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EXTREMAL PROPERTIES OF THE DISTANCE

SPECTRAL RADIUS OF HYPERGRAPHS∗

YANNA WANG† AND BO ZHOU‡

Abstract. The distance spectral radius of a connected hypergraph is the largest eigenvalue of its distance matrix. The

unique hypertrees with minimum distance spectral radii are determined in the class of hypertrees of given diameter, in the class

of hypertrees of given matching number, and in the class of non-hyperstar-like hypertrees, respectively. The unique hypergraphs

with minimum and second minimum distance spectral radii are determined in the class of unicylic hypergraphs. The unique

hypertree with maximum distance spectral radius is determined in the class of k-th power hypertrees of given matching number.
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1. Introduction. A (simple) hypergraph G consists of a vertex set V (G) and an edge set E(G), where

every edge in E(G) is a subset of V (G) containing at least two vertices, see [2]. For u, v ∈ V (G), if they are

contained in some edge of G, then we say that they are adjacent, or v is a neighbor of u. For u ∈ V (G), let

NG(u) be the set of neighbors of u in G. The degree of a vertex u in G, denoted by δG(u), is the number of

edges containing u in G. For an integer k ≥ 2, the hypergraph G is k-uniform if every edge of G contains

exactly k vertices.

For distinct vertices v0, . . . , vp and distinct edges e1, . . . , ep of G, the alternating sequence (v0, e1, v1,

. . . , vp−1, ep, vp) is a path of G from v0 to vp of length p if vi−1, vi ∈ ei for i = 1, . . . , p, and ei ∩ ej = ∅ for

i, j = 1, . . . , p with j > i+ 1. For distinct vertices v0, . . . , vp−1 and distinct edges e1, . . . , ep, the alternating

sequence (v0, e1, v1, . . . , vp−1, ep, v0) is a cycle of G (of length p) if vi−1, vi ∈ ei for i = 1, . . . , p with vp = v0,

and ei ∩ ej = ∅ for i, j = 1, . . . , p with |i− j| > 1 and {i, j} 6= {1, p}. If there is a path from u to v for any

u, v ∈ V (G), then we say that G is connected. A hypertree is a connected hypergraph with no cycles. A

unicylic hypergraph is a connected hypergraph with exactly one cycle.

A path (v0, e1, v1, . . . , vp−1, ep, vp) of a hypergraph G is called a pendant path of G at v0, if δG(v0) ≥ 2,

δG(vi) = 2 for 1 ≤ i ≤ p − 1, δG(v) = 1 for v ∈ ei \ {vi−1, vi} with 1 ≤ i ≤ p, and δG(vp) = 1. If p = 1,

then we call e1 a pendant edge of G (at v0). A hyperstar is a hypertree in which all edges are pendant edges

at a common vertex. A hypertree is hyperstar-like if it consists of a single vertex, or a single edge, or some

pendant paths at a vertex. A hypertree that is not hyperstar-like is said to be non-hyperstar-like.

Let G be a connected hypergraph on n vertices. For u, v ∈ V (G), the distance between u and v in G,

denoted by dG(u, v), is the length of a shortest path connecting them in G. In particular, dG(u, u) = 0.

The diameter of G is max{dG(u, v) : u, v ∈ V (G)}. The distance matrix of G is defined as D(G) =

(dG(u, v))u,v∈V (G). The distance spectral radius of G, denoted by ρ(G), is the largest eigenvalue of D(G).
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For a connected hypergraph G, D(G) = D(OG), where OG is a graph with V (OG) = V (G) such that for

u, v ∈ V (OG), {u, v} is an edge of OG if and only if u and v are in some edge of G. Obviously, each edge

of G corresponds to a complete subgraph in OG. We note that the distance matrix (in a metric space) was

originally defined by Cayley [3] in 1841, while the distance matrix of a graph was first studied in [6].

The eigenvalues of distance matrices of graphs, arisen from a data communication problem studied by

Graham and Pollack [5] in 1971, have been studied extensively, and in particular, the distance spectral radius

received much attention, see the survey [1]. Sivasubramanian [15] studied properties of distance matrix of

a 3-uniform hypertree. Watanabe et. al. [17] studied a q-ary extension of the classical binary addressing

problem of graphs which was originally posed by Graham and Pollak [5], and found a sharp lower bound for

the minimum length of addressings in terms of distance eigenvalues of uniform hypertrees. Lin and Zhou [8]

and Lin et al. [10] studied the distance spectral radius of uniform hypergraphs and particularly, uniform

hypertrees. Lin and Zhou [9] studied the distance spectral radius of uniform hypergraphs with cycles, and

particularly, uniform unicyclic hypergraphs. Wang and Zhou [16] studied the distance spectral radius of

a hypergraph that is not necessarily uniform. They proposed some graft transformations that decrease

or increase the distance spectral radius of a hypergraph, determined the unique hypertrees with minimum

and maximum distance spectral radius, respectively, among hypertrees on n vertices with m edges, where

1 ≤ m ≤ n−1, and also determined the unique hypertrees with the first three smallest (largest, respectively)

distance spectral radii among hypertrees on n ≥ 6 vertices. Note that the hypertrees with minimum, second

minimum and third minimum distance spectral radii are all hyperstar-like hypertrees.

