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ON THE CRITICAL IDEALS OF COMPLETE MULTIPARTITE GRAPHS∗

YIBO GAO†

Abstract. The notions of critical ideals and characteristic ideals of graphs are introduced by Corrales and Valencia to study

properties of graphs, including clique number, zero forcing number, minimum rank and critical group. In this paper, methods

are provided to compute critical ideals of complete multipartite graphs and obtain complete answers for the characteristic ideals

of complete multipartite graphs.
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1. Introduction. Let G be an undirected simple graph with n vertices {v1, v2, . . . , vn} and let R be

any commutative ring. Define the generalized Laplacian matrix of G to be the matrix, denoted as LG(XG),

with entries given by

LG(XG)ij =


xi if i = j,

−1 if i ∼ j,
0 otherwise,

where xi is an indeterminant associated to vertex i and i ∼ j means that there is an edge between vertex

vi and vertex vj . Alternatively, LG(XG) = diag(x1, . . . , xn) − AG, where diag(x1, . . . , xn) is the diagonal

matrix with diagonal entries x1, . . . , xn and AG is the adjacency matrix of G. In terms of notation, we view

XG as a set of variables labeled by vertices of G. Similarly, define the characteristic matrix of G, denoted

as LG(t), to be tI − AG. Notice that the characteristic matrix can be viewed as a specialization of the

generalized Laplacian matrix.

Definition 1.1. For j = 1, . . . , n, the j-th critical ideal of G over R, denoted as IRj (G,XG), is defined

to be the ideal of R[x1, . . . , xn] generated by all j × j minors of the generalized Laplacian matrix LG(XG)

of G. In other words,

IRj (G,XG) := 〈{detM : M is a j × j submatrix of LG(XG)}〉 ⊂ R[XG].

And the j-th characteristic ideal of G over R, denoted as IRj (G, t), is defined to be the ideal of R[t] after

specializing all variables x1, . . . , xn to the same variable t in the j-th critical ideal.

Example 1.2. Let G be the graph shown in Figure 1. Its generalized Laplacian matrix and its gener-

alized characteristic matrix are respectively

LG(XG) =


x1 −1 −1 0

−1 x2 −1 0

−1 −1 x3 −1

0 0 −1 x4

 and LG(t) =


t −1 −1 0

−1 t −1 0

−1 −1 t −1

0 0 −1 t

 .
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It’s then easy to calculate that

IRj (G,XG) =


〈1〉 k = 1, 2,

〈x1 + 1, x2 + 1, x3x4 + x4 − 1〉 k = 3, and

〈x1x2x3x4 − x1x2 − x1x4 − x2x4 − x3x4 − 2x4 + 1〉 k = 4,

IRj (G, t) =

{
〈1〉 k = 1, 2, 3,

〈t4 − 4t2 − 2t+ 1〉 k = 4.

•1

•2

•3 •4

Figure 1. A graph G as an example.

The notions of critical ideals and characteristic ideals were first introduced by Corrales and Valencia [3],

where many properties of these ideals are discussed and computed for some classes of graphs. The study of

critical ideals and characteristic ideals has many applications and strong connections with other properties

of graphs. For example, we can define the algebraic co-rank of G, denoted as γRG , to be the maximum j such

that IRj (G,XG) is trivial. Let Z(G) be the zero forcing number of G and let mz(G) = |V (G)| − Z(G). If R

is a field, let mrR(G) be the minimum rank of G. It is shown in [2] that mz(G) ≤ γRG for any commutative

ring R and it is proved in [4] that mz(G) ≤ mrR(G) when R is a field. But in general, the relation between

mrR(G) and γRG still remains an interesting open problem.

Another important connection of critical ideals to other properties of graphs concerns critical groups.

As the name suggests, we can get the Laplacian matrix of G by specializing each variable xi to the degree

of i in the generalized Laplacian matrix LG(XG). Therefore, if we are able to completely understand the

structure of critical ideals of G, we can obtain the critical group of G, or equivalently the Smith normal form

of its Laplacian matrix, for free via such specialization. In particular, we will be discussing critical ideals

and characteristic ideals of complete multipartite graphs in this paper, whose critical groups are computed

by Jacobson, Niedermaier and Reiner [5].

In this paper, we focus on computing the critical ideals and characteristic ideals of complete multipartite

graphs, aiming to generalize results on their critical groups. Throughout the paper, let G be a complete

multipartite graph with m parts with size r1, . . . , rm. For simplicity, let r1, . . . , rm ≥ 2. Denote the i-th

part as Vi with |Vi| = ri. In Section 2, we will compute characteristic ideals of G explicitly for m = 2, 3, i.e.,

complete bipartite graphs and complete tripartite graphs. In Section 3, we will specialize to characteristic

ideals and obtain formulas for general m and in Section 4, we make some further specializations of interests

to gain nicer expressions for the characteristic ideal when the graph is balanced and when R is a field.

