—is an
important invariant from which much information about the graph can be ascertained.
It is known that the spectrum of a Johnson graph is given by the Eberlein polynomial.
This has been derived in the context of association schemes [1, 4, 9], q-analogs [6, 8],
and wreath products [7]. See also [5, 18, 19, 11, 15, 16]. While some of the above
papers prove this result in a representation theoretic way, in this paper, we present
an alternate proof, one which combines combinatorial and representation-theoretic
techniques.

Given a group G and a subgroup K, we say that the pair (G,K) is “double-
coset-inversion-stable” (DCIS), if KzK = Kz−1K for all z in G. This condition
allows us to form the Cayley graph Cay(G,KzK) of G generated by KzK. One
can then define the quotient graph Cay(G,KzK)/K of Cay(G,KzK) as follows: the
vertices of Cay(G,KzK)/K are the elements of G/K, and two vertices xK and yK

are connected by an edge if and only if x−1y ∈ KzK. (One may interpret the set
{KzK} of double cosets as a set of distances—i.e., x−1y ∈ KzK means that xK

has distance KzK from yK.) We remark that any DCIS pair (G,K) is necessarily
a Gelfand pair or “finite symmetric space,” meaning that the set L2 (K\G/K) of
K-bi-invariant complex-valued functions on G is commutative under convolution, or
equivalently that the Hecke algebra H(K,G) is commutative [13, 20].
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In this paper, we consider the case where S� is the symmetric group on 
 letters,
and Yλ = Sλ1×. . .×Sλk

is a Young subgroup of S� for some partition λ1+. . .+λk = 
.
We shall restrict our attention to the case k = 2, as the pair (S�, Yλ) is DCIS if and
only if k ≤ 2. Therefore fix m ≤ n, and let Y = Sm × Sn. A system of double coset
representatives for Y in Sm+n is given by τi for i = 0, . . . ,m, where τi is the product
of the i disjoint transpositions (1,m + 1), . . . , (i,m + i). It is easily verified that the
graphs Cay(Sm+n, Y τiY )/Y are precisely the Johnson graphs (see Remark 3.4).

Define c(i,m′, n′) =
(
m′
i

)(
n′
i

)
if 0 ≤ i ≤ m′ and c(i,m′, n′) = 0 otherwise. Define

E(i, j,m′, n′) recursively by E(i, j,m′, n′) = c(i,m′, n′) if j = m′ and E(i, j,m′, n′) =
E(i, j,m′ − 1, n′ − 1) − E(i − 1, j,m′ − 1, n′ − 1) if j < m′. (So E is the Eberlein
polynomial.)

The main fact about the spectra of Johnson graphs is that every eigenvalue of
the adjacency matrix of the graph Cay(Sm+n, Y τiY )/Y equals E(i, j,m, n) for some
j ∈ {0, 1, . . . ,m}. The theory of Gelfand pairs provides a means of computing these
eigenvalues in terms of representations of the symmetric group; this is the approach
we shall take.

We then discuss some consequences of our knowledge of the spectra. In particular,
we note the well-known facts that these graphs are (in most cases) connected and
nonbipartite. Moreover, we find as an immediate corollary that for all n, the graph
Cay(S2+n, Y τ2Y )/Y is Ramanujan (see Definition 5.7 for a definition of Ramanujan
graphs).

This construction does not yield as many Ramanujan graphs as might be desired.
If m = 1, then the graphs Cay(Sm+n, Y τ1Y )/Y are complete; only finitely many of
these graphs, other than Cay(S1+n, Y τ1Y )/Y and Cay(S2+n, Y τ2Y )/Y , seem to be
Ramanujan. Moreover, as n → ∞, the degree of Cay(S2+n, Y τ2Y )/Y also goes to
infinity. (This is similar to the case of the finite upper half plane graphs [20].) One
might prefer to construct a family of Ramanujan graphs with fixed degree.

2. Adjacency operators of DCIS pairs. In this section, we define the Cayley
graph quotient Cay(G,KaK)/K of a DCIS pair (G,K), and we show that
Cay(G,KaK)/K is a highly regular graph.

Definition 2.1. Let G be a finite group, and let K be a subgroup of G. Then
(G,K) is double-coset-inversion-stable (DCIS) if a−1 ∈ KaK for all a ∈ G.

Definition 2.2. Let (G,K) be a DCIS pair, and let a ∈ G. Let Cay(G,KaK)/K
be the graph whose vertex set is the set G/K of left cosets of K in G, where two
vertices xK and yK are connected by an edge if and only if x−1y ∈ KaK.

