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EXTREMAL PROPERTIES OF THE DISTANCE
SPECTRAL RADIUS OF HYPERGRAPHS*

YANNA WANG!T AND BO ZHOU?

Abstract. The distance spectral radius of a connected hypergraph is the largest eigenvalue of its distance matrix. The
unique hypertrees with minimum distance spectral radii are determined in the class of hypertrees of given diameter, in the class
of hypertrees of given matching number, and in the class of non-hyperstar-like hypertrees, respectively. The unique hypergraphs
with minimum and second minimum distance spectral radii are determined in the class of unicylic hypergraphs. The unique
hypertree with maximum distance spectral radius is determined in the class of k-th power hypertrees of given matching number.
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1. Introduction. A (simple) hypergraph G cousists of a vertex set V(G) and an edge set E(G), where
every edge in F(G) is a subset of V(G) containing at least two vertices, see [2]. For u,v € V(G), if they are
contained in some edge of G, then we say that they are adjacent, or v is a neighbor of u. For u € V(G), let
N¢(u) be the set of neighbors of u in G. The degree of a vertex u in G, denoted by d¢(u), is the number of
edges containing u in G. For an integer k > 2, the hypergraph G is k-uniform if every edge of G contains
exactly k vertices.

For distinct vertices v, ..., v, and distinct edges ei,...,e, of G, the alternating sequence (v, e1, v1,
oo, Up_1,€p,0p) is a path of G from vy to v, of length p if v;_1,v; € e, fori=1,...,p, and e; Ne; = 0 for
1,j =1,...,p with j > i+ 1. For distinct vertices vy, ...,v,—1 and distinct edges eq,...,¢e,, the alternating
sequence (v, €1,v1, ..., Vp_1, €p, Vg) is a cycle of G (of length p) if v;_1,v; € e; for i =1,...,p with v, = vy,

and e; Nej =0 for 4,5 =1,...,p with |[¢ — j| > 1 and {4, j} # {1,p}. If there is a path from u to v for any
u,v € V(G), then we say that G is connected. A hypertree is a connected hypergraph with no cycles. A
unicylic hypergraph is a connected hypergraph with exactly one cycle.

A path (vg,e1,v1,...,Vp_1,€p,Vp) of a hypergraph G is called a pendant path of G at v, if dg(ve) > 2,
dg(v;) =2for 1 <i<p-—1,6dgv) =1forve e\ {vi—1,v;} with1l <i<p, and dg(v,) =1. If p=1,
then we call e; a pendant edge of G (at vg). A hyperstar is a hypertree in which all edges are pendant edges
at a common vertex. A hypertree is hyperstar-like if it consists of a single vertex, or a single edge, or some
pendant paths at a vertex. A hypertree that is not hyperstar-like is said to be non-hyperstar-like.

Let G be a connected hypergraph on n vertices. For u,v € V(G), the distance between u and v in G,
denoted by dg(u,v), is the length of a shortest path connecting them in G. In particular, dg(u,u) = 0.
The diameter of G is max{dg(u,v) : u,v € V(G)}. The distance matrix of G is defined as D(G) =
(dg(u,v))uwev(e)- The distance spectral radius of G, denoted by p(G), is the largest eigenvalue of D(G).
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For a connected hypergraph G, D(G) = D(Og), where O¢ is a graph with V(Og) = V(G) such that for
u,v € V(Og), {u,v} is an edge of O¢ if and only if u and v are in some edge of G. Obviously, each edge
of G corresponds to a complete subgraph in Og. We note that the distance matrix (in a metric space) was
originally defined by Cayley [3] in 1841, while the distance matrix of a graph was first studied in [6].

The eigenvalues of distance matrices of graphs, arisen from a data communication problem studied by
Graham and Pollack [5] in 1971, have been studied extensively, and in particular, the distance spectral radius
received much attention, see the survey [1]. Sivasubramanian [15] studied properties of distance matrix of
a 3-uniform hypertree. Watanabe et. al. [17] studied a g-ary extension of the classical binary addressing
problem of graphs which was originally posed by Graham and Pollak [5], and found a sharp lower bound for
the minimum length of addressings in terms of distance eigenvalues of uniform hypertrees. Lin and Zhou [8]
and Lin et al. [10] studied the distance spectral radius of uniform hypergraphs and particularly, uniform
hypertrees. Lin and Zhou [9] studied the distance spectral radius of uniform hypergraphs with cycles, and
particularly, uniform unicyclic hypergraphs. Wang and Zhou [16] studied the distance spectral radius of
a hypergraph that is not necessarily uniform. They proposed some graft transformations that decrease
or increase the distance spectral radius of a hypergraph, determined the unique hypertrees with minimum
and maximum distance spectral radius, respectively, among hypertrees on n vertices with m edges, where
1 <m < n-—1, and also determined the unique hypertrees with the first three smallest (largest, respectively)
distance spectral radii among hypertrees on n > 6 vertices. Note that the hypertrees with minimum, second
minimum and third minimum distance spectral radii are all hyperstar-like hypertrees.

We point out that the spectral theory of hypergraphs can be studied with matrices and tensors. In 2012,
Cooper and Dutle [4] proposed the study of hypergraphs through tensors, and this new approach has been
widely accepted by researchers of this area, see, e.g. [7, 13, 14]. However, to obtain eigenvalues of tensors
has a high computational cost. In this regard, we see that the study of hypergraphs via matrices still has
its place.

A matching of a hypergraph is a subset of edges such that any two edges have no vertex in common.
The matching number of a hypergraph G, denoted by 8(G), is the maximum number of edges in a matching
of G.

For k > 2 and a graph G on n vertices, the k-th power of G is defined as the k-uniform hypergraph
on n + (k — 2)|E(G)| vertices with vertex set V(G) U (Uecp(a)Ve) and edge set {e UV, : e € E(G)}, where
|[Vo| =k —2 for e € E(G), see [7]. Obviously, the 2-nd power of G is G itself. A hypergraph is a k-th power
hypertree if it is the k-th power of some tree.

In this paper, we determine the unique hypertree of given diameter with minimum distance spectral
radius, the unique hypertree of given matching number with minimum distance spectral radius, the unique
non-hyperstar-like hypertree with minimum distance spectral radius, the unique unicylic hypergraphs with
respectively minimum and second minimum distance spectral radii, and the unique k-th power hypertree of
given matching number with maximum distance spectral radius.

2. Preliminaries. Let G be a connected hypergraph. Since D(G) is irreducible, by Perron-Frobenius
theorem, p(@G) is simple and there is a unique unit positive eigenvector corresponding to p(G), which is called
the distance Perron vector of G, denoted by z(G).
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Let V(G) = {v1,...,v,} and z = (zy,,...,7,,)" € R". Then
T D(G)x =2 Z de (U, 0) Ty Ty
{u,v}CV(G)

If  is unit and x has at least one nonnegative component, then by Rayleigh’s principle, we have p(G) >
2T D(G)x with equality if and only if » = x(G).