We point out that the spectral theory of hypergraphs can be studied with matrices and tensors. In 2012,

Cooper and Dutle [4] proposed the study of hypergraphs through tensors, and this new approach has been

widely accepted by researchers of this area, see, e.g. [7, 13, 14]. However, to obtain eigenvalues of tensors

has a high computational cost. In this regard, we see that the study of hypergraphs via matrices still has

its place.

A matching of a hypergraph is a subset of edges such that any two edges have no vertex in common.

The matching number of a hypergraph G, denoted by β(G), is the maximum number of edges in a matching

of G.

For k ≥ 2 and a graph G on n vertices, the k-th power of G is defined as the k-uniform hypergraph

on n + (k − 2)|E(G)| vertices with vertex set V (G) ∪ (∪e∈E(G)Ve) and edge set {e ∪ Ve : e ∈ E(G)}, where

|Ve| = k − 2 for e ∈ E(G), see [7]. Obviously, the 2-nd power of G is G itself. A hypergraph is a k-th power

hypertree if it is the k-th power of some tree.

In this paper, we determine the unique hypertree of given diameter with minimum distance spectral

radius, the unique hypertree of given matching number with minimum distance spectral radius, the unique

non-hyperstar-like hypertree with minimum distance spectral radius, the unique unicylic hypergraphs with

respectively minimum and second minimum distance spectral radii, and the unique k-th power hypertree of

given matching number with maximum distance spectral radius.

2. Preliminaries. Let G be a connected hypergraph. Since D(G) is irreducible, by Perron-Frobenius

theorem, ρ(G) is simple and there is a unique unit positive eigenvector corresponding to ρ(G), which is called

the distance Perron vector of G, denoted by x(G).
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Let V (G) = {v1, . . . , vn} and x = (xv1 , . . . , xvn)T ∈ Rn. Then

xTD(G)x = 2
∑

{u,v}⊆V (G)

dG(u, v)xuxv.

If x is unit and x has at least one nonnegative component, then by Rayleigh’s principle, we have ρ(G) ≥
xTD(G)x with equality if and only if x = x(G).

For x = x(G) and each u ∈ V (G), we have

ρ(G)xu =
∑

v∈V (G)

dG(u, v)xv,

which is called the distance eigenequation of G at u.

The following lemma was stated in [8] for a connected uniform hypergraph. However, its proof applies

to any connected hypergraph that is not necessarily uniform.

Lemma 2.1. [8] Let G be a connected hypergraph with η being an automorphism of G and x = x(G).

Then η(u) = v implies that xu = xv.

Lemma 2.2. [16] For k, r ≥ 2, let G be a connected hypergraph with two pendant edges, say e1 =

{w1, . . . , wk} and e2 = {v1, . . . , vr} at wk and vr, respectively. Let x = x(G). Then (ρ(G) +k)xw1
− (ρ(G) +

r)xv1 = ρ(G)(xwk − xvr ).

For a square nonnegative matrix M , let ρ(M) be its spectral radius, i.e., the maximum modulus of its

eigenvalues. We restate Corollary 2.2 in [11, p. 38]. If M and N are square nonnegative matrices, M is

irreducible, M −N is nonnegative, and M −N 6= 0, then ρ(M) > ρ(N). For a connected hypergraph G, we

have ρ(G) = ρ(D(G)) by Perron-Frobenius theorem. So we have the following lemma.

Lemma 2.3. Let G be a connected hypergraph with u, v ∈ V (G) such that u and v are not adjacent. Let

G′ be a hypergraph with V (G′) = V (G) such that u and v are adjacent, and two vertices in G′ are adjacent

if they are adjacent in G. Then ρ(G′) < ρ(G).

Let G be a hypergraph with u, v ∈ V (G) and e1, . . . , er ∈ E(G) such that u /∈ ei and v ∈ ei for 1 ≤ i ≤ r.
Let e′i = (ei \ {v}) ∪ {u} for 1 ≤ i ≤ r. Suppose that e′i 6∈ E(G) for 1 ≤ i ≤ r. Let G′ be the hypergraph

with V (G′) = V (G) and E(G′) = (E(G) \ {e1, . . . , er})∪{e′1, . . . , e′r}. Then we say that G′ is obtained from

G by moving edges e1, . . . , er from v to u.

Lemma 2.4. [16] Let G be a hypergraph with connected induced subhypergraphs G0, H1 and H2 such that

there are two adjacent vertices w1 and w2 in G0 with NG0
(w1) \ {w2} = NG0

(w2) \ {w1}, V (Hi) ∩ V (G0) =

{wi} for i = 1, 2, V (H1)∩V (H2) = ∅, V (G) = V (G0)∪V (H1)∪V (H2), and E(G) = E(G0)∪E(H1)∪E(H2).

Suppose that |V (Hi)| ≥ 2 for i = 1, 2. Let G′ be the hypergraph obtained from G by moving all edges

containing w2 except the edges in E(G0) from w2 to w1. Then ρ(G) > ρ(G′).

