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USING MARKOV CHAINS TO DETERMINE EXPECTED PROPAGATION TIME

FOR PROBABILISTIC ZERO FORCING∗

YU CHAN† , EMELIE CURL† , JESSE GENESON† , LESLIE HOGBEN†‡ , KEVIN LIU† , ISSAC ODEGARD† , AND

MICHAEL ROSS†

Abstract. Zero forcing is a coloring game played on a graph where each vertex is initially colored blue or white and the

goal is to color all the vertices blue by repeated use of a (deterministic) color change rule starting with as few blue vertices

as possible. Probabilistic zero forcing yields a discrete dynamical system governed by a Markov chain. Since in a connected

graph any one vertex can eventually color the entire graph blue using probabilistic zero forcing, the expected time to do this is

studied. Given a Markov transition matrix for a probabilistic zero forcing process, an exact formula is established for expected

propagation time. Markov chains are applied to determine bounds on expected propagation time for various families of graphs.
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1. Introduction. A graph, which can be used to model relationships between objects, is a pair G =

(V,E). The set E = E(G) of edges (relationships) consists of 2-element subsets of the set V = V (G) of

vertices (objects). Two vertices v, w are adjacent if {v, w} ∈ E. Suppose a graph G is colored so that every

vertex is blue or white. Vertices in the graph can change color based on the zero forcing color change rule:

If a blue vertex v is adjacent to exactly one white vertex w, then the white vertex changes to blue. In this

case, we say that v forces w and denote this by v → w. A set of vertices S is called a zero forcing set if

when the vertices in S are colored blue and those in V \ S are colored white, repeated application of the

color change rule forces all of the vertices to be blue. The zero forcing number of a graph G, denoted Z(G),

is the minimum cardinality of a zero forcing set [1]. Throughout this paper, a force performed using the zero

forcing color change rule is called a deterministic force.

Zero forcing was introduced in the study of the control of quantum systems by mathematical physicists

who called it the “graph infection number” [3, 4]. Zero forcing was also introduced independently in the

study of the minimum rank problem in combinatorial matrix theory to bound the maximum nullity [1]. Zero

forcing and its positive semidefinite variant have been used extensively in the study of the minimum rank

problem (see [11] and the references therein). Parameters derived from zero forcing have also been studied.

Examples include propagation time (e.g., [13, 16]) and throttling (e.g., [5]). Zero forcing also has connections

to graph searching [17] and power domination [2].

Two vertices are called neighbors if they are adjacent, and the set of neighbors of a vertex v in G is

denoted by N(v). The closed neighborhood of a vertex v is N [v] = N(v) ∪ {v}. A variant of zero forcing

called probabilistic zero forcing was introduced by Kang and Yi [15] and is defined as follows: In one round,

each blue vertex u attempts to force (change the color to blue) each of its white neighbors w independently
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with probability

Pr(u→ w) =
|N [u] ∩B|

deg u
,

where B denotes the set of blue vertices. Because a vertex u attempts to force each of its white neighbors

independently, this action is a binomial (or Bernoulli) experiment with probability of success given by the

previous formula. This color change rule is known as the probabilistic color change rule, and probabilistic

zero forcing refers to the process of coloring a graph blue by repeated application of the probabilistic color

change rule.

The study of probabilistic zero forcing therefore produces a discrete dynamical system that plausibly

describes many real world applications. Some of these applications include modeling the spread of a rumor

through a social network, the spread of an infectious disease in a population, or the dissemination of a

computer virus in a network. In addition, this type of zero forcing offers a new approach to coloring a graph.

It should be noted that while for traditional zero forcing, the parameter of primary interest is the minimum

number of vertices required to force the entire graph blue, in probabilistic zero forcing one blue vertex per

connected component is necessary and sufficient to eventually color an entire graph blue. Therefore, finding a

minimum probabilistic zero forcing set is not an interesting problem. However, there are parameters related

to probabilistic zero forcing that are of interest.

One such parameter is expected propagation time, which is the focus of this paper. Suppose that G is

a connected graph with the vertices in B 6= ∅ colored blue and all other vertices white. The probabilistic

propagation time of B, denoted by ptpzf (G,B), is defined as the random variable equal to the number of

the round in which the last white vertex turns blue when applying the probabilistic color change rule [12].

For a connected graph G and a set B ⊆ V (G) of vertices, the expected propagation time of B is the expected

value of the propagation time of B [12], i.e.,

ept(G,B) = E[ptpzf (G,B)].

The expected propagation time of a connected graph G is the minimum of the expected propagation time of

B over all one-vertex sets B of G [12], i.e.,

ept(G) = min{ept(G, {v}) : v ∈ V (G)}.

The use of Markov chains for probabilistic zero forcing was introduced in [15] and studied further in [12].

If M is the s× s Markov matrix where the first state is one blue vertex and the last state is all vertices blue,

then the probability that all vertices are blue after round r is the (1, s)-entry of Mr, i.e., (Mr)1s. Thus, the

probability that the propagation time is r is
(
Mr −Mr−1)

1s
, and the expected propagation time is [12]

ept(G,B) =

∞∑
r=1

r
(
Mr −Mr−1)

1s
.

In Section 2, we provide an exact method to calculate ept(G,B). We apply this result to examine

the effect of various graph operations, including showing that is possible for each of the common graph

operations vertex deletion, edge deletion, edge subdivision, and edge contraction to raise or lower the expected

propagation time. In particular, we exhibit arbitrarily large graphs, the tadpole graphs T4,m, for which adding

an edge increases the expected propagation time, thereby answering a question in [12]; for each tadpole and

tadpole with extra edge we obtain an exact formula for the expected propagation time in terms of the order.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 318-333, June 2020.

Y. Chan, E. Curl, J. Geneson, L. Hogben, K. Liu, I. Odegard, and M.S. Ross 320

This section also includes a characterization of the Markov matrices for the complete graph Kn on n vertices

and information on graphs that exhibit interesting properties of the expected propagation time, such as

n-Suns. Additional data on the expected propagation times of graphs discussed in Section 2, including all

graphs that have at most four vertices and various families of graphs, is presented in the appendices [6, 7].

In particular, the Sage code listed in [6] offers the user the ability to compute the expected propagation

time directly from the graph provided the graph is small enough that the user’s computer can complete the

computation (since the program is finding the Markov matrix, it is inefficient of computer time but efficient

of human time).