Given a DCIS pair (G,K), let ÃKaK denote the adjacency operator of
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Cay(G,KaK)/K. Given a function

f ∈ L2 (G/K) = {f : G → C | f(gk) = f(g), ∀g ∈ G, k ∈ K},

we have that

(ÃKaKf)(x) =
∑

y:G/K

y−1x∈KaK

f(y),

(The notation y : G/K indicates that y runs through a set of representatives for
the left cosets of K in G.) Note that if x1K = x2K and f ∈ L2 (G/K), then
(ÃKaKf)(x1) = (ÃKaKf)(x2). Therefore, ÃKaKf ∈ L2 (G/K).

Note that y−1x ∈ KaK if and only if x = ys for some s ∈ KaK. Therefore, if
f ∈ L2 (G/K), then

(ÃKaKf)(x) =
∑

s:KaK/K

f(xs).

One can re-phrase the above equation using a “distance” function for the graph
Cay(G,KaK)/K. Define a distance function d : G/K × G/K → S, where S is the
set of K-double cosets in G, as follows: if xK, yK ∈ G/K, let d(xK, yK) = Ky−1xK.
It is easy to see that d(gzK, gwK) = d(zK,wK) for all g ∈ G and zK,wK ∈ G/K.
Also, d(zK,wK) = d(wK, zK) since (G,K) is a DCIS pair. We have that

(ÃKaKf)(z) =
∑

w:G/K
d(zK,wK)=KaK

f(w).

Consider the subspace

L2 (K\G/K) = {f : G → C | f(k1gk2) = f(g), ∀g ∈ G, k1, k2 ∈ K}

of L2 (G/K). If f ∈ L2 (K\G/K), k ∈ K, and z ∈ G, then

(ÃKaKf)(kz) =
∑

w:G/K
d(kzK,wK)=KaK

f(w) =
∑

w:G/K

d(zK,k−1wK)=KaK

f(w) =
∑

kw:G/K
d(zK,wK)=KaK

f(kw) =
∑

w:G/K
d(zK,wK)=KaK

f(w).

Therefore, ÃKaK : L2 (K\G/K) → L2 (K\G/K).
Let AKaK = ÃKaK |L2(K\G/K). We call AKaK the collapsed adjacency operator.

Remark 2.3. There is a connection between the collapsed adjacency operator
and the Hecke algebra H(K,G), given as follows. For any f1, f2 ∈ L2 (K\G/K),
define their convolution f1 ∗ f2 ∈ L2 (K\G/K) by (f1 ∗ f2)(g) =

∑
ab=g f1(a)f2(b).
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For any S ⊂ G, define δS : G → C by δS(g) = 1 if g ∈ S and δS(g) = 0 if g /∈ S.
There is an isomorphism from H(K,G) to L2 (K\G/K) that maps the double coset
KaK to 1

#(K)δKaK [13, p. 26]. If f ∈ L2 (K\G/K), then

(δKaK ∗ f)(g) = (f ∗ δKaK)(g) =
∑
h∈G

f(h)δKaK(h−1g) =
∑
h∈G

h−1g∈KaK

f(h)

=
∑
h∈G

g−1h∈KaK

f(h) = #(K)
∑

h:G/K

g−1h∈KaK

f(h) = #(K)
∑

s∈KaK/K

f(gs) = #(K)(ÃKaKf)(g).

Therefore, the operator AKaK can be thought of as the K-double coset KaK

acting on H(K,G) by left multiplication.

Definition 2.4 ([2]). A graph with vertex set V is called highly regular with
collapsed adjacency matrix C = (cij) if for every vertex x ∈ V there is a partition of
V into non-empty sets V1 = {x}, V2, . . . , Vp such that each vertex y ∈ Vi is adjacent
to exactly cij vertices in Vj .

Note that our definition of the collapsed adjacency matrix is the transpose of that
in [2], and that we do not require the graph to be connected.

Lemma 2.5. If (G,K) is a DCIS pair, then Cay(G,KaK)/K is highly regular.
Moreover, ÃKaK and AKaK have the same minimal polynomial (and in particular,
the same eigenvalues).