Let G be a hypergraph with e1, e2 ∈ E(G) and u1, . . . , us ∈ V (G) such that u1, . . . , us /∈ e1 and

u1, . . . , us ∈ e2, where |e2| − s ≥ 2. Let e′1 = e1 ∪ {u1, . . . , us} and e′2 = e2 \ {u1, . . . , us}. Suppose that

e′1, e
′
2 6∈ E(G). Let G′ be the hypergraph with V (G′) = V (G) and E(G′) = (E(G)\{e1, e2})∪{e′1, e′2}. Then

we say that G′ is obtained from G by moving vertices u1, . . . , us from e2 to e1.

For a connected hypergraph G with V1 ⊆ V (G), let σG(V1) be the sum of the entries of the distance

Perron vector of G corresponding to the vertices in V1. Furthermore, if all the vertices of V1 induce a

connected subhypergraph H of G, then we write σG(H) instead of σG(V1).
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For e ∈ E(G), let G− e be the subhypergraph of G obtained by deleting e.

3. Distance spectral radius of hypertrees with given diameter. A hypertree is a loose path

if there is a path containing all its vertices. For 2 ≤ d ≤ n − 1, let T dn be a loose path of the form

(v0, e1, v1, e2, . . . , vd−1, ed, vd), where
∣∣∣ed d2 e∣∣∣ = n− d+ 1 and |ei| = 2 for i 6= dd2e. Let T 1

n be the hypertree on

n vertices consisting of a single edge.

Lemma 3.1. Suppose that d is even with 2 ≤ d < n− 1. Let x = x(T dn) and u ∈ e d
2
\
{
v d

2−1
, v d

2

}
. Then

(i) xvd−i > xvi for i = 0, . . . , d2 − 1;

(ii)


∣∣∣∣e d

2

∣∣∣∣
2

− 1

xu +
∑ d

2−1
i=0 xvi >

∑d
i= d

2+1 xvi .

Proof. Let T = T dn . Since d < n−1, we have
∣∣∣e d

2

∣∣∣ ≥ 3. By Lemma 2.1, xw = xu for w ∈ e d
2
\
{
v d

2−1
, v d

2

}
.

Suppose first that d = 2. From the distance eigenequations of T at v2 and v0, we have

ρ(T ) (xv2 − xv0) = (|e1| − 2)xu + 2xv0 − 2xv2 ,

i.e.,

(|e1| − 2)xu = (ρ(T ) + 2)(xv2 − xv0).

Obviously, (|e1| − 2)xu > 0. Thus, xv2 > xv0 , proving (i). Furthermore, we have

(|e1| − 2)xu > 2(xv2 − xv0),

and thus,
(⌈
|e1|
2

⌉
− 1
)
xu + xv0 > xv2 , proving (ii).

Now suppose that d ≥ 4. By Lemma 2.2, we have

ρ(T )(xvd−1
− xv1) = (ρ(T ) + 2)(xvd − xv0).

For 2 ≤ i ≤ d
2 − 1 with d ≥ 6, from the distance eigenequations of T at vd−(i−1), vi−1, vd−i, and vi, we have

ρ(T )(xvd−(i−1)
− xvi−1

)− ρ(T )(xvd−i − xvi) = 2

i−1∑
j=0

(xvj − xvd−j ),

i.e.,

ρ(T )(xvd−i − xvi) = (ρ(T ) + 2)(xvd−(i−1)
− xvi−1) + 2

i−2∑
j=0

(xvd−j − xvj ).

Thus, it follows that xvd−i − xvi for 0 ≤ i ≤ d
2 − 1 are all positive, or zero, or negative.

From the distance eigenequations of T at v d
2+1 and v d

2−1
, we have

ρ(T )
(
xv d

2
+1
− xv d

2
−1

)
=
(∣∣∣e d

2

∣∣∣− 2
)
xu + 2

d
2−1∑
i=0

xvi − 2

d∑
i= d

2+1

xvi ,
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i.e., (∣∣∣e d
2

∣∣∣− 2
)
xu = (ρ(T ) + 2)

(
xv d

2
+1
− xv d

2
−1

)
+ 2

d
2−2∑
i=0

(xvd−i − xvi).

Obviously,
(∣∣∣e d

2

∣∣∣− 2
)
xu > 0. Thus, xvd−i > xvi for 0 ≤ i ≤ d

2 − 1. This proves (i).

Note that

1

2
ρ(T )

(
xv d

2
+1
− xv d

2
−1

)
=

∣∣∣e d
2

∣∣∣− 2

2
xu +

d
2−1∑
i=0

xvi −
d∑

i= d
2+1

xvi .

By (i), we have xv d
2
+1
− xv d

2
−1
> 0. Now (ii) follows immediately.

Theorem 3.2. Let T be a hypertree on n ≥ 6 vertices with diameter d, where 1 ≤ d ≤ n − 1. Then

ρ(T ) ≥ ρ(T dn) with equality if and only if T ∼= T dn .

Proof. It is trivial if d = 1.

Suppose that d ≥ 2. Let T be a hypertree on n vertices with diameter d that minimizes the distance

spectral radius.