For x = 2(G) and each u € V(G), we have
p(G)xu = Z dg(u, U)JZU,
veEV(G)

which is called the distance eigenequation of G at wu.

The following lemma was stated in [8] for a connected uniform hypergraph. However, its proof applies
to any connected hypergraph that is not necessarily uniform.

LEMMA 2.1. [8] Let G be a connected hypergraph with n being an automorphism of G and z = z(G).
Then n(u) = v implies that x,, = x,.

LEMMA 2.2. [16] For k,r > 2, let G be a connected hypergraph with two pendant edges, say e; =

{wi,...,wi} and ea = {v1,...,v,} at wy and v,, respectively. Let x = x(G). Then (p(G)+ k)x., — (p(G) +
T)xvl = p(G)(mwk - .131,7‘).

For a square nonnegative matrix M, let p(M) be its spectral radius, i.e., the maximum modulus of its
eigenvalues. We restate Corollary 2.2 in [11, p. 38]. If M and N are square nonnegative matrices, M is
irreducible, M — N is nonnegative, and M — N # 0, then p(M) > p(N). For a connected hypergraph G, we
have p(G) = p(D(G)) by Perron-Frobenius theorem. So we have the following lemma.

LEMMA 2.3. Let G be a connected hypergraph with u,v € V(G) such that v and v are not adjacent. Let
G’ be a hypergraph with V(G') = V(G) such that u and v are adjacent, and two vertices in G' are adjacent
if they are adjacent in G. Then p(G') < p(G).

Let G be a hypergraph with u,v € V(G) and ey, ..., e, € E(G) such that u ¢ e; and v € ¢; for 1 <7 < r.
Let e = (e; \ {v}) U{u} for 1 <i < r. Suppose that e, ¢ E(G) for 1 < i < r. Let G’ be the hypergraph
with V(G') = V(G) and E(G') = (E(G)\{e1,...,e,})U{el,...,e.}. Then we say that G’ is obtained from
G by moving edges eq, ..., e, from v to u.

LEMMA 2.4. [16] Let G be a hypergraph with connected induced subhypergraphs Go, Hy and Hy such that
there are two adjacent vertices wy and wq in Gy with Ng,(w1) \ {w2} = Ng,(w2) \ {w1}, V(H;) NV (Gyp) =
{w;} fori =1,2, V(H)NV(Hy) =0, V(G) = V(Go)UV (H,)UV (Hs), and E(G) = E(Go)UE(H,)UE(Hz2).
Suppose that |V (H;)| > 2 for i = 1,2. Let G' be the hypergraph obtained from G by moving all edges
containing we except the edges in E(Go) from wa to w1. Then p(G) > p(G').

Let G be a hypergraph with e1,es € E(G) and uq,...,us € V(G) such that uq,...,us ¢ e; and

Ui, ...,Us € eg, where |ea| — s > 2. Let e] = e; U{uy,...,us} and e, = es \ {u1,...,us}. Suppose that
e}, ey & E(GQ). Let G’ be the hypergraph with V(G’) = V(G) and E(G’) = (E(G)\{e1,e2})U{e}, e5}. Then
we say that G’ is obtained from G by moving vertices uy, ..., us from ey to e;.

For a connected hypergraph G with Vi C V(G), let 0g(V1) be the sum of the entries of the distance
Perron vector of G corresponding to the vertices in Vj. Furthermore, if all the vertices of V; induce a
connected subhypergraph H of G, then we write o (H) instead of o (V7).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society I I

Volume 36, pp. 411-429, July 2020.
Yanna Wang and Bo Zhou 414

For e € E(G), let G — e be the subhypergraph of G obtained by deleting e.

3. Distance spectral radius of hypertrees with given diameter. A hypertree is a loose path
if there is a path containing all its vertices. For 2 < d < n — 1, let T be a loose path of the form

=n—d+1and |e;| =2 for i # [4]. Let T} be the hypertree on

(vo, €1,V1,€2,-..,Vd—1,€d,Vq), Where ‘e[%]
n vertices consisting of a single edge.

LEMMA 3.1. Suppose that d is even with2 < d <n—1. Let x = z(T%) and u € eg \ {v%_l,v%}. Then

(i) T, , > Ty, fori:O,...,%fl;

(i)

ed
L2

d_1 d
— L) @ut g T > Zi:gﬂ Lo -

Proof. Let T = T¢. Since d < n—1, we have > 3. By Lemma 2.1, z,, = x,, for w € e%\{v%_l,v%}.

€d
2

Suppose first that d = 2. From the distance eigenequations of T' at vy and vg, we have
P(T) (w0, — Ty) = (le1| = 2)@u + 22y, — 200,

ie.,

(lea] = 2)zu = (p(T) + 2) (20, — @0, )-

Obviously, (Je1] — 2)x, > 0. Thus, z,, > x,,, proving (i). Furthermore, we have
(lex] = 2)@y > 2(xyy — Tuy),s
and thus, ({%—‘ - 1) Ty + Ty > Ty, proving (ii).
Now suppose that d > 4. By Lemma 2.2, we have
P(T) @0y, = T0,) = (p(T) + 2)(T0y — Toy)-

For2 <: < % — 1 with d > 6, from the distance eigenequations of T" at vg_(;_1), vs_1, va—s, and v;, we have

|
—

p(T)($Ud7(i71) - xvi—l) - p(T)(xvdﬂ' - xvi) =2 (mv_;’ - xvd—j)?
J

I
=

ie.,

DT) ey — o) = (O(T) 2 (g 1) — Far) +2 3 (s — Toy).
7=0

Thus, it follows that x,, , — ,, for 0 <17 < % — 1 are all positive, or zero, or negative.

From the distance eigenequations of 7" at v4 , and va_,, we have
2 2

d
41

d
_Q)xu+22xvi—2 Z T, s
i=0

i=4+41

p(T) (xv%+1 - x”g—l) - (

€d
2
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ie.,

d
d_2

ea| — 2) zy = (p(T) +2) (:101,%+1 —xv%q) +2 ;(wud,i — Ty,)-

(

- 2) x, > 0. Thus, 2, , > z,, for 0 <i < ¢ — 1. This proves (i).

Obviously, (

6% > 35
Note that
1 6% -2 51 d
ip(T) (IU%H —xvgfl) = xu—l—me— Z T -
=0 i=4+1
By (i), we have Tyy,  —Tu, >0 Now (ii) follows immediately. |
2 27

THEOREM 3.2. Let T be a hypertree on n > 6 vertices with diameter d, where 1 < d < n —1. Then
o(T) > p(T2) with equality if and only if T = T9.