Proof. Let x = gK. Let a1, . . . , ap be a set of representatives for the double
cosets of K in G, with a1 = e. For 1 ≤ j ≤ p, let Vj = {ghK |h ∈ KajK}. Then the
Vj ’s partition the vertex set G/K of Cay(G,KaK)/K. Let B = (bij) be the matrix
for AKaK with respect to the standard basis {δKa1K , . . . , δKanK} of L2 (K\G/K).
It follows from the definitions that Cay(G,KaK)/K is highly regular with collapsed
adjacency matrix B. It is shown in [2, pp. 272–273] that the adjacency matrix of
any highly regular graph has the same minimal polynomial as its collapsed adjacency
matrix.

3. The graphs Cay(Sm+n, Y τkY )/Y . Let S� denote the symmetric group on 


letters. Let Ym,n = Sm × Sn. (We may sometimes write Y instead of Ym,n.)

Lemma 3.1. Suppose 1 ≤ m ≤ n, and let τk = (1,m+1) . . . (k,m+k) for 0 ≤ k ≤
m. (τ0 is the identity element.) Then a complete set of double-coset representatives
for Y in Sm+n is given by τ0, . . . , τm. Moreover, (Sm+n, Y ) is a DCIS pair.

Proof. Krieg [13, p. 58] shows that there are exactly m + 1 double cosets Y aY
for a in Sm+n, namely Y τ0Y, . . . , Y τmY . This shows that (Sm+n, Y ) is DCIS.
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Remark 3.2. If (G,K) is any DCIS pair, then Cay(G,KaK)/K has [G : K]
vertices and degree ind(KaK), where ind(KaK) = #(KaK)

#K .

Remark 3.3. If (G,K) is any DCIS pair, then Cay(G,KeK)/K consists of
nothing but loops at each vertex.

Remark 3.4. Let J(a, b, c) be the Johnson graph where the vertices are the
subsets of {1, 2, . . . , a} of size b, and where the subsets X and Y are adjacent if and
only if #(X∩Y ) = c. We now show that Cay(Sm+n, Y τkY )/Y and J(m+n,m,m−k)
are isomorphic as graphs. In this paper, we multiply as follows: if σ, τ ∈ Sm+n, then
στ = τ ◦ σ. Krieg [13, p. 60] shows that the sets of the form:

RT = {π ∈ Sm+n | π−1{1, . . . ,m} = T },

where T ⊆ {1, . . . ,m + n} give the set of left cosets for Sm+n/Y . Krieg describes
these as right cosets, but we multiply in the opposite order as Krieg, so they are left
cosets. This gives a correspondence between the vertices of Cay(Sm+n, Y τkY )/Y and
J(m+n,m,m−k). It is easy to see that xY is adjacent to yY in Cay(Sm+n, Y τkY )/Y
if and only if #((y−1x)({1, . . . ,m}) ∩ {m + 1, . . . ,m + n}) = k. Therefore, xY is
adjacent to yY if and only if #(T1 ∩ T2) = m − k where T1 = y−1({1, . . . ,m}) and
T2 = x−1({1, . . . ,m}).

Lemma 3.5.

1. Cay(Sn+m, Y τkY )/Y has degree
(
m
k

)(
n
k

)
.

2. If n = m, then Cay(Sn+m, Y τmY )/Y has (2m)!
2(m!)2 components, each of which

consists of two vertices and an edge.

Proof. Krieg [13, p. 60] shows that
(
m
k

)(
n
k

)
equals ind(Y τkY ), which, by Remark

3.2, is the degree of Cay(Sn+m, Y τkY )/Y .

If n = k (which is only possible if n = m), then Y τkY is the set of all permutations
ζ ∈ Sm+n such that ζ(M) = N and ζ(N) = M . It follows that a vertex xK in
Cay(Sm+n, Y τkY )/Y is connected to τkxK and to no other vertex. Hence the number
of components in this graph is 1

2 · |Sm+n|
|Y | = (2m)!

2(m!)2 .

Remark 3.6. Remark 3.3 and Lemma 3.5(b) show that Cay(Sn+m, Y τ0Y )/Y
and Cay(S2m, Y τmY )/Y are both disconnected, and that the latter is bipartite. In
the sequel, we will see that these are exceptional cases. The case m = n = k is
reminiscent of the case a = 4δ in the finite upper half plane graphs.