Let P = (v0, e1, v1, . . . , vd−1, ed, vd) be a path of length d in T .

Suppose that there exists a vertex vi with 1 ≤ i ≤ d − 1 of degree at least three. Let δT (vi) = t ≥ 3.

Then T consists of t subhypertrees T1, . . . , Tt such that |V (Ti)| ≥ 2 for 1 ≤ i ≤ t and T1, . . . , Tt have exactly

one vertex vi in common. We may assume that ei ∈ E(T1) and ei+1 ∈ E(T2). Let T ′ be the hypertree

obtained from T by deleting edge ei and all edges in E(T3), and adding an edge ei ∪ V (T3). Obviously, the

diameter of T ′ is d. By Lemma 2.3, ρ(T ′) < ρ(T ), a contradiction. Thus, δT (vi) = 2 for i = 1, . . . , d− 1.

Suppose that there exists an edge ei with 2 ≤ i ≤ d − 1 of size at least three, whose deletion yields at

least three nontrivial components, i.e., there exists a vertex w in ei \ {vi−1, vi} with δT (w) ≥ 2. Let Tw be

the component in T − ei containing w. Let T ′′ be the hypertree obtained from T by deleting edge ei and

all edges in E(Tw), and adding an edge ei ∪ V (Tw). Obviously, T ′′ also has diameter d. By Lemma 2.3,

ρ(T ′′) < ρ(T ), a contradiction. Thus, T − ei has exactly two nontrivial components for 2 ≤ i ≤ d − 1. It

follows that T = P . If d = n− 1, then T ∼= T dn . Suppose that d < n− 1. Let x = x(T dn).

Case 1. d is even.

By Lemma 3.1 (i), we have

(3.1)

d
2−1∑
i=0

xvi <

d∑
i= d

2

xvi .

Suppose there exist some k with 1 ≤ k ≤ d
2 and some ` with d

2 + 1 ≤ ` ≤ d such that |ek| ≥ 3 and

|e`| ≥ 3. We may assume that
∑ d

2
i=1 |ei| ≥

∑d
i= d

2+1 |ei|. Let T ∗ be the hypertree obtained from T by moving

all vertices in ei \ {vi−1, vi} for each i 6= d
2 from ei to e d

2
. Obviously, T ∗ ∼= T dn . Let u ∈ ek \ {vk−1, vk}. By

Lemmas 2.1 and 3.1 (ii),

(3.2)

d
2∑
i=1

(|ei| − 2)xu +

d
2−1∑
i=0

xvi >

d∑
i= d

2+1

xvi .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 411-429, July 2020.

Yanna Wang and Bo Zhou 416

As we pass from T to T ∗, for i = 1, . . . , d2−1 (with d ≥ 4), the distance between a vertex of ei \{vi−1, vi} and

a vertex of
{
v d

2
, . . . , vd

}
is decreased by d

2 − i, the distance between a vertex of ei \{vi−1, vi} and a vertex of{
v0, . . . , v d

2−1

}
is increased by at most d

2−i; for i = d
2 +1, . . . , d, the distance between a vertex of ei\{vi−1, vi}

and a vertex of
{
v0, . . . , v d

2−1

}
is decreased by i− d

2 , the distance between a vertex of ei \ {vi−1, vi} and a

vertex of ∪
d
2
i=1(ei\{vi−1, vi}) is decreased by at least i− d

2 , the distance between a vertex of ei\{vi−1, vi} and

a vertex of
{
v d

2+1, . . . , vd

}
is increased by at most i− d

2 , and the distances between all other vertex pairs are

decreased or remain unchanged. Let F =
∑ d

2−1
i=1 σT∗(ei \ {vi−1, vi})

(
d
2 − i

) (∑d
i= d

2
xvi −

∑ d
2−1
i=0 xvi

)
. Then

F = 0 if d = 2, and from (3.1), F > 0 if d ≥ 4. Thus, from (3.2), we have

1

2
(ρ(T )− ρ(T ∗)) ≥ 1

2
x>(D(T )−D(T ∗))x

≥ F +

d∑
i= d

2+1

σT∗(ei \ {vi−1, vi})
(
i− d

2

) d
2∑
i=1

(|ei| − 2)xu +

d
2−1∑
i=0

xvi −
d∑

i= d
2+1

xvi


≥

d∑
i= d

2+1

σT∗(ei \ {vi−1, vi})
(
i− d

2

) d
2∑
i=1

(|ei| − 2)xu +

d
2−1∑
i=0

xvi −
d∑

i= d
2+1

xvi


> 0,

and so ρ(T ∗) < ρ(T ), a contradiction. Therefore, we have either |ei| = 2 for i = 1, . . . , d2 or |ei| = 2 for

i = d
2 + 1, . . . , d. If d = 2, then T ∼= T dn . Suppose that d ≥ 4. Suppose that T � T dn . Then we may assume

that |ei| = 2 for i = d
2 + 1, . . . , d, but |ei| ≥ 3 for some i = 1, . . . , d2 − 1.

Let T̂ be the hypertree obtained from T by moving all vertices in ei \ {vi−1, vi} for each i = 1, . . . , d2 − 1

from ei to e d
2
. Obviously, T̂ ∼= T dn .