2. Critical ideals of complete multipartite graphs. Let’s further fix some notations. Choosing a

j× j submatrix of LG(XG) corresponds to choosing j “row vertices” and j “column vertices”. By definition,
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its determinant is a weighted sum of matchings between these row vertices and column vertices, where the

weight is given by the sign of the corresponding permutation and the matrix entries. But the matrix entry is

zero between distinct vertices with no edge in between. So we can view this determinant as a sum of perfect

matchings of those row vertices and column vertices, where a vertex is allowed to be paired with itself. For

a j × j submatrix M of LG(XG), let Ri be the set of row vertices chosen in part i and let Ci be the set of

column vertices chosen in part j. And let R =
⋃m
i=1Ri and C =

⋃m
i=1 Ci. If for some i, |Ri \ Ci| ≥ 2, let

v, w ∈ Ri \Ci. We observe that the rows in M corresponding to v and w are identical, meaning detM = 0.

Therefore, if detM 6= 0, we necessarily have |Ri \ Ci|, |Ci \ Ri| ≤ 1. Accordingly, there are 4 possibilities

explained in Definition 2.1 below.

Definition 2.1. We say that block i is of

• type b if Ri = Ci;

• type r if Ci ⊂ Ri, |Ri \ Ci| = 1;

• type c if Ri ⊂ Ci, |Ci \Ri| = 1;

• type u if |Ri \ Ci| = |Ci \Ri| = 1.

We now simplify some computation of minors of LG(XG). A pairing of R and C is a bijective map between

these two sets of vertices.

Fix a total ordering of all vertices. For a pairing σ between R and C, arrange R in order so that the

relative order of their corresponding vertices in C gives rise to a permutation wσ. Let the sign of σ, denoted

sgn(σ) ∈ {±1} to be the sign of the permutation wσ. Notice that changing a total ordering results in a

possibly change of signs for all determinants that we are going to compute, but this does not matter for the

computation of the critical ideals.

Definition 2.2. We say that a pairing σ of R and C is valid if

• in a block Vi of type r, c or u, every vertex in Ri ∩ Ci is paired with itself;

• in a type b block vi, at most one vertex in Ri = Ci is not paired with itself.

Definition 2.3. The weight of a pairing σ is the product of its corresponding entries in LG(XG). More

formally,

wt(σ) :=
∏
v∈R

LG(XG)v,σ(v),

where σ(v) means the column vertex paired up with v and LG(XG)i,j denotes the entry of the matrix

LG(XG) in row i and column j.

Lemma 2.4. With notations as above,

detM = ±
∑
σ valid

sgn(σ) · wt(σ).

Notice that we don’t care about the overall sign of detM , which depends on the ordering of vertices and

doesn’t make a difference for generators of the critical ideals.

Proof. Let’s apply some row and column operations on M , which preserve determinant. If part i is of

type r, choose the unique v ∈ Ri \Ci. Notice that for any w ∈ Ri ∩Ci = Ci, the row of w and v in M differ

by only one entry in the column of w, where LG(XG)w,w = xw and LG(XG)v,w = 0. Thus, after subtracting

row v from row w for every w ∈ Ri ∩ Ci, each column corresponding to w ∈ Ci has only 1 nonzero entry

left, which is xw. Therefore, when computing the determinant, we must select these entries. In the original
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matrix M , this is saying that we are summing over pairings σ that pair w ∈ Ri with w ∈ Ci, for w ∈ Ri∩Ci.
Similarly, if part i is of type c, apply the above arguments with the roles of rows and columns reversed. If

part i is of type u, the same argument works as well, by considering v ∈ Ri \ Ci and concluding that every

w ∈ Ri ∩ Ci needs to be paired with itself.

Now consider a part of type b, meaning Ri = Ci. Pick any v ∈ Ri = Ci. For any w 6= v ∈ Ri = Ci,

subtract row v from row w to obtain M ′ and observe that all entries become zero except that M ′w,v = −xv
and M ′w,w = xw. In such a row, when determinant of M ′ is calculated via sum over permutations, we either

choose −xv or xw. If for some w, we choose −xv, meaning that column v has been chosen, then for all other

u ∈ Ri \ {w, v}, we need to choose M ′u,u = xu. Suppose that in row v, we choose column s, then this choice

in matrix M corresponds to choosing Mv,v = xv and Mw,s. Notice that the sign corresponds as well. If we

are not choosing any −xv’s in M ′, then we choose M ′w,w = Mw,w = xw for all w ∈ Ri \ {v}. No matter

which entry we choose in row v, this also corresponds to a valid pairing by definition.

Notice that all row and column operations described above commute with each other since we are only

using these operations inside certain parts and row and column operations commute.

Example 2.5. Let’s use an example to see how the proof of Lemma 2.4 works.