In Section 3, we prove that ept(Kn) = Θ(log log n), improving the upper bound given in [12], and

ept(Kc,n) = Θ(logn), where c ≥ 1 is a fixed integer and Km,n is a complete bipartite graph. We prove

that ept(G) = O(n) for any connected graph G on n vertices. Furthermore, we prove a Θ(log n) bound on

the expected propagation time of graphs on n vertices obtained by adding a universal vertex to a graph of

bounded degree.

We define some additional terms from graph theory and notation that we will use throughout the paper.

The order of a graph is the number of vertices. The path Pn of order n is a graph whose vertices can be

listed in the order v1, . . . , vn such that the edges of the graph are {vi, vi+1} for i = 1, . . . , n − 1. The cycle

Cn of order n is a graph whose vertices can be listed in the order v1, . . . , vn such that the edges of the graph

are {vi, vi+1} for i = 1, . . . , n − 1 and {v1, vn}. The complete graph Kn is the graph of order n with all

possible edges. The complete bipartite graph Km,n is the graph of order m+n whose vertices can be divided

into two parts u1, . . . , um and v1, . . . , vn such that the edges of the graph are {ui, vj} for 1 ≤ i ≤ m and

1 ≤ j ≤ n. As a shorthand, we denote the edge {u, v} as uv (since the graphs in the paper are not directed,

the same edge could be written as vu). If v is a vertex in G, then G− v denotes the graph obtained from G

by removing the vertex v and all edges that contain v. If B is a set of blue vertices in G and v is a white

vertex, we use B → v to denote that some vertex in B forces v.

2. Markov chains for probabilistic zero forcing. In this section, we introduce a method to compute

expected propagation time exactly from the Markov transition matrix (see Theorem 2.2). In Section 2.1, we

apply this theorem to determine the possible effects of various graph operations on expected propagation

time, answering the question of whether adding an edge can raise expected propagation time (cf. [12,

Question 2.16]). We then apply Markov chain methods to compute expected propagation time of various

families of graphs in Section 2.2.

Let G be a graph and B ⊂ V (G) be nonempty. A simple state for B is a coloring of the vertices that

can be reached by starting with exactly the vertices in B blue, and then applying the probabilistic color

change rule iteratively. We normally combine simple states that behave analogously into one state for B.

For example, in Kn starting with one blue vertex, we use n states, with state k being the condition of having

k blue vertices. In most graphs, it matters which vertices are blue, and this is reflected by distinguishing

states with the same number of blue vertices but different behavior.

An ordered state list for B, denoted by S = (S1, . . . , Ss), is an ordered list of all states for B in which

S1 is the initial state (where exactly the vertices in B are blue), Ss is the final state (where all vertices are

blue), and the states Sk, k = 2, . . . , s − 1 are in some chosen order. A graph G and an ordered state list S
determine the Markov transition matrix for the process, which is denoted by M(G,S). Reordering the states

S2, . . . , Ss−1 results in a Markov transition matrix that is obtained by a permutation similarity of M(G,S).

We use |Sk| to denote the number of blue vertices in state Sk, and say S is properly ordered if |Si| < |Sj |
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implies i < j.

Proposition 2.1. Let G be a graph and let B ⊂ V (G) be nonempty. Let S be an ordered state list for

B and let M(G,S) = [mij ]. Then spec(M(G,S)) = {mkk : k = 1, . . . , s}, every eigenvalue is a real number

in the interval [0, 1], and 1 is a simple eigenvalue of M(G,S). If S is a properly ordered state list for B,

then M(G,S) is upper triangular.

Proof. Assume first that S is properly ordered. If i 6= j and it is possible to go from Si to Sj in one

round, then |Si| < |Sj | so i < j. Thus, M(G,S) is an upper triangular matrix and the eigenvalues are the

diagonal entries. The probability mkk of remaining in state Sk is less than one for k < s, is equal to one for

k = s, and all mkk are nonnegative. Thus, one is a simple eigenvalue and is the spectral radius of M(G,S).

Note that a permutation similarity does not change the eigenvalues of M(G,S) or the (unordered)

multiset of diagonal entries (although the order of the diagonal entries may change). Thus, the statements

about the spectrum are true without the assumption that S is properly ordered.

Theorem 2.2. Suppose that G is a graph, B ⊂ V (G) is nonempty, S is an ordered state list for B with

s states, and M = M(G,S). Then

ept(G,B) = ((M − 1es
T − I)−1)1s + 1,

where 1 = [1, . . . , 1]T and es = [0, . . . , 0, 1]T .

Proof. Define M̃ = M − 1es
T . Since M1 = 1 and es

TM = es
T , M̃1 = 0 and eT

s M̃ = 0T . An

inductive argument shows that Mk = M̃k + 1es
T for k ≥ 1. Furthermore, the spectrum of M̃ is obtained

from spec(M) by replacing eigenvalue 1 with 0 (subtracting 1es
T has the effect of deflating M on eigenvalue

1, as is done in the proof of [14, Theorem 8.2.7]). Recall that ept(G,B) =
∑∞

r=1 r
(
Mr −Mr−1)

1s
[12], so

we consider
∑`

r=1 r
(
Mr −Mr−1) as `→∞.

∑̀
r=1

r(Mr −Mr−1) = M̃ + 1es
T − I +

∑̀
r=2

r
(
M̃r + 1es

T −
(
M̃r−1 + 1es

T
))

= 1es
T +

∑̀
r=1

rM̃r −
`−1∑
r=1

rM̃r −
`−1∑
r=1

M̃r − I

= 1es
T + `M̃ ` −

(
I + M̃ + · · ·+ M̃ `−1

)
= 1es

T + `M̃ ` − (M̃ − I)−1(M̃ ` − I).

Since the spectral radius is less than one, `M̃ ` → 0 and (M̃ − I)−1M̃ ` → 0 as `→∞. Thus,

lim
`→∞

∑̀
r=1

r
(
Mr −Mr−1) = (M̃ − I)−1 + 1es

T

and

ept(G,B) =
(
(M − 1es

T − I)−1
)
1s

+ 1.
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2.1. Graph operations. In this section, we present examples illustrating the possible effects of graph

operations on expected propagation time. Some examples use results from Section 2.2; that section is

independent of this one, and the use of such results in this section motivates the choice of some of the

families for which expected propagation time is determined there.