The next lemma gives us a recursive formula which completely determines all
eigenvalues and all eigenfunctions of the collapsed adjacency operator for
Cay(Sm+n, Y τ1Y )/Y . We shall see in the sequel that this will enable us to determine
the spectrum of Cay(Sm+n, Y τiY )/Y for all i.
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Lemma 3.7. Let Y1 = Sm × Sn and Y2 = Sm+1 × Sn+1. Consider the basis
β1 = {δY1τ0Y1 , . . . , δY1τmY1} for L2 (Y1\Sm+n/Y1), and the basis
β2 = {δY2τ0Y2 , . . . , δY2τm+1Y2} for L2

(
Y2\S(m+1)+(n+1)/Y2

)
.

Let Am,n be the collapsed adjacency operator for Cay(Sm+n, Y1τ1Y1)/Y1, and let
Am+1,n+1 be the collapsed adjacency operator for Cay(S(m+1)+(n+1), Y2τ1Y2)/Y2. If

[fj,m,n]β1 =
(

1, a1

(m
1 )(n

1)
, . . . , am

(m
m)(n

m)
)T

is an eigenfunction of Am,n with eigenvalue a1, then

[fj,m+1,n+1]β2 =
(

1, a1−1

(m+1
1 )(n+1

1 ) , . . . ,
am−am−1

(m+1
m )(n+1

m ) ,
−am

(m+1
m+1)(n+1

m+1)
)T

is an eigenfunction of Am+1,n+1 with eigenvalue a1 − 1.

Proof. a0 = 1. From [13, p. 60] we have that Am,nδY1τ0Y1 = δY1τ1Y1 ,

Am,nδY1τkY1 = (m+1−k)(n+1−k)δY1τk−1Y1 +k(m+n−2k)δY1τkY1 +(k+1)2δY1τk+1Y1

for 0 < k < m, and Am,nδY1τmY1 = (n + m − 1)δY1τm−1Y1 + m(n −m)δY1τmY1 . The
result then follows from induction.

4. Gelfand Pairs and Spherical Functions.

Definition 4.1. If G is a finite group and K is a subgroup of G, then we say that
(G,K) is a Gelfand pair if L2 (K\G/K) is a commutative algebra under convolution.

We now briefly note some of the main facts about Gelfand pairs; more information
can be found in [20, Ch. 19]. Given a Gelfand pair (G,K), let Ĝ be the set of
all irreducible representations of G, modulo equivalence. Let IndGK(1) denote the
representation on G induced by the trivial representation on K. Define ĜK = {π ∈
Ĝ | π occurs in IndGK(1)}. Given π ∈ ĜK , let χπ is the character associated with π,
and define the spherical function hπ ∈ L2 (K\G/K) by hπ(x) = 1

#(K)

∑
k∈K χπ(kx).

The set {hπ | π ∈ ĜK} is an orthogonal basis for L2 (K\G/K).

Lemma 4.2. If (G,K) is a Gelfand pair, then IndGK(1) is multiplicity free; that is,
no representation occurs more than once in the decomposition IndGK(1) = π1⊕. . .⊕πr.

Proof. See [20, pg. 344].

Remark 4.3. Every DCIS pair is a Gelfand pair.

Remark 4.4. Suppose that hπ is a spherical function for a DCIS pair (G,K).
Then by [20, p. 343] we have 1

#(K)

∑
k∈K hπ(xky) = hπ(x)hπ(y), ∀x, y ∈ G. Suppose

that x ∈ G and KyK equals the disjoint union y1K
∐
. . .

∐
ynK. Let ki ∈ K such
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that yiK = kiyK. Let ind(KyK) = n = #(KyK)
|K| . Then

(δKyK ∗ hπ)(x) =
∑
ab=x

δKyK(a)hπ(b) =
∑

a∈KyK

hπ(a−1x) =
∑

a∈KyK

hπ(ax)

=
n∑
i=1

∑
a∈yiK

hπ(ax) =
n∑
i=1

∑
k∈K

hπ(kiykx) = ind(KyK)
∑
k∈K

hπ(ykx)

= ind(KyK)#(K)hπ(y)hπ(x).

By Remark 2.3, (AKyKhπ)(x) = (ind(KyK)hπ(y)) hπ(x). Hence every eigenvalue of
ÃKyK is of the form ind(KyK)hπ(y) for some π ∈ ĜK .

We now apply these general facts about Gelfand pairs to the specific case of
(Sm,n, Y ). The representation theory of the symmetric group is classical. (We take
[10, §4] and [12] as general references for it.) We shall make use of the correspondence
between Young diagrams and irreducible representations of the symmetric group, as
in [10, §4]. Let G = Sm+n, and let K = Y = Sm × Sn.