Suppose that G has 3 parts and V1 = {1, 2, 3}, V2 = {4, 5, 6}, V3 = {7, 8, 9} and the submatrix M we

are considering is formed by R = {1, 2, 3, 4, 5, 6, 7, 8} and C = {1, 2, 3, 4, 5, 7, 8, 9}. This means part 1 is of

type b, part 2 is of type r and part 3 is of type c. By Definition 2.2, a valid pairing σ must map 4,5,7,8 to

themselves, and at least two of 1,2,3 to themselves. If σ maps 1,2,3 to themselves, it must map 6 to 9, giving

a weight of −x1x2x3x4x5x7x8 and sign of 1. If it maps only 1,2 to themselves, then it must map 3 to 9 and

6 to 3, giving a weight of x1x2x4x5x7x8 and sign of -1, and similarly when it maps only 2,3 to themselves or

1,3 to themselves. As a result, the right hand side of Lemma 2.4 equals

−(x1x2x3 + x1x2 + x1x3 + x2x3)x4x5x7x8.

The proof of Lemma 2.4 illustrates the following process of row and column operations. We start with

M =



x1 0 0 −1 −1 −1 −1 −1

0 x2 0 −1 −1 −1 −1 −1

0 0 x3 −1 −1 −1 −1 −1

−1 −1 −1 x4 0 −1 −1 −1

−1 −1 −1 0 x5 −1 −1 −1

−1 −1 −1 0 0 −1 −1 −1

−1 −1 −1 −1 −1 x7 0 0

−1 −1 −1 −1 −1 0 x8 0


.

Then subtract row 2,3 from row 1, row 4,5 from row 6, column 7,8 from column 9 to obtain the following

matrix that’s way sparser: 

x1 0 0 −1 −1 0 0 −1

−x1 x2 0 0 0 0 0 0

−x1 0 x3 0 0 0 0 0

0 0 0 x4 0 0 0 0

0 0 0 0 x5 0 0 0

−1 −1 −1 0 0 0 0 −1

−1 −1 −1 −1 −1 x7 0 0

−1 −1 −1 −1 −1 0 x8 0


.
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To calculate determinant, it is clear that row 4 and row 5 must choose x4 and x5 respectively, and column 6

and column 7 must choose x7 and x8 respectively. The determinant of the remaining 4×4 is easily calculated

to be −(x1x2x3 + x1x2 + x1x3 + x2x3) as desired by considering choices in row 2 and 3.

Lemma 2.6. With notations as above, if detM 6= 0, the number of parts of type r, which equals the

number of parts of type c, is at most 1.

Proof. Since we need the same number of row vertices and column vertices to calculate determinant,

the number of parts of type r equals the number of parts of type c. If Vi and Vj are two parts of type r, let

vi ∈ Ri \ Ci and vj ∈ Rj \ Cj . Observing that if σ is a valid paring with nonzero weight, exchanging the

image of vi and vj results in another pairing σ′ with the same weight but different sign. By this involution

and by Lemma 2.4, we obtain detM = 0.

We further fix some notations. Recall that there are m parts, each denoted as Vi with size ri for

i = 1, . . . ,m. Denote vertices in Vi as vki for 1 ≤ k ≤ ri and its corresponding variable as x
(k)
i . Define

Pi,j :=
{
x
(k1)
i · · ·x(kj)i : 1 ≤ k1 < · · · < kj ≤ ri

}
,

Qi,j :=

{
x
(k1)
i · · ·x(kj)i

(
1

x
(k1)
i

+ · · ·+ 1

x
(kj)
i

)
: 1 ≤ k1 < · · · < kj ≤ ri

}
.

Note that in this definition, both Pi,j and Qi,j are sets of algebraic expressions, indexed by j-element subset

of {1, 2, . . . , ri}. Expressions in Pi,j are of degree j while expressions in Qi,j are of degree j−1. As convention,

let Pi,0 = {1} and Qi,0 = {0} for all i, which are used in minors that contain empty parts (Ri = Ci = ∅
which are of type b). In the following discussions, as for notations, we will use some algebraic expressions

of such P ’s and Q’s: multiplication uses Cartesian product of index sets while addition is component-wise

with the same index set. For example,

(P1,2 +Q1,2)P2,1 = {(x(a)1 x
(b)
1 + x

(a)
1 + x

(b)
1 )x

(c)
2 : 1 ≤ a < b ≤ r1, 1 ≤ c ≤ r2}.

We are now ready to give full descriptions of the critical ideals of complete multipartite graphs when the

number of parts equal 2 or 3, where the case m = 2 is given in Section 3.3 of [1], for which we formulate a

different proof. Our strategy is straightforward: separate cases by types of parts (Definition 2.1) and write

down generators via the above notations.