As we pass from T to T̂ , for i = 1, . . . , d2 − 1, the distance between a vertex of ei \ {vi−1, vi} and a

vertex of
{
v d

2
, . . . , vd

}
is decreased by d

2 − i, the distance between a vertex of ei \ {vi−1, vi} and a vertex of{
v0, . . . , v d

2−1

}
is increased by at most d

2 − i, and the distance between any other vertex pair is decreased

or remains unchanged. Then, from (3.1), we have

1

2
(ρ(T )− ρ(T̂ )) ≥ 1

2
x>(D(T )−D(T̂ ))x

≥
d
2−1∑
i=1

σT̂ (ei \ {vi−1, vi})
(
d

2
− i
) d∑

i= d
2

xvi −
d
2−1∑
i=0

xvi


> 0,

and thus, ρ(T̂ ) < ρ(T ), a contradiction. Therefore, T ∼= T dn .

Case 2. d is odd.

Let A =
∑ d−1

2
i=0 xvi and B =

∑d
i= d+1

2
xvi . By Lemma 2.1, xvi = xvd−i for i = 0, . . . , d−12 , and thus,

A = B.
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Suppose that there exists some i with 1 ≤ i ≤ d and i 6= d+1
2 , such that |ei| ≥ 3. Let T ∗ be the hypertree

obtained from T by moving all vertices in ei\{vi−1, vi} for each i 6= d+1
2 from ei to e d+1

2
. Obviously, T ∗ ∼= T dn .

As we pass from T to T ∗, for i = 1, . . . , d−12 , the distance between a vertex of ei \ {vi−1, vi} and a

vertex of
{
v d+1

2
, . . . , vd

}
is decreased by d+1

2 − i, the distance between a vertex of ei \ {vi−1, vi} and a

vertex of
{
v0, . . . , v d−3

2

}
is increased by at most d+1

2 − i, for i = d+3
2 , . . . , d, the distance between a vertex

of ei \ {vi−1, vi} and a vertex of
{
v0, . . . , v d−1

2

}
is decreased by i − d+1

2 , the distance between a vertex of

ei \ {vi−1, vi} and a vertex of
{
v d+3

2
, . . . , vd

}
is increased by at most i− d+1

2 , and the distances between all

other vertex pairs are decreased or remain unchanged. Then

1

2
(ρ(T )− ρ(T ∗)) ≥ 1

2
x>(D(T )−D(T ∗))x

≥

d−1
2∑
i=1

σT∗(ei \ {vi−1, vi})
(
d+ 1

2
− i
)(

B −A+ xv d−1
2

)

+

d∑
i= d+3

2

σT∗(ei \ {vi−1, vi})
(
i− d+ 1

2

)(
A−B + xv d+1

2

)

=

d−1
2∑
i=1

σT∗(ei \ {vi−1, vi})
(
d+ 1

2
− i
)
xv d−1

2

+

d∑
i= d+3

2

σT∗(ei \ {vi−1, vi})
(
i− d+ 1

2

)
xv d+1

2

> 0,

and thus, ρ(T ∗) < ρ(T ), a contradiction. Therefore, |ei| = 2 for 1 ≤ i ≤ d with i 6= d+1
2 . It follows that

T ∼= T dn .

4. Distance spectral radius of non-hyperstar-like hypertrees. For n ≥ 6, let Hn be a hypertree

on n vertices obtained from T 1
n−3 with edge e = {w1, . . . , wn−3} by attaching a pendant edge {ui, wi} to wi

for each i = 1, 2, 3. Let H ′n be the hypertree obtained from Hn by deleting edges e and {u2, w2}, and adding

edges e \ {w2}, {u2, w1} and {w2, w3}.

Lemma 4.1. Let Hn and H ′n be defined above. Then ρ(Hn) < ρ(H ′n).

Proof. Let x = x(Hn). By Lemma 2.1, xw1
= xw2

= xw3
and xu1

= xu2
= xu3

. For v ∈ V (Hn) \
{w1, u1}, 2dHn(v, w1) − dHn(v, u1) ≥ 0. From the distance eigenequations of Hn at w1 and u1, we have

ρ(Hn)(2xw1 − xu1) ≥ 2xu1 − xw1 , which implies that (ρ(Hn) + 1)(2xw1 − xu1) ≥ xu1 + xw1 > 0. Thus,

2xw1 > xu1 .

As we pass from Hn to H ′n, the distance between u2 and w2 is increased by 2, the distance between u2
and a vertex of {u1, w1} is decreased by 1, the distance between w2 and a vertex of {u1, w1} is increased by
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1, and the distances between all other vertex pairs are increased or remain unchanged. Then

1

2
(ρ(H ′n)− ρ(Hn)) ≥ 1

2
x>(D(H ′n)−D(Hn))x

≥ 2xu2
xw2
− xu2

xu1
− xu2

xw1
+ xw2

xu1
+ xw2

xw1

= xu2(2xw1 − xu1) + x2w1

> 0,

and thus, ρ(Hn) < ρ(H ′n).