Proof. 1t is trivial if d = 1.

Suppose that d > 2. Let T be a hypertree on n vertices with diameter d that minimizes the distance
spectral radius.

Let P = (vo,e1,v1,-.-,V4-1,€d,vq) be a path of length d in T

Suppose that there exists a vertex v; with 1 < i < d — 1 of degree at least three. Let dr(v;) =t > 3.
Then T counsists of ¢ subhypertrees 77, ..., T} such that |V(T;)| > 2 for 1 <i <t and T1,...,T; have exactly
one vertex v; in common. We may assume that e; € E(T}) and e;41 € E(T). Let T' be the hypertree
obtained from T by deleting edge e; and all edges in E(T3), and adding an edge e; UV (T3). Obviously, the
diameter of 7" is d. By Lemma 2.3, p(T") < p(T), a contradiction. Thus, ér(v;) =2 fori=1,...,d — 1.

Suppose that there exists an edge e; with 2 < i < d — 1 of size at least three, whose deletion yields at
least three nontrivial components, i.e., there exists a vertex w in e; \ {v;—1,v;} with dp(w) > 2. Let T, be
the component in T — e; containing w. Let T” be the hypertree obtained from T by deleting edge e; and
all edges in E(Ty,), and adding an edge e; U V(Ty,). Obviously, 7" also has diameter d. By Lemma 2.3,
p(T") < p(T), a contradiction. Thus, T' — e; has exactly two nontrivial components for 2 < i < d—1. It
follows that T'= P. If d = n — 1, then T = T%. Suppose that d < n — 1. Let x = x(T%).

Case 1. d is even.

By Lemma 3.1 (i), we have

4-1 d

(3.1) Z Ty, < Z Loy, -
=0 i:%

Suppose there exist some k with 1 < k < % and some ¢ with % + 1 < ¢ < d such that |ex| > 3 and

d
le¢| > 3. We may assume that > 2 , |e;| > Z?:g+1 lei]. Let T™ be the hypertree obtained from T' by moving
2
all vertices in e; \ {v;—1,v;} for each i # g from e; to €d. Obviously, T* = T9. Let u € e, \ {vk_1, v} By
Lemmas 2.1 and 3.1 (ii),

d

2

1 d
(3.2) S leil =2z + D> @, > Y a0,

i=1 =0 i:%+1

vl
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As we pass from T to T*, fori = 1,..., % —1 (with d > 4), the distance between a vertex of e; \ {v;_1,v;} and
a vertex of {v%, ... ,vd} is decreased by % —1, the distance between a vertex of e; \ {v;—1,v;} and a vertex of
{UO7 . ,vgfl} is increased by at most %—i; fori = d—i—l, ..., d, the distance between a vertex of e;\{v;_1,v;}
and a vertex of {vo, R vgfl} is decreased by i — &, the distance between a vertex of e; \ {v;—1,v;} and a
d
vertex of U2 (e; \ {v;—1,v;}) is decreased by at least i — %, the distance between a vertex of e; \ {v;_1,v;} and
a vertex of {Ud 415+ -+ V4 ( is increased by at most i — 27 and the distances between all other vertex pairs are

decreased or remain unchanged. Let F' = Z ) Yo (i \ {vic1,v:}) (4 — ) (Z?:% Ty, — Zz'%:_ol xv) Then
=0if d =2, and from (3.1), FF > 0 if d > 4. Thus, from (3.2), we have

1 . 1 .
L(o(T) ~ p(T) 2 LaT(D(T) ~ DT))a
d d 5 5-1 d
Z or-(ei \ {vi-1,vi}) ( - 2> Z(|€z‘\ —2)zu + Z T, = D
i= i=1 =0 i*d—o—l
> Y e\ foub) (i-5) { Slel - 2o+ Tau - 3
i:%-&-l =1 1=0 i:%+l
>0,
and so p(T*) < p(T), a contradiction. Therefore, we have either |e;| = 2 for i = 1,...,% or |e;] = 2 for
1= % +1,...,d. If d = 2, then T = T¢. Suppose that d > 4. Suppose that 7' % T%. Then we may assume
that |e;| :2fori:g+1,...,d, but |e;| > 3 for some i = 1,...,% - 1.

Let T be the hypertree obtained from 7" by moving all vertices in e; \ {v;_1,v;} foreachi=1,...,5—1
from e; to ed. Obviously, T =~ Te.

As we pass from T to T, fori=1,... ,g — 1, the distance between a vertex of e; \ {v;_1,v;} and a
vertex of {v%, . ,vd} is decreased by % — 4, the distance between a vertex of e; \ {v;—1,v;} and a vertex of
{vo, ey Ud _1} is increased by at most g — 1, and the distance between any other vertex pair is decreased

or remains unchanged. Then, from (3.1), we have

S(0(T) — p(T) = 22T (D(T) ~ DT
41 d g-1
> Y g\ (o) (5 ) | Lo - X
i=1 z—% 1=0
> 0,

and thus, p(T) < p(T), a contradiction. Therefore, T = Te.
Case 2. d is odd.

Let A = ZZ Oxv and B = Z?:M.’I;vi. By Lemma 2.1, x,, = z,, , for i = 0,..., 21, and thus,
2
A= B.
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Suppose that there exists some i with 1 <7 < d and i # %, such that |e;| > 3. Let T* be the hypertree
obtained from T by moving all vertices in e;\ {v;_1,v;} for each i # % from e; to Cafr. Obviously, T* = T4

As we pass from T to T*, for i = 1,..., %, the distance between a vertex of e; \ {v;—1,v;} and a
vertex of {Ud-gl e ,vd} is decreased by % — 4, the distance between a vertex of e; \ {v;—1,v;} and a
vertex of {vo, . ,v¥} is increased by at most % — 1, for i = d—f, ...,d, the distance between a vertex
of e; \ {vi—1,v;} and a vertex of {vg, . ,v%} is decreased by 7 — %, the distance between a vertex of
e; \ {vi—1,v;} and a vertex of {v#, ...,Vq ¢ is increased by at most ¢ — %, and the distances between all

other vertex pairs are decreased or remain unchanged. Then

" (D(T) — D(T*))z

M| =

5((T) = p(T7)) =

a

2

St (S5 (54

+ i or«(e; \ {vi—1,vi}) (Z d;l) <AB+%‘“>

d+3

=212

d—1

= d+1
= or-(ei\ {vi1,vi}) (2 - Z) Tog_y
=1 ’

+ zd: or-(ei \ {vi-1,vi}) (Z - d;1> Lo apr

a+3

1:72

>0,

and thus, p(T*) < p(T), a contradiction. Therefore, |e;| = 2 for 1 < i < d with i # %£L. It follows that
T =T 0

4. Distance spectral radius of non-hyperstar-like hypertrees. For n > 6, let H,, be a hypertree
on n vertices obtained from T} 5 with edge e = {wy,...,w,_3} by attaching a pendant edge {u;,w;} to w;
for each i = 1,2,3. Let H/, be the hypertree obtained from H,, by deleting edges e and {us,ws}, and adding
edges e\ {wa}, {ug, w1} and {ws, ws}.