Theorem 2.7. Let G be a complete bipartite graph with part size r1, r2 ≥ 2. Then

IRj (G,XG) =


〈1〉 j = 1,

〈P1,sP2,t, s+t=j−2, s≤r1−2, t≤r2−2, P1,j−r2Q2,r2 , Q1,r1P2,j−r1〉 2≤j≤r1+r2−2,

〈P1,r1−1P2,r2−1, P1,r1−2Q2,r2 , Q1,r1P2,r2−2〉 j=r1+r2−1,

〈P1,r1P2,r2 −Q1,r1Q2,r2〉 j=r1+r2.

Proof. It’s clear that IR1 (G,XG) = 〈1〉.

First, consider 2 ≤ j ≤ r1 + r2 − 2. If the types of two parts are u and u, there is a unique valid pairing

with nonzero weight, which pairs the vertex in R1 \C2 with the vertex in C2 \R1 and vice versa. This gives

a determinant of P1,sP2,t for s + t = j − 2, s ≤ r1 − 2, t ≤ r2 − 2. If the types are r and c, there is also

a unique valid pairing which gives a determinant of P1,sP2,t for s + t = j − 1, s ≤ r1 − 1, t ≤ r2 − 1. In

this case of (r, c), if s = r1 − 1 and t = r2 − 1, we would have j = r1 + r2 − 1 which is a contradiction; but
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if s < r1 − 1, the expression P1,sP2,t is already generated by P1,sP2,t−1 in the case of (u, u), and similarly

with t < r2 − 1. Thus, the case (r, c) does not provide us with more generators for the ideal IRj (G,XG). If

the types are u (say part 1) and b, a valid pairing pairs R1 \C1 to some vertex vk2 and pairs the same vk2 to

C1 \R1. We obtain generators P1,sQ2,t with s+ t = j − 1, s ≤ r1 − 2, t ≤ r2. The only ones not generated

by case (u, u) are s = j − r2 and t = r2, which are P1,j−r2Q2,r2 and Q1,r1P2,j−r1 (if such expressions exist).

If the types are b and b, the determinant is P1,sP2,t − Q1,sQ2,t with s + t = j. This expression is already

generated by the case (u, u) and (b, u): if s = r1 − 1 and t = r2 − 1, P1,sP2,t is generated by P1,s−1P2,t−1
in the case (u, u) and if s ≤ r1 − 2, P1,sP2,t is generated by P1,sP2,t−2 in the case (u, u) as well; assume

s ≤ r1 − 1 without loss of generality, then Q1,sQ2,t can be grouped into P1,s−1P2,t, which are generated in

the case (u, b). Thus, type (b, b) doesn’t provide new generators.

Next, consider j = r1 +r2−1. The significant difference is that type (u, u) is no longer possible. If types

are (r, c), we get P1,r1−1P2,r2−1. If types are (u, b), we get P1,r1−2Q2,r2 , Q1,r1P2,r2−2. If types are (b, b), we

get P1,sP2,t −Q1,sQ2,t with s+ t = r1 + r2 − 1, which can be generated by the previous two.

Finally, if j = r1 + r2, only type (b, b) is possible, and we obtain P1,r1P2,r2 −Q1,r1Q2,r2 .

With a similar strategy, we can proceed to complete tripartite graphs. Note that IRj (G,XG) = 〈1〉 for

j = 1, 2. We will then deal with the most general cases where 3 ≤ j ≤ n− 3, where n = r1 + r2 + r3 is the

total number of vertices.

Theorem 2.8. Let G be a complete tripartite graph with part size r1, r2, r3 ≥ 2. Fix j with 3 ≤ j ≤ n−3.

Then the critical ideal IRj (G,XG) is generated by the following generators:

• 2P1,s1P2,s2P3,s3 ,
∑3
i=1 si = j − 3, si ≤ ri − 2, i = 1, 2, 3;

• P1,s1P2,s2P3,s3 ,
∑3
i=1 si = j − 2, si ≤ ri − 1, i = 1, 2, 3;

• Pi1,si1Pi2,si2
(
Pi3,si3 + 2Qi3,si3

)
, {i1, i2, i3} = {1, 2, 3}, si1≤ri1−2, si2≤ri2−2, si3=ri3 , si1+si2=

j−ri3−2;

• Pi1,si1
(
Pi2,si2Qi3,si3 + Qi2,si2Pi3,si3 + 2Qi2,si2Qi3,si3

)
, {i1, i2, i3} = {1, 2, 3}, si1=j−ri2−ri3−1,

si2=ri2 , si3=ri3 .

Proof. We perform a similar analysis as above, by considering possible types of selection of row and

column vertices. As we see from the above arguments, all of our generators will be linear combinations

of “monomials” of the form A1,s1B2,s2C3,s3 where A,B,C ∈ {P,Q}, we will then shorten the notation by

writing ABC instead, with certain conditions on si’s.