Lemma 4.5. For any partition λ = (λ1, . . . , λr) of m + n, let πλ be the rep-
resentation of G whose associated Young diagram corresponds to λ. Then ĜK =
{π(m+n)} ∪ {π(n+j,m−j) | 0 ≤ j < m}.

Proof. This follows from Young’s Rule [10, p. 57], [12, p. 51].

In other words, Lemma 4.5 says that ĜK equals the set of all representations
whose Young diagram has either one or two rows, where in the latter case the second
row has no more than m boxes. This gives us a one-to-one correspondence between
spherical functions of the Gelfand pair (G,K) and partitions (n + j) + (m − j) for
0 ≤ j ≤ m. Let sj,m,n be the spherical function corresponding to the partition
(n + j) + (m− j).

Lemma 4.6. For all y1, y2 ∈ Y , we have sj,m,n(y1τ1y2) = (m−k)(n−k)−k
mn , where

k = m− j.

Proof. Let χ(m+n−k,k) be the character of the representation associated to the
Young diagram with two rows, m + n − k boxes in the top row and k boxes in the
bottom row. To save space, we will sometimes denote χ(m+n−k,k) by χ. For any set
T , let ST be the group of all permutations of T . Define

HM
i = S{1} × S{2} × . . .× S{i} × S{i+1,...,m}

HN
t = S{m+1} × S{m+2} × . . . S{m+t} × S{m+t+1,...,m+n}
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where we let HM
m = HM

m−1 and HN
n = HN

n−1. Since Sm equals the disjoint union
HM

1 ∪HM
1 (1, 2) ∪ . . . ∪HM

1 (1,m), we have that

#(Y )sj,m,n(τ1) =
∑

σ∈Y τ1
χ(m+n−j,j)(σ)

=
∑

σ∈(HM
1 ×Sn)τ1

χ(σ) +
∑

σ∈(HM
1 ×Sn)(1,2)τ1

χ(σ) + . . . +
∑

σ∈(HM
1 ×Sn)(1,m)τ1

χ(σ)

=
∑

σ∈(HM
1 ×Sn)τ1

χ(σ) + (m− 1)
∑

σ∈(HM
1 ×Sn)(1,2)τ1

χ(σ).

Continuing in this fashion, first by using HM
1 = HM

2 ∪HM
2 (2, 3)∪ . . .∪HM

2 (2,m) and
so on, we find that #(Y )sj,m,n(τ1) equals

∑
σ∈(HM

1 ×Sn)τ1

χ(σ) + (m− 1)
∑

σ∈(HM
2 ×Sn)(1,2)τ1

χ(σ) +

(m− 1)(m− 2)
∑

σ∈(HM
3 ×Sn)(2,3)(1,2)τ1

χ(σ) + . . . +

(m− 1)(m− 2) · · · (2)
∑

σ∈(HM
m−1×Sn)(m−2,m−1)···(1,2)τ1

χ(σ) +

(m− 1)!
∑

σ∈(HM
m ×Sn)(m−1,m)(m−2,m−1)···(1,2)τ1

χ(σ).

Let Hi,t = HM
i ×HN

t ,

σi,t =




τ1, i = t = 1
(i− 1, i) · · · (1, 2)τ1, t = 1, i > 1

(m + t− 1,m+ t) · · · (m + 1,m + 2)τ1, t > 1, i = 1
(m + t− 1,m + t) · · · (m + 1,m + 2)(i− 1, i) · · · (1, 2)τ1, t, i > 1

ci,t =




1, i = t = 1
(m− 1)(m− 2) · · · (m− i + 1), t = 1, i > 1
(n− 1)(n− 2) · · · (n− t + 1), t > 1, i = 1

(m− 1)(m− 2) · · · (m− i + 1)(n− 1)(n− 2) · · · (n− t + 1), t, i > 1

and

Si,t = ci,t
∑

σ∈Hi,tσi,t

χ(σ).

If now we expand sj,m,n in terms of Sn then we find that #(Y )sj,m,n(τ1) equals the
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following sum:

S1,1 + S2,1 + S3,1 + . . . Sm−1,1 + Sm,1 +
S1,2 + S2,2 + S3,2 + . . . Sm−1,2 + Sm,2 +

...
...

...
...

...
...

. . .
...

...
...