LEMMA 4.1. Let H,, and H], be defined above. Then p(H,) < p(H)).

Proof. Let © = x(H,). By Lemma 2.1, &y, = Ty, = Ty, and Xy, = Xy, = Ty, For v € V(H,) \
{wi,u1}, 2dp, (v,wy) — dp, (v,u1) > 0. From the distance eigenequations of H,, at w; and u;, we have
p(Hp) (2T, — Tyy) > 2@y, — Ty, which implies that (p(H,) + 1)(22w, — Ty, ) > Tuy + Tw, > 0. Thus,
2T, > Ty -

As we pass from H,, to H/, the distance between us and ws is increased by 2, the distance between usy
and a vertex of {uy,w } is decreased by 1, the distance between wq and a vertex of {uy,w;} is increased by
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1, and the distances between all other vertex pairs are increased or remain unchanged. Then

S (o(HL) — p(H) > Lo (D(H,) — D(H,))a

Z 2$u2xw2 — Ty Ty — TusLwy + Ly Ly + Laps Ly
— 2
= Ly (2$w1 - xul) + xwl

>0,

and thus, p(H,) < p(H)}). O

THEOREM 4.2. Let T be a non-hyperstar-like hypertree on n > 6 wvertices. Then p(T) > p(H,) with
equality if and only if T = H,,.

Proof. Let T be a non-hyperstar-like hypertree on n vertices that minimizes the distance spectral radius.

Let d be the diameter of T. Obviously, d > 3. Let P = (vg, e1,v1,-..,V4—1,€4,0q) be a path of length d
inT.

Suppose that d > 4. Let T” be the hypertree obtained from T by moving all edges containing v, except
es from vy to vy. Let T” be the hypertree obtained from T by moving all edges containing vy_o except
eq—1 from vg_o to vg_1. Since T is non-hyperstar-like, one of 77 and T”, say T’, is non-hyperstar-like. By
Lemma 2.4, p(T") < p(T), a contradiction. Thus, d = 3. Therefore, T" is a hypertree obtainable from T}
with edge e = {w1,...,wi} by attaching ¢; pendant edges to w; for 1 <i <k, where t; >3 > -+ >t >0
and t9 > 1.

Suppose that to > 2.

Suppose that t3 > 1. Let 7" be the hypertree obtained from T by moving all edges containing w3 except
e from w3 to wy. Obviously, T is non-hyperstar-like. By Lemma 2.4, p(T"") < p(T'), a contradiction. Thus,
ty=--=1t, =0.

Suppose that ¢; > 3. Let ey,..., e, be t; pendant edges at wi. Let T be the hypertree obtained from
T by deleting edges ey, ..., e, —1 and adding a pendant edge U?:_llei at wy. Obviously, T™* is non-hyperstar-
like. By Lemma 2.3, we have p(T™*) < p(T), a contradiction. Thus, ¢; = 2. It follows that t; = to = 2 and
tg=--=t,=0.

If n =6, then T = H).

Suppose that n > 7. Let e} and €2 be two pendant edges at w;. Let e} and e2 be two pendant edges at
wy. For i =1,2, choose u} € e} \ {w;} and uf € e} \ {wa}.

Suppose that |e}| > 3 for some j,i € {1,2}, say |ef| > 3. Let 21 € e1 \ {w1,u}}. Let T be the hypertree
obtained from T by moving all vertices in €} \ {w;,u}} from €} to e for each j = 1,2 and i = 1,2. Obviously,
T~H.

Let = (7). By Lemma 2.1, Ty, = Tu,, Tyl = Ty2 = Typ = Ty2, and x, = z,, for v € V(1) \

1,2 ,1,2
{wy, we, uj, ui, uz, us}.

As we pass from T to f, for i, 7 = 1,2, the distance between a vertex of eé \ {wj, ué} and u; is increased
by 1, the distance between a vertex of e’ \ {w;, u%} and e\ {w;} U {ug, uz} with £ = {1,2}\ {j} is decreased
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by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then

Lo(T) - o) >

2
2 2 k
zzz%@wW%(z%f%ﬁm+w—%)
s=1

2T (D(T) = D(T))x

N | =

j=1i=1
2 2 k
= ZZ(|6;| — 2z, (was = Ty, + Tyl T Ty2 — xu§>
j=1i=1 s=1
2 2 k
>33 (6 9 (Y-,
j=11i=1 s=1
>0,

and thus, p(T) < p(T), a contradiction. Thus, T = H.

By Lemma 4.1, p(H,) < p(T), a contradiction. It follows that to = 1. Since T is non-hyperstar-like, we
have t3 = 1.

Suppose that k > 4 and t4 = 1. Let T be the hypertree obtained from T by moving all edges containing
wy except e from wy to wy. Obviously, T is non-hyperstar-like. By Lemma 2.4, p(T') < p(T'), a contradiction.
'I’hus7 ty=---=1t,=0.

Suppose that ¢; > 2. Let €,...,e;, be t; pendant edges at w;. Let T} be the hypertree obtained from
T by deleting edges €, ..., e} and adding a pendant edge U?:le; at wy. Obviously, T3 is non-hyperstar-like.
By Lemma 2.3, we have p(T1) < p(T), a contradiction. Thus, t; = 1. It follows that t; = 2 = ¢t3 = 1 and
ty=---=ty=0for k > 4. Fori=1,2,3, let e/ be the pendant edge at w; in T, and choose u; € e \ {w;}.
We may assume that |ef| > |ef| > |ef] > 2.

Suppose that |ef| > 3. Let z3 € e/ \ {w1,u1}. Let Tz be the hypertree obtained from 7' by moving all
vertices in e \ {w;, u;} from e to e for each ¢ = 1,2,3. Obviously, 7> = H,,. Let = #(T2). By Lemma 2.1,
Ty, = Twy = Twgy Tuy = Tuy = Tus, and T, = 1, for v € V(T) \ (Ui {w;, u;}).