Case (u, u, u). We obtain 2P1,s1P2,s2P3,s3 , where s1 + s2 + s3 = j − 3 and si ≤ ri − 2, i = 1, 2, 3. The

coefficient 2 here can be seen from Lemma 2.4 as there are two nonzero-weight valid pairing with the same

weight and sign, or by Lemma 3.1 which is more general.

Case (r, c, u). We obtain PPP with s1 + s2 + s3 = j − 2 and s1 ≤ r1 − 1, s2 ≤ r2 − 1, s3 ≤ r3 − 2 (and

two more cases by symmetry indices 1,2,3). However, as j − 2 < j ≤ (r1 − 1) + (r2 − 1) + (r3 − 1), we can

simplify the condition on indices to be si ≤ ri − 1, i = 1, 2, 3 to unify all those three cases.

Case (r, c, b). We obtain PP (P +Q) with s1 + s2 + s3 = j − 1, s1 ≤ r1 − 1, s2 ≤ r2 − 1 and two more

cases by symmetry of indices 1,2,3. As each element in the set Q3,s3 is a linear combination of degree s3− 1

monomials and each element in the set P3,s3 is a multiple of a degree s3 − 1 monomial, we see that the

generators produced here can already be generated by PPP with s1 + s2 + s3 = j − 2, si ≤ ri − 1 described

above in the case (r, c, u).
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Case (u, u, b). We obtain PP (P + 2Q) with s1 + s2 + s3 = j − 2, s1 ≤ r1 − 2, s2 ≤ r2 − 2 and two

more cases by symmetry of indices 1,2,3. If s3 ≤ r3 − 1, then PPP can be generated by case (r, c, u) and

2PPQ can be generated by case (u, u, u). But when s3 = r3, we obtain more generators (along with two

more cases).

Case (u, b, b). We obtain P (PQ + QP + 2QQ) with s1 + s2 + s3 = j − 1, s1 ≤ r1 − 2. Notice that if

s2 ≤ r2 − 1, then PPQ can be generated by case (r, c, u) by splitting up monomials in Q3,s3 and the rest

PQ(P+2Q) can be generated by case (u, u, b) by splitting up monomials in Q2,s2 . This means that we do not

have more generators when s2 < r2 or s3 < r3. So the only new generators we get are P (PQ+QP + 2QQ)

with s1 = j − 1− r2 − r3, s2 = r2, s3 = r3 and two more cases by symmetry.

Case (b, b, b). We obtain PPP −PQQ−QPQ−QQP −2QQQ with s1 +s2 +s3 = j. Since s1 +s2 +s3 =

j < r1 + r2 + r3, let’s assume without loss of generality that s1 ≤ r1 − 1. Then every element in the first

two terms P1,s1P2,s2P3,s3 and −P1,s1Q2,s2Q3,s3 is a multiple of some element in P1,s1P2,s2−1P3,s3−1, which

belongs to case (r, c, u). For the rest Q(PQ + QP + 2QQ), if we split up monomials in Q1,s1 , we obtain

a sum of P1,s1−1(PQ + QP + 2QQ)’s, which belong to case (u, b, b). Thus, no new generators are created

here.

Note that in the case of complete tripartite graphs when j ≥ r1 + r2 + r3 − 2, we have fewer cases but

messier expressions with the same method. Since there are at most 2 vertices that are not selected as row

vertices and at most 2 vertices that are not selected as column vertices, the overall possibilities are very

limited so we won’t enumerate them here.

3. Characteristic ideals of complete multipartite graphs. As a major simplification, we then

consider characteristic ideals by specializing all variables to t. This makes computation a lot easier and

allows us to deduce nice formula for the general case.

We note that the known spectrum of the complete multipartite graphs (either adjacency matrix or

Laplacian matrix) will not be sufficient to provide us formula for the characteristic ideals of these graphs,

when R is a general ring.

Lemma 2.4 and Lemma 2.6 still remain valid after the specialization. Recall that our complete multipar-

tite graph contains m parts with size r1, . . . , rm ≥ 2 and n =
∑m
i=1 ri is the total size of the graph. As our

usual convention, let j be the size of a chosen minor. Here is a simple lemma that helps the computation.

Lemma 3.1. Let Jn denote the all 1 matrix of size n and In denote the identity matrix of size n. Then

det(In − Jn) = −n + 1 and det([0] ⊕ In−1 − Jn) = −1, where [0] ⊕ In−1 refers to the diagonal matrix with

diagonal entries 0, 1, 1, . . . , 1.

Proof. It is clear that Jn has eigenvalue n with multiplicity 1 and eigenvalue 0 with multiplicity n− 1.

Thus, Jn has characteristic polynomial (x − n)xn−1. Assign x = 1 gives the determinant of In − Jn by

definition so det(In−Jn) = −n+1. By a subtraction of determinant of In−Jn from In−1−Jn−1, we obtain

det([0]⊕ In−1 − Jn) = −1.