Some of the examples presented here will use the values of expected propagation time of cycles and

paths computed in [12], so we list them here: ept(Cn) = n
2 + 1

3 if n is even, ept(Cn) = n
2 + 1

2 if n is odd,

ept(Pn) = n
2 + 2

3 if n is even, and ept(Pn) = n
2 + 1

2 if n is odd.

Vertex deletion. As might be expected, deleting a vertex (and all the edges incident with it) can lower

the expected propagation time. One such example is deleting an endpoint of a path Pn with n even, because

ept(Pn−1) = n−1
2 + 1

2 = n
2 since n− 1 is odd, whereas ept(Pn) = n

2 + 2
3 . It follows from results in [12] that

deleting a vertex can raise expected propagation time substantially: The underlying idea is that a universal

vertex is a powerful tool for achieving low expected propagation time, and removing it can raise expected

propagation time. For example, the wheel on n vertices, denoted by Wn, is obtained from Cn−1 by adding

a new vertex adjacent to every vertex in Cn−1. Since Wn has a universal vertex, ept(Wn) = O(log n) [12],

whereas ept(Cn−1) is approximately n
2 .

Edge deletion. As discussed in [12], there are many graphs for which deleting an edge can raise the

expected propagation time, or equivalently, where adding an edge can lower the expected propagation time;

one such example is deleting an edge from the cycle Cn to produce the path Pn for even n ≥ 4, which raises

the expected propagation time by 1
3 . It was asked in [12] whether deleting an edge can lower the expected

propagation time. We applied Theorem 2.2 to determine the expected propagation time of all graphs of

order four; this information is available in Appendix 1 [6]. Examination of the data provides an example

where deleting an edge lowers the expected propagation time, as illustrated in Figure 2.1.

1

2

3

4

1

2

3

4

ept(K4 − e) = 2 631
1140 ≈ 2.55351 ept(C4) = 2 1

3 ≈ 2.33333

Figure 2.1. A graph for which deleting an edge lowers the expected propagation time.

This idea is generalized in Theorem 2.7, where expected propagation times are determined exactly for

of an infinite family of graphs for which deleting an edge decreases expected propagation time. The tadpole

graph T4,m is constructed from C4 with vertices p1, c2, c3, c4 labeled cyclically and Pm with vertices p1, . . . , pm
labeled in path order as T4,m = C4 ∪ Pm. Form T ′4,m by adding the edge c2c4 to T4,m. See Figure 2.2.

c3

c2

c4

p1 p5p2 p3 p4

c3

c2

c4

p1 p5p2 p3 p4

Figure 2.2. The graphs T ′4,5 and T4,5.
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Edge subdivision and contraction. If e = uv is an edge of G, the subdivision of e, denoted by Ge, is

the graph obtained from G by adding a new vertex w adjacent to u and v and deleting the edge uv. It is easy

to find examples where subdividing an edge raises the expected propagation time. For example, subdividing

an edge in a path Pn creates Pn+1, so raises the expected propagation time for odd n.

It is also possible for edge subdivision to lower expected propagation time. The double star DS(`, `′)

with `, `′ ≥ 2 is a tree of order ` + `′ + 2 that has two adjacent vertices u and u′ of degrees ` + 1 and `′ + 1,

called the centers, and every other vertex is a leaf (i.e., has degree one). The double star DS(3, 3) and its

subdivision DS(3, 3)uu′ are shown in Figure 2.3.

u u’ u u’w

Figure 2.3. The double star DS(3, 3) and the subdivision DS(3, 3)uu′ .

By constructing the Markov matrices of DS(`, `) (starting with a center and starting with a leaf) and of

DS(`, `)uu′ (starting with the new vertex w), and then applying Theorem 2.2, we see that ept(DS(3, 3)) =

4.71003 and ept(DS(3, 3)uu′) = 4.36807. For 2 ≤ ` ≤ 9, starting at a center does better for DS(`, `), but

for ` ≥ 10, starting at a leaf does better, and raising the number of leaves increases the difference between

ept(DS(`, `)) and ept(DS(`, `)uu′) – see Table 2.5 in Appendix 2 [7]. Intuitively, the increasing gap between

ept(DS(`, `)) and ept(DS(`, `)uu′) occurs because at least one set of leaves cannot start being colored until

both centers are blue. In the original graph, the expected time until both centers are blue increases with the

number of leaves, whereas in the subdivided graph starting with the new vertex w blue, the expected time

until both centers is blue is two, i.e., the time to color a path on three vertices.

If e = uv is an edge of G, the contraction of G by e, denoted by G/e, is the graph obtained from

G by identifying vertices u and v and deleting any loops or duplicate copies of an edge that arise in this

process. For e = uv and new vertex w in Ge, contracting edge uw in Ge produces G. Thus, the fact that

edge subdivision can raise or lower expected propagation time implies edge contraction can lower or raise

expected propagation time.

The examples where ept(G − v) − ept(G) ≥ 0, ept(G) − ept(Ge) ≥ 0, and ept(G/e) − ept(G) ≥ 0

suggest that these gaps grow arbitrarily large as the order of the graph increases, but this phenomenon

is not present for other cases. This raises the questions of whether there exist constant upper bounds on

ept(G)− ept(G− v), ept(G)− ept(G− e), ept(G− e)− ept(G), ept(Ge)− ept(G), and ept(G)− ept(G/e);

these are suitable subjects for future work.

2.2. Applications of Markov matrices to specific families. In this section, we determine Markov

matrices for various families of graphs and then apply Theorem 2.2 to determine expected propagation times.

The complete graph. Let Kn = (V,E) be the complete graph on n vertices. Let B be the set of

currently blue vertices and let b = |B| < n. Consequently, the number of currently white vertices is equal

to n − b. For any v ∈ B and w ∈ V \ B, Pr(v → w) = b
n−1 and Pr(v 6→ w) = 1 − b

n−1 . At each given

time step, for any given w ∈ V \ B, each v ∈ B will independently attempt to force it. If at least one

v ∈ B is successful, then w is forced. So for any w ∈ V \ B and any integer k such that 0 ≤ k ≤ n − b,
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Pr(∀v ∈ B, v 6→ w) =
(

1− b
n−1

)b
and Pr(B → w) = 1−

(
1− b

n−1

)b
. Thus, for b < n− 1,

(2.1) Pr(exactly k white vertices are forced) =

(
n− b

k

)(
1−

(
n− 1− b

n− 1

)b
)k((

n− 1− b

n− 1

)b
)n−b−k

.