As we pass from T to Ty, for i = 1,2, 3, the distance between a vertex of e} \ {w;, u;} and wu; is increased
by 1, the distance between a vertex of e \ {w;,u;} and e\ {w;} U {us,u} with {s,t} = {1,2,3} \ {i} is
decreased by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then

S (01— p(13)) > Lo (D(T) — D(Ty))

k
> Z:UT2 (el \ {wi,u;}) waj — Ty, + Tu, + Ty, — Ty,
; =

1=

3 k
> Z('eil‘ - 2)3722 waj = L,
1 j=1

>0,

and thus, p(T2) < p(T'), a contradiction. It follows that |e1| = |ea| = |es| = 2. Thus, T = H,,. 0
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5. Distance spectral radius of unicylic hypergraphs. In this section, we determine the unique
unicylic hypergraphs with minimum and second minimum distance spectral radius, respectively.

A unicyclic hypergraph is a loose cycle if there is a cycle containing all its vertices. For n > 3, let U} be
the loose cycle of length two on n vertices such that the sizes of the edges are 2 and n.

Let K3 be a triangle on 3 vertices. If G is a unicylic hypergraph on 3 vertices, then G = Ul or K3, and
obviously, p(Ui) = p(K3).

THEOREM 5.1. Let G be a unicylic hypergraph on n > 4 vertices. Then p(G) > n — 1 with equality if
and only if G = UL.

Proof. Let g be the length of the unique cycle C of G. Let d be the diameter of G. If g > 3, since n > 4,
then d > 2. If g = 2 and G 2 U}, then there is a vertex outside C or the sizes of both edges of C are at
least 3, implying that d > 2. Therefore, we have either G = U} or d > 2. By Corollary 2.2 in [11, p. 38], U}
is the unique unicylic hypergraph on n > 4 vertices with minimum distance spectral radius, which is n — 1.0

LEMMA 5.2. Let G be a hypergraph consisting of three connected subhypergraphs Go, G1, G such that Gy
is a cycle of length two, where E(Go) = {e1, ea} with e; Nes = {u, v}, V(G1)NV(G2) =0, V(G1)NV(Gy) =
{u}, V(G2)NV (Gyp) = {v}, and E(G) = E(Go)UE(G1)UE(Gs2). Letle;| =n; fori =1,2. Ifni—2 > ng > 2,
let wy € e1 \ {u,v} and G’ be the hypergraph obtained from G by moving vertex wy from ey to ea. Then
p(G) < p(G").

Proof. Let x = ©(G). Let wa € e \ {u,v} if ng > 3. By Lemma 2.1, z, = z,, if z € €1 \ {u,v}, and
Ty = Ty, if 2 € €2\ {u,v}.

Let Vi = V(G) \ ((e1 Uea) \ {u,v}). Note that for z € Vi, dg(w1,2) = dg(we, z). From the distance
eigenequations of G at w; and ws, we have

p(G)’le = (nl - 3):61111 + 2(712 - 2)xw2 =+ Z dG(wlaz)z27
z€Vy

P(G)Tw, =2(n1 — 2)Xy, + (N2 — 3) Ty, + Z da(we, 2)x,.

z€Vy
Then
p(G)(xwl - l'w2) = (nQ - 1)xw2 - (nl - 1>xw17
(5.3) (P(G) +n1 = D)ww, = (p(G) +n2 = 1)@,

By interlacing theorem, we have p(G) > p(T},) = na — 1. So, from (5.3), we have

PR () B R re) Byt (e SR

and thus,

(5-4) (p(G) + Daw, = (p(G) + 2)Tw, > 0.
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As we pass from G to G’, the distance between w; and a vertex of e; \ {u, v, w;} is increased by 1, the
distance between w; and a vertex of eg \ {u, v} is decreased by 1, and the distance between any other vertex
pair remains unchanged. Thus,

S0(@) — (@) >

This, together with (5.3) and (5.4), implies that
1
2

IT(D(G/) — D(G))x = 24, (N1 — 3) Ty, — (N2 — 2)T, ) -

(p(G/) - p(G)) > .Q?wl((p(G) + 1).Z‘w2 - (p(G) + Q)xwl) >0,

and thus, p(G) < p(G'). O

For n > 4, let U2 be the loose cycle of length two on n vertices such that the sizes of the edges are 3
and n — 1, and let U2 be the loose cycle of length three on n vertices such that the size of the edges are 2, 2
and n — 1.

THEOREM 5.3. Let G be a unicylic hypergraph on n > 4 vertices, where G 2 UL. Then p(G) > p* with
equality if and only if G =2 U2 or U2, where p* is the the largest root of the equation p* + (3 —n)p? + (12 —
5n)p+4—2n=0.

Proof. Let G be a unicylic hypergraph on n vertices with G 2 U} that minimizes the distance spectral
radius.

Let C be the unique cycle in G with E(C) = {es,...,e4} such that v;_1,v; € e; for i = 1,..., ¢ with
vg = Vg, where g > 2. For ¢ =0,...,9 — 1, let T; be the component in G — E(C) containing v;. If g = 2,
then we assume that |e;| > |es].

Suppose that there exists a vertex v; with 0 < ¢ < g — 1 of degree at least three, i.e., |V(T;)| > 2. Let
ep = ey if i = 0. Let G’ be the unicyclic hypergraph obtained from G by deleting edge e; and all edges in
E(T;), and adding an edge e; UV (T;) if g > 3, and let G’ be the unicyclic hypergraph obtained from G by
deleting edge eg and all edges in E(T;), and adding an edge eg U V(T;) if g = 2. Obviously, G’ 2 U!. By
Lemma 2.3, p(G’) < p(G), a contradiction. Thus, d7(v;) =2 for i =0,...,9 — 1.

Suppose that there exists an edge with 1 < ¢ < g of size at least three, whose deletion gives at least
two nontrivial components, i.e., there exists a vertex w in e; \ {v;_1,v;} with dg(w) > 2. Let T, be the
component in G — e; containing w. Suppose first that g > 3 or g = 2 and |ea| > 3. Let G” be the unicyclic
hypergraph obtained from G by deleting edge e; and all edges in E(Ty,), and adding an edge e; U V(Ty,).
Obviously, G” 2 U!. By Lemma 2.3, p(G”) < p(G), a contradiction. So assume that g = 2 and |es| = 2.
Then ¢ = 1. Let G” be the unicyclic hypergraph obtained from G by moving the edges containing w except
e1 from w to vg. Then dgr (vg) > 2, but as D(G") is permutationally similar to D(G), we have p(G”) = p(G),
a contradiction. Therefore, G — e; has exactly one nontrivial component for 1 <17 < g. That is, G = C.

Suppose that g > 4. Let G* be the unicyclic hypergraph obtained from G by deleting edges e; and e,
and adding an edge e; U ep. Obviously, G* 2 Ul. By Lemma 2.3, p(G*) < p(G), a contradiction. Thus,
g=2org=23.