Recall that the elementary symmetric function of degree d in ` variables is defined to be

ed(y1, . . . , y`) :=
∑

1≤i1<···<id≤`

yi1 · · · yid .

The following is the main theorem of this section.
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Theorem 3.2. Let G be a complete multipartite graph with m(≥ 2) parts of size r1, . . . , rm ≥ 2. Let

n =
∑m
i=1 ri. Then

IRj (G, t) =



〈1〉 j ≤ m− 1,

〈(m− 1)tj−m, tj−m+1〉 m ≤ j ≤ n−m,
〈tj−m+1

∏m−k−1
a=1 (t+ ria),

∑m−k
a=0 (k − 1 + a)ea(ri1 , . . . , rim−k

)tj−k−a,

k = n− j ≥ 1, 1 ≤ i1 < · · · < im−k ≤ m〉 n−m < j < n,

〈
∑m
a=0(a− 1)ea(r1, . . . , rm)tn−a〉 j = n,

where ea is the elementary symmetric function of degree a.

Proof. If j < m, let’s choose a submatrix M where parts i, for i = 1, . . . , j − 1, is of type u with |Ri| =
|Ci| = 1, part j is of type r with |Rj | = 1, |Cj | = 0 and part j + 1 is of type c with |Rj+1| = 0, |Cj+1| = 1.

By the second determinant in Lemma 3.1, detM = ±1, giving us IRj (G, t) = 〈1〉. As a remark, this is true

for critical ideals as well.

Then consider the case m ≤ j ≤ n − m. As we see from Section 2, this is the case where the most

number of types are possible. Type u, u, . . . , u (all parts are of type u) gives a determinant of (m− 1)tj−m

by Lemma 2.4 and the first determinant in Lemma 3.1. Type r, c, u, u, . . . , u gives a determinant of tj−m+1

by Lemma 2.4 and the second determinant in Lemma 3.1. We claim that in fact

IRj (G, t) = 〈(m− 1)tj−m, tj−m+1〉, for m ≤ j ≤ n−m.

For an arbitrary submatrix M , if it contains a part of type r/c, then each valid pairing (Definition 2.2)

gives a monomial of degree at least j −m + 1 so the determinant is divisible by tj−m+1. So we can next

assume M contains k parts of type b and m − k parts of type u. We see that the pairings whose weights

are not divisible by tj−m+1 must have precisely 1 vertex not paired with itself in each of the parts of type

b. Grouping together such pairings via the vertices not paired with themselves, by Lemma 3.1, such weights

left are divisible by (m− 1)tj−m.

We are left with the case j > n −m. Fix j and write k = n − j ≤ m − 1 for notation. Intuitively, the

minor we are considering is very big comparing to the overall generalized characteristic matrix LG(t). Thus,

we are expecting a lot of parts Vi with Ri = Ci = Vi. We call such part full. We divide our discussion into

two cases by whether there is a part of type r/c.

Type rcu`bm−`−2. This can only happen when j < n or equivalently, k ≥ 1. Since |R| = j and

|Vi \Ri| ≥ 1 for a type c, u part, we have at most (n− j)− (1 + `) = k − `− 1 parts of type b that are not

full. This means we have at least (m− `−2)− (k− `−1) = m−k−1 parts that are full. Let s1, . . . , sm−`−2
be the size of selected vertices in these type b parts. We obtain

detM = tj−m+1(t+ s1) · · · (t+ sm−`−2).

To see this, consider Lemma 2.4 and group together valid pairings by the number of vertices paired with

themselves in each part. In a type b part with si selected vertices, either all of them are paired with

themselves or si − 1 of them are. In the latter case, there are si ways to choose these si − 1 vertices. Thus,

if type b parts, with selected vertices of sizes si1 , . . . , sia , contain vertices not paired with themselves while

the rest of type b parts do not, we obtain (by Lemma 3.1 as well) a monomial si1 · · · siatj−`−a−1. Summing

over all i1 < · · · < ia ∈ {1, . . . ,m − ` − 2}, we obtain tj−m+1(t + s1) · · · (t + sm−`−2). As we have at least
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m−k−1 full parts, this expression is a multiple of tj−m+1(t+ri1) · · · (t+rim−k−1
), which is the determinant

of a special case rcuk−1bm−k−1. This means that we can eliminate variable ` and only need to keep the

generators tj−m+1(t+ri1) · · · (t+rim−k−1
) where i1, . . . , im−k−1 range through all (m−k−1)-element subsets

of {r1, . . . , rm}.

Type u`bm−`. To use some generators from above, let’s first assume k ≥ 1 as the case k = 0 is just a

corner case that is easily computed with the same argument. Similarly, we have at most (n− j)− ` = k− `
non-full parts of type b so at least m− k full parts. This also shows ` ≤ k. Let s1, . . . , sm−` be |Ri| = |Ci|
for all parts of type b and let ea(s1, . . . , sm−`) be the a-th (degree a) elementary symmetric polynomial, i.e.,

ea(s1, . . . , sm−`) =
∑

1≤i1<···<ia≤m−`

si1 · · · sia .