For b = n − 1, the process is deterministic (note that (2.1) remains valid with 00 = 1). The next theorem

follows from the previous statements and (2.1).

Theorem 2.3. Let S = (S1, . . . , Sn) be the ordered state list where Sk is the state of having k blue

vertices in Kn. The matrix M(Kn,S) = [mij ] has

mij =


(
n−i
j−i
)(

1−
(

n−1−i
n−1

)i)j−i((
n−1−i
n−1

)i)n−j

if i ≤ min(n− 2, j),

1 if j = n and i = n− 1 or n,

0 if i > j or i = j = n− 1.

Furthermore,

spec(M(Kn,S)) =

{
0, 1,

(
n− 1− i

n− 1

)i(n−i)

: i ∈ {1, . . . , n− 2}

}
.

The complete bipartite graph. Using a similar process, we can construct a Markov matrix for the

complete bipartite graph Km,n. Partition Km,n into its partite vertex sets R and R′. We denote each state

(a, b), where a and b denote the number of blue vertices in R and R′, respectively. In this state, a blue

vertices independently attempt to force n − b ≥ 1 white vertices, each with probability b+1
n , and b blue

vertices independently attempt to force m− a ≥ 1 white vertices, each with probability a+1
m .

Proposition 2.4. Given initial state (a, b), the probability of forcing exactly k vertices in R and `

vertices in R′ is(
n− b

`

)(
1−

(
1− b + 1

n

)a)`(
1− b + 1

n

)a(n−b−`)(
m− a

k

)(
1−

(
1− a + 1

m

)b
)k (

1− a + 1

m

)b(m−a−k)

where we define 00 = 1.

For n ≥ 3, we apply the previous proposition to determine the two possible Markov matrices for the star

K1,n−1, starting at the center (the vertex of degree greater than one) or at a leaf.

Corollary 2.5. Let S = (S0, S1, . . . , Sn−1) be an ordered state list for one vertex of K1,n−1 where for

k = 1, . . . , n− 1, Sk is the state with k blue leaves and the center blue. When starting with a blue leaf, S0 is

the state with one blue leaf and the center white. When starting with the center blue, S0 is the state with no

blue leaves. The matrix M(Tn,S) = [mij ] is a n× n matrix. Index the entries by 0, . . . , n− 1 with index k

corresponding to state Sk.

When starting with a blue center, the only nonzero entries of M(K1,n−1,S) are as follows: For k =

0, . . . , n− 3 and r = 0, . . . , n− 1− k,

mk,k+r =

(
n− 1− k

r

)(
k + 1

n− 1

)r(
1− k + 1

n− 1

)n−1−k−r

,

and mn−2,n−1 = mn−1,n−1 = 1.
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When starting with a blue leaf, rows 1, . . . , n − 1 of M(K1,n−1,S) are the same as when starting with

the center, and the only nonzero entry in row 0 is m0,1 = 1.

Implementing Proposition 2.4 to construct the Markov matrix and then applying Theorem 2.2 in Sage

code for various values of m and n yielded the data in Table 2.4 in Appendix 2 [7]. Examination of that

data shows that K2,3 is an outlier in the sense that m = 2, n = 3 is the only pair of values (up to n = 10)

for which ept(Km,n) is not achieved by choosing a vertex in the larger partite set.

Question 2.6. Let Km,n have partite vertex sets R and R′ of orders m ≤ n respectively, and let u ∈ R

and v ∈ R′. Is there any other pair (m,n) 6= (2, 3) such that ept(Km,n, {u}) < ept(Km,n, {v})?

The tadpole graph and the tadpole with an extra edge. The tadpole graph T4,5 and the tadpole

with an extra edge T ′4,5 are illustrated in Figure 2.2. In the next theorem we compute the exact values of

ept(T4,m) and ept(T ′4,m) for m ≥ 5. The only other infinite families of connected graphs for which the exact

values of the expected propagation time are known are cycles and paths.

Theorem 2.7. For infinitely many positive integers n, there exist graphs on n vertices such that deleting

an edge strictly decreases the expected propagation time. For n ≥ 5, ept(T4,m) = m−1
2 + 451

216 = m−1
2 + 1353

648

and ept(T ′4,m) = m−1
2 + 1429

648 when m is odd, and ept(T4,m) = m
2 + 3331

1944 = m
2 + 9993

5832 and ept(T ′4,m) = m
2 + 10357

5832

when m is even.

Proof. Suppose that m ≥ 5. For ease of exposition, we assume that the path is horizontal and to the

right of the cycle in T4,m and T ′4,m, as in Figure 2.2. First we note that ept(T4,2, {p1, p2}) = 17
8 , while

ept(T ′4,2, {p1, p2}) = 55
24 (this can be verified by constructing Markov matrices and applying Theorem 2.2).

We define the events E0 and E1 as follows: E0 is the event that after the first force has occurred, in every

round in which a non-deterministic force is attempted there is a successful non-deterministic force. E1 is

the event that after the first force has occurred, in every round but one in which a non-deterministic force

is attempted there is a successful non-deterministic force. We break the proof into two cases depending on

the parity of m.

Suppose that m = 2k for some positive integer k: First we show that ept(T4,m, {pk}) = 4
3 + 2

3 (k − 2) +
1
3 (k− 1) + 17

8 = k + 43
24 = k + 10449

5832 and ept(T ′4,m, {pk}) = 4
3 + 2

3 (k− 2) + 1
3 (k− 1) + 55

24 = k + 47
24 = k + 11421

5832 .

In each case the stated value is the expected time for the vertices to the left of pk to turn blue, consisting of

the expected time for the first force, the time after that to deterministically force p1, and ept(T4,2, {p1, p2})
(respectively, ept(T ′4,2, {p1, p2})). The vertices on the right can be ignored because once the first force

happens, the time for the vertices to the right of pk to turn blue is less than or equal to the least possible

time for the last vertex on the left of pk to turn blue.

Any vertex other than pk and pk−1 has a vertex with distance at least k + 2 from it in both T4,m and

T ′4,m, which exceeds both ept(T4,m, {pk}) and ept(T ′4,m, {pk}), so it suffices to compute ept(T4,m, {pk−1})
and ept(T ′4,m, {pk−1}). We split into three cases depending on which vertices are forced in the round where

the first force occurs, each of which has probability 1
3 .