Case 1. g =2.

Since G 2 U}, then |es] > 3. If n = 4,5, then G = U2. Suppose that n > 6 and |es| > 4. Let
w € eg \ {v1,v9}. Let H be the unicyclic hypergraph obtained from G by moving vertex w from ey to e;.
By Lemma 5.2, p(H) < p(G), a contradiction. Thus, |ez| = 3. Therefore, G = U2.
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Case 2. g =3.

We may assume that |es| > |ea| > |e1| > 2. Suppose that |es| > 3. Let H be the unicyclic hypergraph
obtained from G by moving all vertices in e; \ {v;_1,v;} from e; to e3 for i = 1,2. Obviously, H = U3. Let
e} = {vo,v1}, €5 = {v1,v2} and e = V(G) \ {v1} be the edges of H.

Let x = z(H). By Lemma 2.1, z,, = x,, and z,, is a constant for any w € e} \ {v2,v0}. From the
distance eigenequations of H at w € e} \ {vo, v2}, vo and v, we have

P(H) Xy = 2y + 224, + (N — 4) 4,
P(H)Tvy = Tyy + Toy + (0= 3) T,
p(H)xy, = 224, +2(n — 3)Typ-
Then
P(H) (Ty + Ty — Tyy) = =Ty + 3Ty, + Ty > — Ty + 3Ty,

which implies (p(H) 4+ 1)(2w + Tpy — Toy) > Ty + 22, > 0. Thus, for any w € ez \ {v2,v0}, we have
T + Ty — Toy > 0.

As we pass from G to H, the distance between a vertex of e; \ {vg,v1} and v; is increased by 1, the
distance between a vertex of e; \ {vg,v1} and e3 \ {vg} is decreased by 1, the distance between a vertex of
e2 \ {v1,v2} and vy is increased by 1, the distance between a vertex of es \ {v1, v2} and e3 \ {v2} is decreased
by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then, for any
w € ez \ {va,v0}, we have

S (6(G) — plH)) > Lo (D(@) ~ D(H))a

2
> op(er\ {vo,v1}) (ou(es \ {vo}) — zv,)
+om(e2 \ {vi,v2}) (on(es \ {va}) — 2v,)
> ou(er \ {vo,v1}) (Tw + 2o, — Ty,)
+op(ea \ {v1,v2}) (T + Ty — oy )
= UH(eé \ e3) (Ty + Tyy — To,)

>0,
and thus, p(G) > p(H), a contradiction. It follows that |es| = 2. Therefore, G = U3.

By combining Cases 1 and 2, we conclude that G = U2 or U3. With proper labelling of the vertices, U2
and U2 have the same distance matrix, and thus, p(U2) = p(U2). From the distance eigenequations of U3
used above in Case 2, it is easily seen that p(U2) is the largest root of the equation p3 + (3 —n)p? + (12 —
5n)p+4 —2n = 0. O

6. Distance spectral radius of hypertrees with given matching number. For 2 < 3 < | ], let
F, 5 be the hypertree obtained from a hypertree on n — 3 vertices consisting of a single edge e by attaching
a pendant edge of size two to each of 8 chosen vertices of e, respectively. Obviously, 8(F, g) = 3.

THEOREM 6.1. Let T be a hypertree on n vertices with matching number 3, where 2 < < |5 |. Then
p(T) > p(Fy, g) with equality if and only if T = F, 5.

Proof. Let T be a hypertree on n vertices with matching number § that minimizes the distance spectral
radius.
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Let M = {ey,...,es} be a maximum matching in 7. Suppose that there is an edge in M, say e;, which
has two vertices of degree at least two, say w; and ws. Let T” be the hypertree obtained from T' by moving
all edges containing ws except e; from ws to wi. Obviously, M is also a maximum matching of 77. By
Theorem 2.4, p(T') > p(T"), a contradiction. Thus, e1,...,eg are all pendant edges.

Fori=1,...,0, let v; be the unique vertex in e; of degree at least two. Let V3 = V(T)\ U?zl e \{vi}.
Obviously, |Vi| > > 2. Suppose that there are two vertices in Vi, say z; and zs, which are not adjacent.
Let T” be the hypertree obtained from T by deleting all edges in T except the edges in M, and adding an
edge V1. Obviously, 8(T") = 8. By Lemma 2.3, p(T) > p(T"), a contradiction. Thus, any two vertices in
V1 are adjacent, which implies that V; is an edge.

We may assume that |e;| > --- > |eg| > 2. Suppose that |e;| > 3. For i = 1,..., /3, choose a vertex v} of
degree one in e;. Let w € e;\{v1,v]}. Let T* be the hypertree obtained from T by moving all the vertices
in e;\{v;,v;} from e; to e for each ¢ = 1,...,5. Obviously, T* = F,, 3. Let z = z(T*). By Lemma 2.1,
Ty, =00 =Ty, Typ =00 = Ty and @, = x,, if v € V(T)\ U?Zl {vi, v}

As we pass from T to T*, for i = 1,..., 3, the distance between a vertex of e;\{v;, v/} and v} is increased
by 1, the distance between a vertex of e;\{v;, v;} and {v;,v}} with j € {1,..., 8}\{i} is decreased by 1, and
the distances between all other vertex pairs are decreased or remain unchanged. Thus,

S (6T~ p(T*) > 22T (D(T) ~ D(T*))a

B
> or(e\ {onvl) | 3 (0 ) — 2y
i=1 1<j<p
JF#i

8
>ZUT*(61‘\{U¢7U;}) > o,

1<5<8
J#i
>0,

and therefore, p(T') > p(T™*), a contradiction. It follows that |e1| =+ = |eg| =2, l.e., T = F), 5. 0

7. Distance spectral radius of power hypertrees with given matching number. Nath and
Paul [12] determined the unique tree with maximum distance spectral radius among trees on n vertices
with matching number §, where 1 < 8 < |%]. In this section, we determine the unique hypertree with
maximum distance spectral radius among k-th power hypertrees with m edges and matching number S,
where 1 < 8 < LmTHJ

LEMMA 7.1. [16] Fort > 3, let G be a hypergraph consisting of t connected subhypergraphs G, ..., Gy
such that |V(G;)| > 2 for 1 <i <t and V(G;) NV(G;) = {u} for 1 < i < j <t. Suppose that ) # I C
{3,...,t}. Letv € V(G2)\{u} and G’ be the hypergraph obtained from G by moving all the edges containing
uwin G; for alli € I fromu tov. If og(G1) > 0c(Gs), then p(G) < p(G').