...
S1,n−1 + S2,n−1 + S3,n−1 + . . . Sm−1,n−1 + Sm,n−1 +
S1,n + S2,n + S3,n + . . . Sm−1,n + Sm,n

(4.1)

Let 〈·, ·〉 denote the standard inner product for group characters. We now evaluate∑
i,t Si,t. By the Murnaghan-Nakayama Rule and Frobenius Reciprocity, we have that

Si,t = (n− 1)!(m− 1)! [OH(i, t) − TR(i, t) + BR(i, t) ]

where

OH(i, t) =

{ 〈
χ(n+m−k−(i+t),k), 1

S(m−i)+(n−t)
Sm−i×Sn−t

〉
, i + t ≤ n + m− 2k

0 , otherwise

TR(i, t) =

{ �
χ(k−1,k−(i+t−(n+m−2k+1))) ,1

S(m−i)+(n−t)
Sm−i×Sn−t

�
, n+m−2k+1<i+t≤n+m−(k−1)

0 , otherwise

and

BR(i, t) =

{ 〈
χ(n+m−k,k−(i+t)), 1

S(m−i)+(n−t)

Sm−i×Sn−t

〉
, i + t ≤ k

0 , otherwise
.

By Lemma 4.2 and Lemma 4.5 we have that

OH(i, t) =
{

1 , i + t ≤ n + m− 2k, i ≤ m− k, t ≤ n− k

0 , otherwise

TR(i, t) =
{

1 , n+m−2k+1<i+t≤n+m−(k−1), i≥m−k+1, t≥n−k+1

0 , otherwise

and

BR(i, t) =
{

1 , i + t ≤ k

0 , otherwise
.

By arranging the terms in a grid, as in equation (4.1), one can see that

m∑
i=1

n∑
t=1

OH(i, t) =
(
n + m− 2k

2

)
−

(
n− k

2

)
−

(
m− k

2

)
,
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m∑
i=1

n∑
t=1

TR(i, t) =
(

2k
2

)
− 3

(
k

2

)
,

and
m∑
i=1

n∑
t=1

BR(i, t) =
(
k

2

)
.

Therefore,

m∑
i=1

n∑
t=1

Si,t = (m− 1)!(n− 1)!
[(

n+m−2k
2

) − (
n−k

2

) − (
m−k

2

) − (
2k
2

)
+ 4

(
k
2

)]
= (m− 1)!(n− 1)! ((m− k)(n− k) − k) .

To illustrate the proof of Lemma 4.6, we consider the case n = 8, m = 5, and
j = 2. Then nm · s2,5,8(τ1) equals the sum in the table below, obtained by filling in
equation (4.1):

t\i 1 2 3 4 5
1 2 + 2 + 0 + 0 + 0 +
2 2 + 1 + 0 + 0 + 0 +
3 1 + 1 + 0 + 0 + 0 +
4 1 + 1 + 0 + 0 + 0 +
5 1 + 1 + 0 + 0 + 0 +
6 0 + 0 + −1 + −1 + −1 +
7 0 + 0 + −1 + −1 + 0 +
8 0 + 0 + −1 + 0 + 0

Add the “triangle of 2’s” to the “triangle of −1’s.” One is then left with an
(m− k) × (n− k) rectangle of 1’s plus a diagonal of length k, consisting of −1’s.

One might attempt to evaluate sj,m,n(τi) for all i by using a technique similar to
that in the proof of Lemma 4.6. However, the sum analogous to (4.1) becomes rather
complicated. In the next section, we will instead use an indirect method to evaluate
sj,m,n(τi) for all i.

5. Spectra of Johnson graphs, and some consequences. In this section,
we conclude our proof of the fact that the spectra of the Johnson graphs are given by
the Eberlein polynomial. Our first result provides a recursive formula for the spherical
functions sj,m,n of the Gelfand pair (Sm+n, Y ) and thereby determines the spectra
of the Johnson graphs Cay(Sm+n, Y τiY )/Y . We then discuss some consequences;
for example, we conclude that, modulo a few exceptional cases, these graphs are
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connected and nonbipartite. Moreover, we find that the graphs Cay(S2+n, Y τ2Y )/Y
are Ramanujan for all n.