For the first case, suppose that only pk, i.e., the vertex to the right of pk−1 gets colored blue in the

round with the first force. Then the propagation time for the vertices to the right of pk−1 is at most

the propagation time for the vertices to the left of pk−1, so the expected propagation time in this case is
4
3 + (k − 2) + 17

8 = k + 35
24 for T4,m and 4

3 + (k − 2) + 55
24 = k + 39

24 for T ′4,m.

For the second case, suppose that both pk and pk−2 get colored blue on the first force. Then the
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propagation time for the vertices to the right of pk−1 is at most the propagation time for the vertices to

the left of pk−1, unless E0 occurs, in which case the propagation time for the vertices to the left of pk−1
is one less than the propagation time for the vertices to the right of pk−1. Since Pr(E0) is 8

9 for T4,m and
4
9 + 4

9 ·
2
3 = 20

27 for T ′4,m, the expected propagation time in this case is 4
3 + (k− 3) + 17

8 + 8
9 = k + 291

216 for T4,m

and 4
3 + (k − 3) + 55

24 + 20
27 = k + 295

216 for T ′4,m.

For the third case, suppose that only pk−2, i.e., the vertex to the left of pk−1, gets colored blue in the

round with the first force. Then the propagation time for the vertices to the right of pk−1 is at most the

propagation time for the vertices to the left of pk−1, unless E0 or E1 occurs, in which case the propagation

time for the vertices to the left of pk−1 is two or one less than the propagation time for the vertices to the right

of pk−1. In both T4,m and T ′4,m, Pr(E0) is the same as in the last paragraph. Moreover, Pr(E1) is 1
9 ·

8
9 for T4,m

and 1
9 ( 20

27 )+ 4
9 ·

1
3 for T ′4,m. Thus, the expected propagation time in this case is 4

3 +(k−3)+ 17
8 + 8

9 ·2+(1
9 ·

8
9 )·1 =

k + 1513
648 = k + 13617

5832 for T4,m and 4
3 + (k − 3) + 55

24 + 20
27 · 2 + ( 1

9 ( 20
27 ) + 4

9 ·
1
3 ) · 1 = k + 13629

5832 for T ′4,m.

Observe that in each of the three cases, the expected propagation time for T4,m is less than the expected

propagation time for T ′4,m. We determine ept(T4,m, {pk−1}) and ept(T ′4,m, {pk−1}) by averaging over the

cases: ept(T4,m, {pk−1}) = k + 3331
1944 = k + 9993

5832 and ept(T ′4,m, {pk−1}) = k + 10357
5832 . Therefore, ept(T4,m) =

k + 3331
1944 and ept(T ′4,m) = k + 10357

5832 .

Suppose that m = 2k + 1 for some positive integer k: This proof is similar to the last proof. Again, we

first calculate ept(T4,m, {pk}) and ept(T ′4,m, {pk}). Like the proof for m = 2k using pk−1, we split the analysis

into three cases depending on what happens in the round where the first force occurs. For both cases where

the vertex to the right of pk gets colored blue in the round with the first force, the propagation time for the

vertices to the right of pk is at most the propagation time for the vertices to the left of pk. If both vertices

adjacent to pk are colored on the first force, the expected propagation time is 4
3 +(k−2)+ 17

8 = k+ 35
24 for T4,m

and 4
3 +(k−2)+ 55

24 = k+ 39
24 for T ′4,m. If only the vertex to the right of pk gets colored on the first successful

force, the expected propagation time is 4
3 + (k− 1) + 17

8 = k + 59
24 for T4,m and 4

3 + (k− 1) + 55
24 = k + 63

24 for

T ′4,m.

For the case where only the vertex to the left of pk gets colored on the first successful force, the

propagation time for the vertices to the right of pk is at most the propagation time for the vertices to the left

of pk, unless E0 occurs. Like the second case of the proof for m = 2k, Pr(E0) is 8
9 for T4,m and 4

9 + 4
9 ·

2
3 = 20

27

for T ′4,m. Thus, the expected propagation time in this case is 4
3 + (k − 2) + 17

8 + 8
9 = k + 169

72 = k + 507
216 for

T4,m and 4
3 + (k − 2) + 55

24 + 20
27 = k + 511

216 for T ′4,m.

Again, the expected propagation time for T4,m is less than the expected propagation time for T ′4,m in

each of the three cases, and we determine ept(T4,m, {pk}) and ept(T ′4,m, {pk}) by averaging over the cases:

ept(T4,m, {pk}) = k + 451
216 < k + 2.1 and ept(T ′4,m, {pk}) = k + 1429

648 < k + 2.21. Any vertex besides pk has a

vertex with distance at least k+2 from it in both T4,m and T ′4,m, and the probability of failure on the first turn

of the coloring process is at least 1
4 except when pm is the initial blue vertex, so ept(T4,m, {v}) ≥ k+2.25 and

ept(T ′4,m, {v}) ≥ k + 2.25 for any v 6= pk. Thus, ept(T4,m) = k + 451
216 = k + 1353

648 and ept(T ′4,m) = k + 1429
648 .

The sun and comb graphs. Let the n -Sun be obtained from the n-cycle Cn by adding a single leaf

to each vertex. There are two distinct choices for the initial blue vertex, a vertex on the cycle or a leaf, and

once forcing starts all blue vertices on the cycle are necessarily consecutive and the analysis is essentially the

same. Finding the expected propagation time of the n -Sun is equivalent to finding the expected propagation

time of the embedded cycle Cn, and then adding 1 to color all remaining leaves. Once the propagation
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process has produced at least two blue cycle vertices, an outer cycle vertex is a blue vertex on the cycle that

has a white cycle neighbor, whereas a blue cycle vertex both of whose cycle neighbors are blue is called an

inner cycle vertex. The leaf neighbor of an outer cycle vertex is called an outer leaf. The probability of

forcing along the cycle is affected by whether each of the two outer leaves is colored blue; the leaf neighbors

of inner cycle vertices have no effect on the cycle propagation. Thus, states are determined by the number

of blue vertices in the cycle and how many of the outer leaves are blue.

There are two states involving one blue vertex on the cycle, without or with the adjacent leaf, which we

denote 1 and 1L, respectively. Next, denote the intermediate states (c, `), where 2 ≤ c ≤ n−2 and 0 ≤ ` ≤ 2.