For positive integers p, ¢ and d, let To4(p, ) be the k-uniform hypertree obtained from a k-uniform loose
path
(Ud, €d,Ud—1,--.,U2,€2,UT1,E1, U’O(UO)7 ella U1, el27 V2y...,Ud—1, e:ja Ud)

by attaching p — 1 pendant edges to ug—1 and ¢ — 1 pendant edges to vg—1. In particular, T5(p,q) is a
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k-uniform hyperstar with p 4+ ¢ edges. Let T54(0,1) be a k-uniform loose path on 2d — 1 edges.
LEMMA 7.2. Ford>2 and 2 <p <q, p(T2a(p,q)) > p(T2a(p — 1,q + 1)).

Proof. Let H = Tsq(p,q). Let H' be the hypergraph obtained from H by moving the pendant edge eq
from ug_1 to vg—1. Obviously, H = Toy(p — 1,q+ 1).

Let x = x(H'). By Lemma 2.1, the entry of 2 corresponding to each vertex of degree one in the p — 1
pendant edges containing ug_1 is the same, which we denote by u, the entry of x corresponding to each
vertex of degree one in the ¢ + 1 pendant edges containing v4—; is the same, all equal to x,,, the entry of
x corresponding to each vertex of e;\{u;—1,u;} for i =1,...,d — 1 is the same, which we denote by a;, the
entry of x corresponding to each vertex of e}\{v;—1,v;} is the same, which we denote by b;.

Fori=1,...,d— 1, from the distance eigenequations of H’ at u; and v;, we have
d—1 d—1
p(H o, =Y (i+5)r0, + D (k= 2)(i + j)bj + (k= 1) (g + 1)(d + i)z,

j=0 j=1
d—1

+ )i = dlwa, + Z(k = 2)(i = j + Do,
=0 j=1
d—1

+ 2 (k=2)( —daj + (k= 1(p - 1)(d—i)u,

Jj=i+1
d—1 i d—1
p(H Ny, =Y i —jlag, + Y (k=2)(i =5+ Db+ Y (k—=2)(j — )b
7=0 Jj=1 Jj=i1+1

d—1
+(k = 1)(q + 1)(d = i)z, + Y (i + )z,
7=0

d—1
+Y (k=2)(i+ j)a; + (k= 1)(p - D(d+i)n,
j=1
and for k >3 and i = 1,...,d — 1, from the distance eigenequations of H' at a vertex in e;\{u;—1,u;} and

a vertex in e}\{v;_1,v;}, respectively, we have

d—1 d—1
p(H')a; =Y (i + j)wy, + Y (k= 2)(i + j)bj + (k = 1)(q + 1)(d + i),
=0 j=1
i—1 d—1 d—1
D (= d)wu, + Y G =i+ Daw, + > _(k=2)(|li — j| + 1)a;
Jj=0 j=i j=1

+(k =D —-1)(d—i+ - as;

d—1 d—1
p(H b = (i + j)wu, + 3 (k= 2)(i + j)aj + (k= 1)(p = 1)(d + i)
=0 i=1
i—1 d—1
+> - va+Zg—z+1xv + (k= 2)(li — 5] + 1)b,
7=0 Jj=t Jj=1

+(k=1)(g+1)(d—i+1)zy, — b
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Then
d—1 d—1
p(H/) (‘:Cuz - ‘Iﬂi) =2 Z(zvj - xuj) + 2 Z (k - 2)(bj - aj)
j=i j=i+1

+2i(k — 1)(q¢ + Daw, — 2i(k = 1)(p — Dp

302500, — )+ 30k 22 - (b, — ay),
j=0

j=1

d—1 d—1
(p(H') + 1) (a; = bi) = (2 = 1) Y (2, — ) + (20— 1) Y (k—2)(b; —ay)
Jj=i j=i+1

+(2i —1)(k—1)(g+ Daw, — (2i —D(k—1)(p— 1)

S 2, — ) + S (k- 227~ 1)y — ay).
3=0

Jj=1

Let A= Y"1 ((k—2)a; +zu,) + (k= 1)(p— Dpand B =31 ((k — 2)bj +2,) + (k — 1)(q + D)a,.
Now we prove A < B. Suppose this is not true. Next we prove that a; < b; and z,,, < z,, by induction on ¢

for1<i<d-1. Fori=1,

d—1 d—1
(p(H') +1) (a1 = b1) = Z(%j — Ty;) + Z(k —=2)(bj —a;) + (k= 1)(g + D)zu,
—(k=1)(p—1Dp+ (k—2)(b1 —a1)
=B-A
S 07
we have a; < by, and then
d—1 d—1
p(H/) (xul - xvl) = 2Z(xv_j - ‘ruj) + QZ(k - 2)(bj - aj)
j=1 =2

ok 1)(g + 1)y — 25— 1)p— Dt (k— 2)(by —an)
=2(B—A)+ (k—2)(a1 — b)) <0,

implying that z,, < z,,. Now suppose that ¢ > 2, a; < b; and z,; < y, for 1 <j<i—1. Then

(p(H/) + 1) (ai _bi) —p(H/) ('Tuz 1 Lo 1) = / ((k_Q)bj +'ij - (k_2)aj _xuj)

+(k =g+ Day, — (k= 1)(p—1pu

= (B=A) = Y (k=2 by~ ) + (an, — 7,)

<0.
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Thus, (p(H') +1) (a; — b;) < p(H') (2w, , — Tw,_,) <0, from which we have a; < b;. Note that

p(H") (@, = 20,) = (p(H') + 1)(a; — b;) = d_l (T, = 2u;) + § (k —2)(b; — a;)
f(k — g+ 1)xui:i+(1k ~ = Dn
=(B-A) - i (T, — Tu,;) — Z;(k: —2)(bj — a;)
<0.

Thus, p(H')(zy;, — xv;) < (p(H') + 1) (a; — b;) < 0, implying that z,, < z,,. It follows that a; < b; and
Tu, <y, for 1 <i<d—1. Thus, Y971 ((k — 2)a; + 2u;) < 251 ((k — 2)bj + 4,).

By Lemma 2.2, (p(H') 4+ k)(pp — 2u,) = p(H')(Xuy_, —T0,_,) <0, and thus, p < z,,,. This is impossible,
because it would imply that A < B. Therefore, A < B.