Theorem 4.2. Let T be a non-hyperstar-like hypertree on n ≥ 6 vertices. Then ρ(T ) ≥ ρ(Hn) with

equality if and only if T ∼= Hn.

Proof. Let T be a non-hyperstar-like hypertree on n vertices that minimizes the distance spectral radius.

Let d be the diameter of T . Obviously, d ≥ 3. Let P = (v0, e1, v1, . . . , vd−1, ed, vd) be a path of length d

in T .

Suppose that d ≥ 4. Let T ′ be the hypertree obtained from T by moving all edges containing v2 except

e2 from v2 to v1. Let T ′′ be the hypertree obtained from T by moving all edges containing vd−2 except

ed−1 from vd−2 to vd−1. Since T is non-hyperstar-like, one of T ′ and T ′′, say T ′, is non-hyperstar-like. By

Lemma 2.4, ρ(T ′) < ρ(T ), a contradiction. Thus, d = 3. Therefore, T is a hypertree obtainable from T 1
k

with edge e = {w1, . . . , wk} by attaching ti pendant edges to wi for 1 ≤ i ≤ k, where t1 ≥ t2 ≥ · · · ≥ tk ≥ 0

and t2 ≥ 1.

Suppose that t2 ≥ 2.

Suppose that t3 ≥ 1. Let T ′′′ be the hypertree obtained from T by moving all edges containing w3 except

e from w3 to w1. Obviously, T ′′′ is non-hyperstar-like. By Lemma 2.4, ρ(T ′′′) < ρ(T ), a contradiction. Thus,

t3 = · · · = tk = 0.

Suppose that t1 ≥ 3. Let e1, . . . , et1 be t1 pendant edges at w1. Let T ∗ be the hypertree obtained from

T by deleting edges e1, . . . , et1−1 and adding a pendant edge ∪t1−1i=1 ei at w1. Obviously, T ∗ is non-hyperstar-

like. By Lemma 2.3, we have ρ(T ∗) < ρ(T ), a contradiction. Thus, t1 = 2. It follows that t1 = t2 = 2 and

t3 = · · · = tk = 0.

If n = 6, then T ∼= H ′n.

Suppose that n ≥ 7. Let e11 and e21 be two pendant edges at w1. Let e12 and e22 be two pendant edges at

w2. For i = 1, 2, choose ui1 ∈ ei1 \ {w1} and ui2 ∈ ei2 \ {w2}.

Suppose that |eij | ≥ 3 for some j, i ∈ {1, 2}, say |e11| ≥ 3. Let z1 ∈ e11 \ {w1, u
1
1}. Let T̂ be the hypertree

obtained from T by moving all vertices in eij \ {wj , uij} from eij to e for each j = 1, 2 and i = 1, 2. Obviously,

T̂ ∼= H ′n.

Let x = x(T̂ ). By Lemma 2.1, xw1 = xw2 , xu1
1

= xu2
1

= xu1
2

= xu2
2
, and xv = xz1 for v ∈ V (T̂ ) \

{w1, w2, u
1
1, u

2
1, u

1
2, u

2
2}.

As we pass from T to T̂ , for i, j = 1, 2, the distance between a vertex of eij \ {wj , uij} and uij is increased

by 1, the distance between a vertex of eij \ {wj , uij} and e \ {wj} ∪ {u1` , u2`} with ` = {1, 2} \ {j} is decreased
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by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then

1

2
(ρ(T )− ρ(T̂ )) ≥ 1

2
x>(D(T )−D(T̂ ))x

≥
2∑
j=1

2∑
i=1

σT̂ (eij \ {wj , uij})

(
k∑
s=1

xws − xwj + xu1
`

+ xu2
`
− xuij

)

=

2∑
j=1

2∑
i=1

(|eij | − 2)xz1

(
k∑
s=1

xws − xwj + xu1
`

+ xu2
`
− xuij

)

>

2∑
j=1

2∑
i=1

(|eij | − 2)xz1

(
k∑
s=1

xws − xwj

)
> 0,

and thus, ρ(T̂ ) < ρ(T ), a contradiction. Thus, T ∼= H ′n.

By Lemma 4.1, ρ(Hn) < ρ(T ), a contradiction. It follows that t2 = 1. Since T is non-hyperstar-like, we

have t3 = 1.

Suppose that k ≥ 4 and t4 = 1. Let T̃ be the hypertree obtained from T by moving all edges containing

w4 except e from w4 to w1. Obviously, T̃ is non-hyperstar-like. By Lemma 2.4, ρ(T̃ ) < ρ(T ), a contradiction.

Thus, t4 = · · · = tk = 0.

Suppose that t1 ≥ 2. Let e′1, . . . , e
′
t1 be t1 pendant edges at w1. Let T1 be the hypertree obtained from

T by deleting edges e′1, . . . , e
′
t1 and adding a pendant edge ∪t1i=1e

′
i at w1. Obviously, T1 is non-hyperstar-like.