Here, c indicates the number of blue vertices on the cycle and ` indicates the number of outer leaves forced;

notice that intermediate states with the same value of ` behave similarly to one another. Denote the last

four states (n − 1, `) and (n), where n − 1 or n of the cycle vertices are blue, respectively, and 0 ≤ ` ≤ 2.

All possible outcomes and probabilities for these states starting with a blue vertex on the cycle are given in

Table 2.1. Note that we leave out the fully propagated state. Instead, we add 1 to the propagation time

found from the Markov matrix to account for the round needed to force all remaining leaves after reaching

state (n).

State at time t State at time t + 1 Prob. State at time t State at time t + 1 Prob.

1 1 8
27 (c, 0) (c + 2, 0) 4

9

1 1L 4
27 (c, 1) (c + 1, 0) 1

9

1 (2,0) 8
27 (c, 1) (c + 1, 1) 2

9

1 (2,1) 4
27 (c, 1) (c + 2, 0) 2

3

1 (3,0) 1
9 (c, 2) (c + 2, 0) 1

1L 1L 1
9 (n− 1, 0) (n− 1, 0) 1

81

1L (2,1) 4
9 (n− 1, 0) (n− 1, 1) 4

81

1L (3,0) 4
9 (n− 1, 0) (n− 1, 2) 4

81

(c, 0) (c, 0) 1
81 (n− 1, 0) (n) 8

9

(c, 0) (c, 1) 4
81 (n− 1, 1) (n) 1

(c, 0) (c, 2) 4
81 (n− 1, 2) (n) 1

(c, 0) (c + 1, 0) 4
27 (n) (n) 1

(c, 0) (c + 1, 1) 8
27

Table 2.1

Transition probabilities for the ordered state list S = {1, 1L, . . . , (c, 0), (c, 1), (c, 2), . . . , (n− 1, 0), (n− 1, 1), (n− 1, 2), (n)}
of the n -Sun as defined above with the initial blue vertex on the cycle.

We can modify the above process for expected propagation time starting at a leaf rather than on the

cycle. If the initial blue vertex is a leaf, the first step is deterministic, yielding state 1L. Afterwards, the

states and probabilities proceed as before. Thus, we simply need to construct the list of states starting at

1L instead of 1, and after finding the expected propagation time from the Markov matrix, add 2 to account

for the first and last deterministic steps.

Using Theorem 2.2 and adding 1 for the final round, we can obtain exact values for ept(n -Sun). Decimal

approximations of these values with the initial vertex on the cycle are given in Table 2.2 (the Sage code

that produced it can be found in [7]). This table also lists the differences in expected propagation time for

consecutive n, i.e., ∆ ept(n -Sun) = ept(n -Sun) − ept((n − 1) -Sun). The clear trend that ∆ ept(n -Sun) →
0.6875 as n becomes large leads to the next conjecture.
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n ept(n -Sun) ∆ ept(n -Sun) n ept(n -Sun) ∆ ept(n -Sun)

5 4.77765692007797 0.729718323586744 25 18.5143540671558 0.687500000595474

6 5.44614700021659 0.668490080138619 26 19.2018540669176 0.687499999761808

7 6.14172265492263 0.695575654706038 27 19.8893540670129 0.687500000095277

8 6.82588757375988 0.684164918837255 28 20.5768540669748 0.687499999961890

9 7.51474489939839 0.688857325638504 29 21.2643540669900 0.687500000015245

10 8.20169679288223 0.686951893483841 30 21.9518540669839 0.687499999993904

11 8.88941718576886 0.687720392886632 31 22.6393540669863 0.687500000002437

12 9.57682877299639 0.687411587227531 32 23.3268540669854 0.687499999999023

13 10.2643641949093 0.687535421912946 33 24.0143540669858 0.687500000000391

14 10.9518500135211 0.687485818611719 34 24.7018540669856 0.687499999999844

15 11.6393556888815 0.687505675360446 35 25.3893540669857 0.687500000000064

16 12.3268534181140 0.687497729232458 36 26.0768540669856 0.687499999999975

17 13.0143543265595 0.687500908445543 37 26.7643540669856 0.687500000000011

18 13.7018539631505 0.687499636590999 38 27.4518540669856 0.687499999999996

19 14.3893541085209 0.687500145370441 39 28.1393540669856 0.687500000000000

20 15.0768540503712 0.687499941850303 40 28.8268540669856 0.687500000000000

21 15.7643540736315 0.687500023260217 41 29.5143540669856 0.687500000000000

22 16.4518540643273 0.687499990695837 42 30.2018540669856 0.687500000000000

23 17.1393540680490 0.687500003721681 43 30.8893540669856 0.687500000000000

24 17.8268540665603 0.687499998511324 44 31.5768540669856 0.687500000000000

25 18.5143540671558 0.687500000595474 45 32.2643540669856 0.687500000000000

Table 2.2

Expected propagation times for the n -Sun, and differences ∆ ept(n -Sun) = ept(n -Sun)− ept((n− 1) -Sun) for n = 5, . . . , 45.

Conjecture 2.8. limn→∞(ept(n -Sun)− ept((n− 1) -Sun)) = 11
16 = 0.6875.

In general, starting with a blue leaf yields a greater expected propagation time than starting with a blue

cycle vertex, although propagation starting at a leaf still suggests the aforementioned limit of 11
16 .

We can use a similar process to construct the Markov matrix for the n -Comb, which is obtained from

the path Pn by adding a leaf to each vertex. As the initial blue vertex, choose v =
⌊
n+1
2

⌋
on the embedded

path, which is the center vertex for odd n and the left center vertex for even n. For the comb, we need

to track both the number of vertices forced to the left and to the right of the initial vertex, along with

whether or not the outer leaves are blue. The details, which are similar to the n -Sun but messier, are given

in Appendix 2 [7], along with data.