As above, we have a; > b; and z,,, > z,, for 1 <i < d— 1, and since
p(HI)(zui - xvi) > (p(Hl) + 1)(0‘1 - bl) > p(Hl)(xui—l - ‘rvi—l) > 07

we have x,, — 2y, > a; —b; for 1 <7 <d—1and x,, — %y, > Ty, , — Ty,_, for 2 <7 < d—1. By Lemma
H/

2-27 H—= Ty = p(p;[i')]rk(wud71 - xvd—l) < Tyyy = Tog_y-

As we pass from H to H', the distance between a vertex of es\{ug—1} and a vertex of degree one
in the remaining p — 1 pendant edges at uy—; is increased by 2d — 2 (p > 2) , the distance between a
vertex of e4\{uqg—1} and a vertex of degree one in the ¢ pendant edges at vg_1 is decreased by 2d — 2, for
0 < i < d— 1,the distance between a vertex of eg\{ug—1} and u; is increased by 2i, the distance between a
vertex of eg\{uq—1} and v; is decreased by 2i, the distance between a vertex of eq\{uq—1} and e;\{u;—1,u;}
is increased by 2i — 1, the distance between a vertex of eg\{uq—1} and e;\{v;_1,v;} is decreased by 2i — 1,
and the distances between all other vertex pairs remain unchanged. Thus,

(7.5) S (o(H) — p(H') > ST (D(H) ~ D(H))a = (b~ 1), W,
where
d—1 d—1
W= (= 1)(2d = 2)(gra, — (= Dp) + 3 20w, —20) + (= 2) Y (20 = )b — )
Let
d—1
F=S"(2i+(k-2)2i 1) +2(p— )k —1)(d—1).

i=1
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By the distance eigenequations of H' at uy_1 and vq4_1, we have

P(H')(Tuy ) = Toy ) = (/f —1)(2d-2)((¢+ 1) zu, —(p—1)p)
d—1
+222 Ty, — Toy) + (K—2) ) (20— 1)(b; — a;)
=W—|—(k—1)(2d—2)xud -
d—1

—2W+Z2z —ay,)+ (k—2)> (2 —1)(a; — b;)
i=1

+(k - )(2d —2)((p=Dp—(g—Dzu,)

d—1 d—1
<2W 4 Y 2w, — x0,) + (k= 2) D> (20 — 1) (0, — 20,)
i=1 i=1

+(k—1)(2d = 2)(p — 1) (4 — u,)
< 2W + F(Iud,l - :I"Tld—l)'

That is,

(7'6) 2W > (p(H/) - F)(xud—l - xvd—l)'

For any w € V(H’), there is a subhypergraph H* of H' (obtained from H’ by removing g —p+ 2 pendant
edges at vg—1 and the resulting isolated vertices) such that w € V(H*) and H* = Th4(p — 1,p — 1). Then

ZdH/wz ZdH*wz

zeV (H') zeV (H*)

It is easy to see that

Z dy+(w, z) > Z dg+(uo, 2)

Z2€V(H*) 2€V(H*)

U

—1
= d-(uo, ui) + dp=(ug, v;)

o
Il
s

+ Z dp+(ug, 2) + Z dp-(uo, 2)

z€ei \{ui—1,u:} zee\{vi—1,v:}

+p—-1) > due(uo2)+ Y du-(ug,2)

z€ea\{ua-1} z€ep\{va—1}

7‘
)

(20 +2(k—2)))+2(p—1)(k—1)d

%
Pﬁﬁ'

Thus, >°, cy gy dur(w, z) > F for any w € V/(H'). Since p(H') is bounded below by the minimum row sum
of D(H'), we have p(H') > F. Recall that z,,_, > x,,_,. So, by (7.6), we have W > 0. Now, from (7.5),
we have p(H) > p(H'). 0
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For positive integers p, ¢ and d, let Toq41(p, ¢) be the k-uniform hypertree obtained from a k-uniform
loose path

/ ! !
(Ud, €d, Ud—1,---,U2,€E2,U1, €1, Up, €0, V0, €1, V1, €9, V2, ... avd—lyedvvd)

by attaching p — 1 pendant edges to uq—1 and ¢ — 1 pendant edges to vg_1.

THEOREM 7.3. Let T be a k-th power hypertree with m edges and matching number 3, where 1 < <

|| Thenp(T) < p(Top (| “=22H2 |, [ m=28427)) with equality if and only if T =2 Typ(| =2042 || [m=20427),

Proof. 1t is trivial when 8 = 1.

Suppose that 5 > 2. Let T be a k-th hypertree with m edges and matching number 8 that maximizes
the distance spectral radius.

Ifs= ’”TH, then recalling that T55(0,1) is the unique hypertree with maximum distance spectral radius
among k-uniform hypertrees with m edges [8] and noting that 3(T%5(0,1)) = mT'H, we have T' = T54(0, 1),
as desired.

Suppose that 2 < g < | ]. Let M be a maximum matching in 7.

If there is no vertex of degree at least three in 7', then since T is a k-th power hypertree, we have
T =T,(1,1) with 3 = %, as desired.

Suppose that there exists a vertex u in T' of degree at least three. Let dp(u) =t > 3, and Ep(u) =
{e1,...,et}. Then T consists of ¢ subhypertrees Ty, ..., T; such that |[E(T;)| > 1and e; € E(T;) for 1 <i <,
U!_,E(T;) = E(T), and T1, ..., T; have exactly one vertex u in common. Suppose that |E(T})|, |E(T)| > 2.
We consider three cases.

Case 1. es ¢ M.

We may assume that op(Ty) > op(T3). Let w be a vertex of degree at least two contained in some
pendant edge in T>. Let T” be the hypertree obtained from 7 by moving edge ez from u to w. Then
B(T") = B, and by Lemma 7.1, p(T") > p(T'), a contradiction.

Case 2. es € M and |E(T3)| > 2.

Since e3 € M, we have e; ¢ M. We may assume that op(T2) > op(T5). Let z be a vertex of degree at
least two contained in some pendant edge in T3. Let T” be the hypertree obtained from 7' by moving edge
e1 from w to z. Then 3(T") = 8, and by Lemma 7.1, p(T") > p(T), a contradiction.

Case 3. es € M and |E(T3)| = 1.

Let v be a vertex of degree one in es. Let T* be the hypertree obtained from T by moving edge e; from
u to v. Then B(T*) = 8, and by Lemma 2.4, p(T™*) > p(T'), a contradiction.

By combining Cases 1-3, we conclude that, among the ¢ subhypertrees T1,...,T; of T containing u,
only one has at least two edges, as T is not a k-uniform hyperstar. Since u is arbitrary and T is a k-
th power hypertree, it follows that T = Ty(p,q) for some positive integers p, ¢ and ¢ with ¢ > p > 1,
q>23<(¢<23 andp+q+{=m+2 Notethat 3 = [£]. If £ is odd, then by Lemma 2.4,
o(T) = p(Te(p,q)) < p(Ty41(p,q — 1)), a contradiction. Thus, ¢ is even and ¢ = 28. If ¢ — p > 2, then by
Lemma 7.2, we have p(T25(p,q)) < p(T2(p + 1,9 — 1)), a contradiction. It follows that ¢ —p = 0,1, i.e.,

T 2 Top(| m=572 ], [272)). u
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