By Lemma 2.3, we have ρ(T1) < ρ(T ), a contradiction. Thus, t1 = 1. It follows that t1 = t2 = t3 = 1 and

t4 = · · · = tk = 0 for k ≥ 4. For i = 1, 2, 3, let e′′i be the pendant edge at wi in T , and choose ui ∈ e′′i \ {wi}.
We may assume that |e′′1 | ≥ |e′′2 | ≥ |e′′3 | ≥ 2.

Suppose that |e′′1 | ≥ 3. Let z2 ∈ e′′1 \ {w1, u1}. Let T2 be the hypertree obtained from T by moving all

vertices in e′′i \ {wi, ui} from e′′i to e for each i = 1, 2, 3. Obviously, T2 ∼= Hn. Let x = x(T2). By Lemma 2.1,

xw1
= xw2

= xw3
, xu1

= xu2
= xu3

, and xv = xz2 for v ∈ V (T2) \ (∪3i=1{wi, ui}).

As we pass from T to T2, for i = 1, 2, 3, the distance between a vertex of e′′i \{wi, ui} and ui is increased

by 1, the distance between a vertex of e′′i \ {wi, ui} and e \ {wi} ∪ {us, ut} with {s, t} = {1, 2, 3} \ {i} is

decreased by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then

1

2
(ρ(T )− ρ(T2)) ≥ 1

2
x>(D(T )−D(T2))x

≥
3∑
i=1

σT2
(e′′i \ {wi, ui})

 k∑
j=1

xwj − xwi + xus + xut − xui


>

3∑
i=1

(|e′′i | − 2)xz2

 k∑
j=1

xwj − xwi


> 0,

and thus, ρ(T2) < ρ(T ), a contradiction. It follows that |e1| = |e2| = |e3| = 2. Thus, T ∼= Hn.
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5. Distance spectral radius of unicylic hypergraphs. In this section, we determine the unique

unicylic hypergraphs with minimum and second minimum distance spectral radius, respectively.

A unicyclic hypergraph is a loose cycle if there is a cycle containing all its vertices. For n ≥ 3, let U1
n be

the loose cycle of length two on n vertices such that the sizes of the edges are 2 and n.

Let K3 be a triangle on 3 vertices. If G is a unicylic hypergraph on 3 vertices, then G ∼= U1
3 or K3, and

obviously, ρ(U1
3 ) = ρ(K3).

Theorem 5.1. Let G be a unicylic hypergraph on n ≥ 4 vertices. Then ρ(G) ≥ n − 1 with equality if

and only if G ∼= U1
n.

Proof. Let g be the length of the unique cycle C of G. Let d be the diameter of G. If g ≥ 3, since n ≥ 4,

then d ≥ 2. If g = 2 and G � U1
n, then there is a vertex outside C or the sizes of both edges of C are at

least 3, implying that d ≥ 2. Therefore, we have either G ∼= U1
n or d ≥ 2. By Corollary 2.2 in [11, p. 38], U1

n

is the unique unicylic hypergraph on n ≥ 4 vertices with minimum distance spectral radius, which is n− 1.

Lemma 5.2. Let G be a hypergraph consisting of three connected subhypergraphs G0, G1, G2 such that G0

is a cycle of length two, where E(G0) = {e1, e2} with e1∩e2 = {u, v}, V (G1)∩V (G2) = ∅, V (G1)∩V (G0) =

{u}, V (G2)∩V (G0) = {v}, and E(G) = E(G0)∪E(G1)∪E(G2). Let |ei| = ni for i = 1, 2. If n1−2 ≥ n2 ≥ 2,

let w1 ∈ e1 \ {u, v} and G′ be the hypergraph obtained from G by moving vertex w1 from e1 to e2. Then

ρ(G) < ρ(G′).

Proof. Let x = x(G). Let w2 ∈ e2 \ {u, v} if n2 ≥ 3. By Lemma 2.1, xz = xw1
if z ∈ e1 \ {u, v}, and

xz = xw2
if z ∈ e2 \ {u, v}.

Let V1 = V (G) \ ((e1 ∪ e2) \ {u, v}). Note that for z ∈ V1, dG(w1, z) = dG(w2, z). From the distance

eigenequations of G at w1 and w2, we have

ρ(G)xw1
= (n1 − 3)xw1

+ 2(n2 − 2)xw2
+
∑
z∈V1

dG(w1, z)xz,

ρ(G)xw2
= 2(n1 − 2)xw1

+ (n2 − 3)xw2
+
∑
z∈V1

dG(w2, z)xz.

Then

ρ(G)(xw1
− xw2

) = (n2 − 1)xw2
− (n1 − 1)xw1

,

i.e.,

(5.3) (ρ(G) + n1 − 1)xw1 = (ρ(G) + n2 − 1)xw2 .

By interlacing theorem, we have ρ(G) ≥ ρ(T 1
n2

) = n2 − 1. So, from (5.3), we have

xw2

xw1

= 1 +
n1 − n2

ρ(G) + n2 − 1
≥ 1 +

2

ρ(G) + n2 − 1
≥ 1 +

1

ρ(G)
>
ρ(G) + 2

ρ(G) + 1
,

and thus,

(5.4) (ρ(G) + 1)xw2
− (ρ(G) + 2)xw1

> 0.
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As we pass from G to G′, the distance between w1 and a vertex of e1 \ {u, v, w1} is increased by 1, the

distance between w1 and a vertex of e2 \ {u, v} is decreased by 1, and the distance between any other vertex

pair remains unchanged. Thus,

1

2
(ρ(G′)− ρ(G)) ≥ 1

2
x>(D(G′)−D(G))x = xw1

((n1 − 3)xw1
− (n2 − 2)xw2

) .