3. Asymptotic bounds for probabilistic zero forcing. In this section, we prove asymptotically

tight bounds up to a constant factor on several families of graphs, including some that were partially bounded

in [12]. We prove that ept(Kn) = Θ(log log n). Next we generalize the bound ept(K1,n) = Θ(log n) from [12]

by proving that ept(Kc,n) = Θ(log n) for constant c, where the bound depends on c. Generalizing the same

bound in a different direction, we show Θ(log n) bounds on graphs obtained by adding a universal vertex

to a graph of maximum degree at most c (a universal vertex is adjacent to every other vertex). Finally, we

prove that ept(G) = O(n) for all connected graphs G of order n.
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Geneson and Hogben [12] proved that ept(Kn) = Ω(log log n). In the next result, we show that bound

is tight by proving that ept(Kn) = O(log log n). The method of proof is similar to that used in the proof in

[12] that ept(K1,n) = O(log n).

Theorem 3.1. For positive integers n, ept(Kn) = Θ(log log(n)).

Proof. Let Kn be the complete graph on n vertices for n ≥ 5. Let b be the number of currently

blue vertices and w = n − b be the number of currently white vertices. For each white vertex v1, . . . , vw,

define the indicator random variable Xi to be 1 if vi is colored blue in the current round and 0 otherwise,

and define X =
∑w

i=1 Xi. Since the Xi’s are i.i.d., we have that E[X] = wE[Xi] = w

(
1−

(
1− b

n−1

)b)
and Var[X] = w

(
1−

(
1− b

n−1

)b)(
1− b

n−1

)b
. Since

(
1−

(
1− b

n−1

)b)
≤
(

1−
(

1− b2

n−1

))
= b2

n−1 by

Bernoulli’s inequality, Var[X] ≤ w
n−1b

2
(

1− b
n−1

)b
≤ b2.

For 1 ≤ b ≤
√
n

logn , we first use binomial expansion on E[X] to obtain E[X] > wb2

n−1−
∑bb/2c

k=1 w
(

b
2k

) (
b

n−1

)2k
.

For each term in the summation,

w

(
b

2k

)(
b

n− 1

)2k

≤ (n− 1) · b2k

(2k)!
· b2k

(n− 1)2k
=

b2

(2k)!
· b4k−2

(n− 1)2k−1
.

Since b = o(
√
n), we conclude b4k−2 = o(

√
n
4k−2

) = o(n2k−1), and using this, we find

b2

(2k)!
· b4k−2

(n− 1)2k−1
=

b2

(2k)!
· o(1) =

o(b2)

(2k)!
.

Since
∑∞

k=1
1

(2k)! converges, this implies

bb/2c∑
k=1

w

(
b

2k

)(
b

n− 1

)2k

=

bb/2c∑
k=1

o(b2)

(2k)!
= o(b2).

For b ≤
√
n

logn , we have w ≥ n−
√
n

logn , so w
n−1 = 1− o(1). We conclude that

E[X] >
wb2

n− 1
−
bb/2c∑
k=1

w

(
b

2k

)(
b

n− 1

)2k

= b2 − o(b2).

Since E(X) = b2−o(b2) and b2 = o(n), E(X) > 5
6b

2 for n sufficiently large. Thus, by Chebyshev’s inequality,

Pr(X <
1

2
b2) ≤ Pr(|X − E(X)| > 1

3
b2) ≤ Var(X)(

1
3b

2
)2 ≤ 9

b2
≤ 9/16

for b ≥ 4. Therefore, there exists c such that the expected number of rounds to transition from b blue

vertices to at least 1
2b

2 blue vertices is at most c. To establish an upper bound on the expected number of

rounds until there are at least
√
n

logn blue vertices, consider f(x) = 22
x+1, which satisfies f(k + 1) = 1

2f(k)2.

If 22
r+1 =

√
n

logn , then r = log2

(
log2

( √
n

logn

)
− 1
)

. Since the expected time to transition from 1 to 4 blue

vertices is bounded by a constant, the total expected time to transition from 1 to
√
n

logn blue vertices is at

most cr + O(1) = O(log log n).
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For
√
n

logn ≤ b ≤
√
n log n, Claim (C2) established in the proof of Lemma 2.5 in [12] implies Pr

(
X ≥ b

4

)
=

Ω(1). Thus, there exists a constant D such that the expected number of rounds to transition from b blue

vertices to at least b + b
4 = 5

4b blue vertices is at most D. The expected total rounds to transition from
√
n

logn to
√
n log n blue vertices is at most Dr, where r is found by solving

(
5
4

)r
=
√
n logn√
n/ logn

, which gives us

r = 2 log5/4 log n and Dr = O(log log n).

For n ≥ 5,
(
1
n

)logn ≤ 1
nlog 5 < 1

n1.5 . So, for
√
n log n ≤ b ≤ n− 2,(

1− b

n− 1

)b

≤
(

1−
√
n log n

n

)√n logn

<
(
e− logn

)logn
<

1

n1.5
.

Note that X ranges from 0 to w, so w−X is nonnegative. This allows us to apply Markov’s inequality and

linearity of expectation to show

Pr(X < w −
√
w) = Pr(w −X >

√
w) ≤ E[w −X]√

w
=
√
w

(
1− b

n− 1

)b

<
√
w · 1

n1.5
<

1

n
.

For the complementary event, we conclude Pr(X ≥ w −
√
w) ≥ n−1

n . Then the expected time to transition

from w white vertices to at most
√
w white vertices is at most n

n−1 . Hence, the expected number of rounds

to transition from w = n−
√
n log n to 2 white vertices is at most n

n−1 · r, where r is given by w(1/2)r = 2.

Solving this equation, we find r = log2 log2 w, implying that n
n−1 · r = n

n−1 · log2 log2 w = O(log log n). Note

that for w ≤ 2, the expected time that remains is bounded by a constant. Thus, ept(Kn) = Θ(log log(n)).

It is known that if a graph G of order n has a universal vertex, then ept(G) = O(log n) [12, Corollary

2.6]. In the next result, we use this fact to prove that ept(G) = Θ(log n) for graphs G obtained by adding a

universal vertex to a (not necessarily connected) graph of maximum degree at most c.

Theorem 3.2. Let c be a fixed positive integer and let Fc be the family of graphs having maximum

degree at most c. Let G be a graph of order n with a universal vertex u such that G − u ∈ Fc. Then

ept(G) = Θ(log n).

Proof. The upper bound follows from [12, Corollary 2.6]. For the lower bound, we consider two cases,

based on the the number b̂ of blue vertices when u is colored blue at time t. First, suppose that b̂ ≥
√
n. Since

the maximum degree is at most c,
√
n ≤ b̂ ≤ 1 + c+ c2 + · · ·+ ct = ct+1−1

c−1 . Thus, logc(
√
n(c−1) + 1)−1 ≤ t,

and we have the desired lower bound.