Theorem 5.1. Define the following functions fj,m,n : Sm+n → C recursively on
m. For m = 1, define

f0,1,n(g) =
{

1 , g ∈ Y1,nτ0Y1,n
−1
n , g ∈ Y1,nτ1Y1,n

and f1,1,n(g) ≡ 1

For m > 1, define

fj,m+1,n+1(g) =




1, g∈Ym+1,n+1 τ0 Ym+1,n+1

(m
i )(n

i)fj,m,n(τi)−( m
i−1)( n

i−1)fj,m,n(τi−1)

(m+1
i )(n+1

i ) , g∈Ym+1,n+1τiYm+1,n+1,
1≤i≤m

−(m
m)(n

m)fj,m,n(τm)

(m+1
m+1)(n+1

m+1)
, g∈Ym+1,n+1 τm+1 Ym+1,n+1

for 0 ≤ j ≤ m, and define fm+1,m+1,n+1(g) ≡ 1. Let

E(i, j,m, n) =
min{m−j,i}∑
k=max{0,i−j}

(−1)k
(
m− j

k

)(
j

i− k

)(
n− (m− j)

i− k

)

=
(
m

i

)(
n

i

)
fj,m,n(τi).

Then:

(a) For all j,m, n, we have sj,m,n = fj,m,n.

(b) Every eigenvalue of the adjacency operator ÃYm,nτiYm,n of
Cay(Sm+n, Y τiY )/Y equals E(i, j,m, n) for some j ∈ {0, 1, . . . ,m}.

Proof. By Remark 4.4 and Lemma 4.6, the eigenvalues of AYm,nτ1Ym,n are all
distinct. Hence every eigenspace of AYm,nτ1Ym,n is one-dimensional. By Lemma 3.1,
L2 (Y \Sm+n/Y ) has dimension m+ 1. By Remark 4.4, Lemma 4.5, and Lemma 4.6,
{sj,m,n | 0 ≤ j ≤ m} is a set of m + 1 eigenfunctions of AYm,nτ1Ym,n with distinct
eigenvalues. Therefore, up to a constant, every eigenfunction of AYm,nτ1Ym,n equals
sj,m,n for some j. Lemma 3.7 shows that for 0 ≤ j ≤ m, we have that fj,m,n is an
eigenfunction of AYm,nτ1Ym,n . Frobenius Reciprocity implies that sj,m,n(τ0) = 1 =
fj,m,n(τ0) for all j,m, n. By Lemma 4.6, we have that fj,m,n(τ1) = sj,m,n(τ1) for all
j,m, n. This proves (a). To prove (b), use Lemma 2.5, Remark 4.4, and part (a).

Remark 5.2. We claim that E(i, 0,m, n) = (−1)i
(
m
i

)
, and we quickly sketch a

proof of this fact. In [20], Terras shows that s0,m,n(g) = 〈π(m,n)(g) · v, v〉, where V

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 17, pp. 154-167, March 2008



ELA

On The Spectra of Johnson Graphs 165

is a complex vector space on which π(m,n) acts unitarily, v ∈ V is a vector of norm
1 fixed by the action of π(m,n)(y) for all y ∈ Y , and 〈·, ·〉 is an inner product on V

with respect to which π(m,n) acts unitarily. Consider the Young diagram with two
rows, n boxes in the top row and m in the bottom. Let an,m and cn,m be as in [10,
p. 46]. Let V = cn,mCSn+m. Then V has a natural inner product with respect to
which π(m,n) acts unitarily. Let v = an,m

||an,m|| ; then v is a Y -fixed vector of norm 1.

Theorem 5.3. If 0 < i ≤ m and i �= n, then Cay(Sm+n, Y τiY )/Y is connected
and nonbipartite.

Proof.

We first claim that if 0 ≤ j < m, then |E(i, j,m, n)| < (
m
i

)(
n
i

)
, where E(i, j,m, n)

is as in Theorem 5.1. Note that E(i, j,m, n) = E(i, j,m− 1, n− 1) − E(i− 1, j,m−
1, n− 1). Since by Lemma 3.5 the graphs Cay(Sm+n, Y τiY )/Y have degree

(
m
i

)(
n
i

)
,

we see that

|E(i, j,m, n)| ≤ |E(i, j,m− 1, n− 1)| + |E(i− 1, j,m− 1, n− 1)|
≤

(
m− 1
i

)(
n− 1
i

)
+

(
m− 1
i− 1

)(
n− 1
i− 1

)
.

We need to show that(
m− 1
i

)(
n− 1
i

)
+

(
m− 1
i− 1

)(
n− 1
i− 1

)
<

(
m

i

)(
n

i

)
.

This inequality reduces to 2i2 < (m + n)i, which further reduces (since i > 0) to
2i < m + n, which is true unless i = m = n. This proves our claim.