Then with the same argument as above, up to an overall sign,

detM =

m−∑̀
i=0

(`− 1 + i)ei(s1, . . . , sm−`)t
j−`−i.

We claim that this expression can be generated by the special cases from ` = k and tj−m+1(t+ ri1) · · · (t+

rim−k−1
) mentioned in type rcu`bm−`−2 above. To do this, apply backward induction on `. Recall that ` ≤ k

and the base case ` = k leaves nothing to be proved. Now suppose ` ≤ k − 1 and that we are done with

`+ 1. Consider f =
∑m−`
i=0 (`− 1 + i)ei(s1, . . . , sm−`)t

j−`−i. As ` < k, we must have some part i0 such that

Ri0 ∪ Ci0 6= Vi0 (by simple counting). If part i0 is of type b, let’s assume |Ri0 | = |Ci0 | = sm−` < ri0 . Since

part i0 is not full, we can adjust it into type u, resulting in case `+1 where we can apply induction hypothesis.

Here, g =
∑m−`−1
i=0 (`+ i)ei(s1, . . . , sm−`−1)tj−`−1−i is already generated by induction hypothesis. Then

g(t+ sm−`) =

m−`−1∑
i=0

(`+ i)ei(s1, . . . , sm−`−1)tj−`−i−1(t+ sm−`)

=

m−`−1∑
i=0

(`+ i)ei(s1, . . . , sm−`−1)tj−`−i +

m−∑̀
i=1

(`+ i− 1)sm−`ei−1(s1, . . . , sm−`−1)tj−`−i

=

m−∑̀
i=0

(`− 1 + i)ei(s1, . . . , sm−`)t
j−`−i +

m−`−1∑
i=0

ei(s1, . . . , sm−`−1)tj−`−i

=f + tj−m+1(t+ s1) · · · (t+ sm−`−1).

So f = g(t+ sm−`)− tj−m+1(t+ s1) · · · (t+ sm−`−1), which is already generated as desired. If part i0 is of

type u, we add one vertex in both Ri0 and Ci0 and remove one vertex from the type b part corresponding

to sm−`. Here, sm−` is chosen among s1, . . . , sm−` which is nonzero. Notice that we cannot have all type b

parts to be empty since otherwise, j ≤ r1 + · · ·+ rm−m. The determinant corresponding to this adjustment

is f1 =
∑m−`
i=0 (`− 1 + i)ei(s1, . . . , sm−` − 1)tj−`−i, which is already generated by the argument for i0 being

type b. Then,

f − f1 =

m−∑̀
i=1

(`− 1 + i)ei−1(s1, . . . , sm−`−1)tj−`−i = g.

So f = f1+g is generated as well as desired. Thus, in the type u`bm−` case, the new generators we need to add

are
∑m−k
i=0 (k−1+i)ei(s1, . . . , sm−k)tj−k−i but by counting, every type b part must be full so {s1, . . . , sm−k} ⊂
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{r1, . . . , rm} as multi-sets. We can also rewrite them as
∑m−k
a=0 (k − 1 + a)ea(ri1 , . . . , rim−k

)tj−k−a, where

1 ≤ i1 < · · · < im−k ≤ m.

This concludes the discussion for j > n−m.

4. Further specializations. One special case of interest is the complete balanced multipartite graph

where each part has the same size r. In this case, generators from Theorem 3.2 can be greatly simplified

and we obtain the following corollary.

Corollary 4.1. Let G be a complete multipartite graph with m(≥ 2) parts of size r ≥ 2. Then

IRj (G, t) =



〈1〉 j ≤ m− 1,

〈(m− 1)tj−m, tj−m+1〉 m ≤ j ≤ mr −m,
〈tj−m+1(t+ r)m+j−mr−1,∑m+j−mr

a=0 (mr − j − 1 + a)ra
(
m+j−mr

a

)
t2j−mr−a〉 mr −m < j < mr,

〈
∑m
a=0(a− 1)ra

(
m
a

)
tmr−a〉 j = n.

Theorem 3.2 makes the computation of characteristic ideals of complete multipartite graphs a lot easier.

However, when n−m < j < n, the generators for IRj (G, t) are not minimal in any sense. By subtracting, we

can reduce these generators to smaller degrees, but possibly larger and more complicated coefficients may

appear. For example, consider the ideal IRj (G, t) with j = n−m+ 1. In notations in Section 3, k = m− 1

and by Theorem 3.2, we obtain generators tj−m+1, (m − 2)tj−m+1 + (m − 1)rit
j−m for each i = 1, . . . ,m,

which can be reduced to tj−m+1, (m− 1)rit
j−m for i = 1, . . . ,m. This gives

IRn−m+1(G, t) = 〈tn−2m+2, (m− 1) gcd(r1, . . . , rm)tn−2m+1〉.