If instead b̂ <
√
n, we consider the expected number of rounds to transition from at most

√
n blue

vertices to at least n
2 blue vertices. Let X be the random variable for the number of new blue vertices in

the current round, and let g(b) = Pr(X ≤ 4b + cb), where b is the current number of blue vertices. We will

show that g(b) = 1−O
(

1√
n

)
for
√
n ≤ b ≤ n

2 . To this end, note that X is at most the sum of the number

of vertices forced by u, which we will denote by s, plus the number of vertices forced by vertices other than

u, which we will denote by r. Then, Pr[s ≥ 4b] = O
(

1√
n

)
by the proof of Theorem 2.7 in [12]. Because the

maximum degree is at most c, we also have r ≤ cb. Thus, 1 − g(b) = O
(

1√
n

)
. From this point, the same

steps as in the proof of Theorem 2.7 in [12] show that with probability 1− o(1), the number of rounds to go

from at most
√
n blue vertices to at least n

2 blue vertices is Ω(log n) (with the constant dependent on c), so

ept(G) = Ω(log n).

The next result builds on ideas in [12].
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Theorem 3.3. For any positive integers m and n, ept(Km,n) = O(log(m + n)). For a fixed positive

integer c, ept(Kc,n) = Θ(log(n)).

Proof. For the upper bounds: It was shown in [12, Lemma 2.5] that ept(G[N [v]]) = O(log deg v) for

any vertex v. This implies ept(Km,n) = O(log(m) + log(n)). If m ≤ n, then log(m) + log(n) ≤ 2 log n, so

ept(Km,n) = O(log(n)), which also implies ept(Km,n) = O(log(m+n)) (and no assumption m ≤ n is needed

on the latter).

Let c be a fixed positive integer. We consider the lower bound on ept(Kc,n). Let R and R′ denote the

partite sets of orders c and n respectively. We show first that the expected number of rounds to color all

vertices in R blue is O(1). Suppose first that the one initial blue vertex is in R. By Claim (C1) established

in the proof of Lemma 2.5 in [12], the probability of at least one new blue vertex in a round is at least one

half, so the expected time of the first force is at most 2. Once at least one vertex in R′ is blue, the expected

number of rounds to color R blue is at most ept(K1,c). Thus, the expected number of rounds to color R

blue is a constant.

So suppose that all the vertices in R are blue and let b denote the current number of blue vertices. For

each white vertex v1, . . . , vn+c−b ∈ R′, let Xi be the indicator random variable that vi is colored blue in the

current round. Let X =
∑n+c−b

i=1 Xi, and

Pr(R→ vi) = 1−Pr(∀u ∈ R, u 6→ vi) = 1− (1−Pr(u→ vi))
c = 1−

(
1− 1 + b− c

n

)c

.

Using Bernoulli’s inequality for the first inequality below, we have

E[X] =

n+c−b∑
i=1

E[Xi]

= (n + c− b)

(
1−

(
1− 1 + b− c

n

)c)
≤ (n + c− b)

(
1−

(
1 + c

(
−1 + b− c

n

)))
=

(n + c− b)(1 + b− c)c

n
≤ cb.

Since the Xi are i.i.d. and X2
i = Xi,

Var[X] = (n + c− b)

(
1−

(
1− 1 + b− c

n

)c)(
1− 1 + b− c

n

)c

≤ E[X] ≤ cb.

Consider the case in which
√
n ≤ b ≤ n

2 , and define h(b) to be the probability that the number of new

blue vertices in the current round is at most 2cb. Then Chebyshev’s inequality justifies the third inequality

below:

1− h(b) ≤ Pr(X − cb ≥ cb) ≤ Pr(|X −E[X]| ≥ cb) ≤ Var[X]

(cb)2
≤ 1

c
√
n

= O

(
1

c
√
n

)
.

Starting with
√
n ≤ b ≤ n

2 blue vertices and coloring at most 2cb additional blue vertices per round im-

plies that the probability that there are at most (3c)rb blue vertices after r rounds is at least (h(b))
r

=(
1−O

(
1

c
√
n

))r
. Thus, going from at most

√
n blue vertices to at least n

2 blue vertices requires that
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(3c)r
√
n ≥ n

2 , or r ≥ log3c

(√
n
2

)
. Hence, the probability is at least

(
1−O

(
1

c
√
n

))log3c(
√
n/2)

= 1 − o(1)

that it takes at least log3c

(√
n
2

)
rounds for the number of blue vertices to increase from at most

√
n to at

least n
2 . So ept(Kc,n) = Ω(log(n)).

It is shown in [12] that ept(G) = O(rad(G)(log n)2) for connected graphs G of order n, where rad(G) =

minu∈V (G) maxv∈V (G) dist(u, v) is the radius of G. The next result implies that ept(G) = O(n) for connected

graphs G of order n.

Theorem 3.4. Let G be a connected graph of order n. Then ept(G,S) ≤ e
e−1 (n− |S|) for any set S of

vertices of G.

Proof. We prove this by reverse strong induction on k = |S|. It is immediate for k = n. Now fix some

k < n and suppose that the theorem is true for any i > k. Let S be an initial set of blue vertices. Since G

is connected, there exists some b ∈ S with at least one white neighbor. Let d = deg(b), so d − j + 1 of the

neighbors are white for some integer j with 1 ≤ j ≤ d.

Suppose that there have been no forces yet in the graph. The probability that b does not force any of

its white neighbors in the current round is at most(
1− j

d

)d−j+1

=

(
1− j

d

)(d/j)(j(d−j+1)/d)

≤ 1

e

j(d−j+1)/d

≤ 1

e
,

where the first inequality follows from the fact that (1 − 1
x )x ≤ 1

e for x ≥ 1 and the last inequality follows

from the fact that j(d−j+1)
d is minimized at j = 1 and j = d for all real j ∈ [1, d].

If there have not been any forces yet, the probability of a force in the current round is at least e−1
e , so

the expected number of rounds until the first force is at most c = e
e−1 . After the first force, there are at

least k + 1 blue vertices. Therefore, ept(G,S) ≤ c + c(n− k − 1) ≤ c(n− k) by the induction hypothesis.

Corollary 3.5. If G is a connected graph on n vertices, then ept(G) = O(n).
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