It then follows from Theorem 5.1(b) that −(
m
i

)(
n
i

)
is not an eigenvalue of

Cay(Sm+n, Y τiY )/Y . Therefore Cay(Sm+n, Y τiY )/Y is nonbipartite [2].

By Theorem 5.1, our claim also shows that if j < m, then sj,m,n(τi) �= sm,m,n(τi).

Consequently (see [20] or [3]), the multiplicity of E(i,m,m, n) =
(
m
i

)(
n
i

)
as an

eigenvalue of ÃYm,nτiYm,n equals the degree of the representation associated to sm,m,n.
But sm,m,n comes from the representation π(n+m) induced from the Young diagram
with a single row consisting of n+m boxes. As this is the trivial representation, this
multiplicity is 1. Therefore Cay(Sm+n, Y τiY )/Y is connected [2].

Remark 5.4. We saw in section 3 that the graphs Cay(Sm+n, Y τ0Y )/Y and
Cay(S2m, Y τmY )/Y are disconnected, and that the latter is bipartite.

Corollary 5.5. If 0 < i ≤ m and i �= n, then Sm+n is generated by Y τiY .

Proof. This is equivalent to connectedness of Cay(Sm+n, Y τiY )/Y .
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Remark 5.6. It is not difficult to show directly that Y τiY generates Sm+n

whenever 0 < i ≤ m and i �= n. However, we find it interesting that one can prove
this fact by estimating eigenvalues.

Definition 5.7 ([14]). A k-regular graph is Ramanujan if every eigenvalue µ of
its adjacency matrix satisfies |µ| = k or |µ| ≤ 2

√
k − 1.

An inequality of Alon-Boppana and Serre [17] shows that this bound is asymp-
totically the best possible. Ramanujan graphs are precisely those whose Ihara zeta
functions satisfy the Riemann hypothesis [20]. See, for example, [17] for a survey
paper on Ramanujan graphs.

There are two infinite families of Ramanujan graphs amongst the graphs
Cay(Sm+n, Y τiY )/Y . One is trivial: Cay(S1+n, Y τ1Y )/Y is the complete graph of
degree n on n + 1 vertices. As for the other, we have:

Theorem 5.8. For all n, the graph Cay(S2+n, Y τ2Y )/Y is Ramanujan.

Proof. ¿From Lemma 3.5, Cay(S2+n, Y τ2Y )/Y has degree
(
n
2

)
. From Theorem

5.1, its nontrivial eigenvalues are 1 and 1 − n.

(In light of Theorem 5.8, it is tempting to call the graphs Cay(S2+n, Y τ2Y )/Y
“Ramanu-Johnson graphs.”)

It is unfortunate that the degree of the graphs in Theorem 5.8 blows up as n goes
to infinity. A similar phenomenon occurs with the finite upper half plane graphs.

Other than Cay(S1+n, Y τ1Y )/Y and Cay(S2+n, Y τ2Y )/Y , the following are all
the Ramanujan graphs of the form Cay(Sm+n, Y τiY )/Y for n ≤ 17:

• If 2 ≤ n ≤ 11, then Cay(S2+n, Y τ1Y )/Y is Ramanujan.
• If 3 ≤ n ≤ 5, then Cay(S3+n, Y τ1Y )/Y is Ramanujan.
• If 3 ≤ n ≤ 11, then Cay(S3+n, Y τ2Y )/Y is Ramanujan.
• If n = 4, then Cay(S3+n, Y τ3Y )/Y is Ramanujan.
• If 4 ≤ n ≤ 6, then Cay(S4+n, Y τ2Y )/Y is Ramanujan.
• If 8 ≤ n ≤ 10, then Cay(S4+n, Y τ3Y )/Y is Ramanujan.
• If 6 ≤ n ≤ 7, then Cay(S5+n, Y τ3Y )/Y is Ramanujan.

We now give a heuristic argument for why we expect that only finitely many of
the graphs Cay(Sm+n, Y τiY )/Y will be Ramanujan when m ≥ 3. As a function of
n, the degree of this graph is a polynomial of degree m. Because of the recurrence
relation E(i, j,m, n) = E(i, j,m− 1, n− 1) − E(i− 1, j,m− 1, n− 1), the eigenvalue
E(i,m−1,m, n) will be a polynomial in n of degree m−1. For n large, this eigenvalue
will violate the Ramanujan bound unless m ≥ 2(m− 1).
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