The answer is satisfactory here but as j becomes larger, it is harder to control the leading coefficients of our

generators that come to front.

To avoid this problem, let’s assume further that our ambient ring R contains a copy of Q, the field of

rational numbers. In other words, we assume that there is an injective ring morphism Q ↪→ R. This choice of

specializations allows Q,R and C, the fields of particular interests. In this way, as all our generators listed in

Theorem 3.2 have integer coefficients, we can perform Euclidean’s algorithm and deduce that each IRj (G, t)

is principal. Essentially, this specialization is effectively the same as requiring R to be a field so that R[t] is

a PID (and requiring characteristic 0 for simplicity).

Notice that the following corollary can be obtained from the well-known spectrum of the complete

multipartite graphs (see for example [5]). However, Corollary 4.1 also provides us a simple way to compute

the characteristic ideals.

Corollary 4.2. Let G be a complete multipartite graph with βi parts of size pi ≥ 2, for i = 1, . . . , w.

Write m =
∑w
i=1 βi be the number of parts and n =

∑w
i=1 βipi be the number of vertices. Assume m ≥ 2

and let R be a commutative ring that contains a copy of Q. Then

IRj (G, t) =


〈1〉 j ≤ m− 1,

〈tj−m〉 m ≤ j ≤ n−m,
〈tj−m

∏w
i=1(t+ pi)

(βi+j−n−1)+〉 n−m < j < n,

〈
∑m
a=0(a− 1)ea(r1, . . . , rm)tj−a〉 j = n,
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where (s)+ = (s + |s|)/2 is the positive part of s, ea is the elementary symmetric function of degree a and

r1, . . . , rm contain βi copies of pi for each i = 1, . . . , w.

Proof. By observing results from Theorem 3.2, we see that the nontrivial cases are in the range of

n−m < j < n. Since we know our ideal IRj (G, t) is principal, and one of the generators factors into linear

factors, it suffices to check the multiplicity of each linear factors.

Suppose that IRj (G, t) is generated by the polynomial gj ∈ R[t] with leading coefficient 1. The multi-

plicity of t in gj is j −m by Theorem 3.2 so now we only need to figure out the multiplicity of t + pi in gj
for each i = 1, . . . , w. Denote such multiplicity by δi := vt+pi(gj), i.e., (t + pi)

δi | gj and (t + pi)
δi+1 - gj .

We claim that δi = (βi − k − 1)+, where k = n− j.

To prove this claim, we first show that (t+pi)
(βi−k−1)+ | gj . Theorem 3.2 gives us two kinds of generators

and we need to show that each one of them is divisible by (t + pi)
(βi−k−1)+ . The first kind of generators

has the form f = tj−m+1
∏m−k−1
a=1 (t+ ria), where 1 ≤ i1 < · · · < ia ≤ m. Since there are m− βi parts in G

whose sizes are not pi, among the m− k− 1 chosen parts, at least
(
(m− k− 1)− (m−βi)

)
+

= (βi− k− 1)+

parts have size pi so we obtain (t + pi)
(βi−k−1)+ | f . For the second kind of generators with form f =∑m−k

a=0 (k − 1 + a)ea(ri1 , . . . , rim−k
)tj−k−a, let’s do some calculations.

Let h = (t+ ri1) · · · (t+ rim−k
)tj−m. Then

jh− (th)′ =

m−k∑
a=0

jea(ri1 , . . . , rim−k
)tj−k−a − d

dt

m−k∑
a=0

ea(ri1 , . . . , rim−k
)tj−k−a+1

=

m−k∑
a=0

jea(ri1 , . . . , rim−k
)tj−k−a −

m−k∑
a=0

(j − k − a+ 1)ea(ri1 , . . . , rim−k
)tj−k−a

=

m−k∑
a=0

(k − 1 + a)ea(ri1 , . . . , rim−k
)tj−k−a = f.

The divisibility we desire is satisfied when βi ≤ k+ 1 so let’s assume βi−k−1 ≥ 1. Similar as above, among

the m−k part sizes chosen in h, at least (m−k)−(m−βi) = βi−k parts have size pi. Thus, (t+pi)
βi−k | h,

(t+ pi)
βi−k | th, (t+ pi)

βi−k−1 | (th)′ so (t+ pi)
βi−k−1 | f as desired.

The next step is to show that (t + pi)
δj+1 - gj . To do this, it suffices to find one generator that is not

divisible by (t + pi)
δj+1. We can select f = tj−m+1

∏m−k−1
a=1 (t + ria) by choosing i1, . . . , im−k−1 to be all

parts that are not of size pi and the leftover (βi − k− 1)+ = δj parts to be of size pi. In this way, we obtain

that (t+ pi)
δj+1 - f .
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