This, together with (5.3) and (5.4), implies that

1

2
(ρ(G′)− ρ(G)) ≥ xw1

((ρ(G) + 1)xw2
− (ρ(G) + 2)xw1

) > 0,

and thus, ρ(G) < ρ(G′).

For n ≥ 4, let U2
n be the loose cycle of length two on n vertices such that the sizes of the edges are 3

and n− 1, and let U3
n be the loose cycle of length three on n vertices such that the size of the edges are 2, 2

and n− 1.

Theorem 5.3. Let G be a unicylic hypergraph on n ≥ 4 vertices, where G � U1
n. Then ρ(G) ≥ ρ∗ with

equality if and only if G ∼= U2
n or U3

n, where ρ∗ is the the largest root of the equation ρ3 + (3− n)ρ2 + (12−
5n)ρ+ 4− 2n = 0.

Proof. Let G be a unicylic hypergraph on n vertices with G � U1
n that minimizes the distance spectral

radius.

Let C be the unique cycle in G with E(C) = {e1, . . . , eg} such that vi−1, vi ∈ ei for i = 1, . . . , g with

vg = v0, where g ≥ 2. For i = 0, . . . , g − 1, let Ti be the component in G − E(C) containing vi. If g = 2,

then we assume that |e1| ≥ |e2|.

Suppose that there exists a vertex vi with 0 ≤ i ≤ g − 1 of degree at least three, i.e., |V (Ti)| ≥ 2. Let

e0 = eg if i = 0. Let G′ be the unicyclic hypergraph obtained from G by deleting edge ei and all edges in

E(Ti), and adding an edge ei ∪ V (Ti) if g ≥ 3, and let G′ be the unicyclic hypergraph obtained from G by

deleting edge e0 and all edges in E(Ti), and adding an edge e0 ∪ V (Ti) if g = 2. Obviously, G′ � U1
n. By

Lemma 2.3, ρ(G′) < ρ(G), a contradiction. Thus, δT (vi) = 2 for i = 0, . . . , g − 1.

Suppose that there exists an edge with 1 ≤ i ≤ g of size at least three, whose deletion gives at least

two nontrivial components, i.e., there exists a vertex w in ei \ {vi−1, vi} with δG(w) ≥ 2. Let Tw be the

component in G− ei containing w. Suppose first that g ≥ 3 or g = 2 and |e2| ≥ 3. Let G′′ be the unicyclic

hypergraph obtained from G by deleting edge ei and all edges in E(Tw), and adding an edge ei ∪ V (Tw).

Obviously, G′′ � U1
n. By Lemma 2.3, ρ(G′′) < ρ(G), a contradiction. So assume that g = 2 and |e2| = 2.

Then i = 1. Let G′′ be the unicyclic hypergraph obtained from G by moving the edges containing w except

e1 from w to v0. Then δG′′(v0) > 2, but as D(G′′) is permutationally similar to D(G), we have ρ(G′′) = ρ(G),

a contradiction. Therefore, G− ei has exactly one nontrivial component for 1 ≤ i ≤ g. That is, G = C.

Suppose that g ≥ 4. Let G∗ be the unicyclic hypergraph obtained from G by deleting edges e1 and e2,

and adding an edge e1 ∪ e2. Obviously, G∗ � U1
n. By Lemma 2.3, ρ(G∗) < ρ(G), a contradiction. Thus,

g = 2 or g = 3.

Case 1. g = 2.

Since G � U1
n, then |e2| ≥ 3. If n = 4, 5, then G ∼= U2

n. Suppose that n ≥ 6 and |e2| ≥ 4. Let

w ∈ e2 \ {v1, v0}. Let H be the unicyclic hypergraph obtained from G by moving vertex w from e2 to e1.

By Lemma 5.2, ρ(H) < ρ(G), a contradiction. Thus, |e2| = 3. Therefore, G ∼= U2
n.
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Case 2. g = 3.

We may assume that |e3| ≥ |e2| ≥ |e1| ≥ 2. Suppose that |e2| ≥ 3. Let H be the unicyclic hypergraph

obtained from G by moving all vertices in ei \ {vi−1, vi} from ei to e3 for i = 1, 2. Obviously, H ∼= U3
n. Let

e′1 = {v0, v1}, e′2 = {v1, v2} and e′3 = V (G) \ {v1} be the edges of H.

Let x = x(H). By Lemma 2.1, xv0 = xv2 , and xw is a constant for any w ∈ e′3 \ {v2, v0}. From the

distance eigenequations of H at w ∈ e′3 \ {v0, v2}, v0 and v1, we have

ρ(H)xw = 2xv0 + 2xv1 + (n− 4)xw,

ρ(H)xv0 = xv0 + xv1 + (n− 3)xw,

ρ(H)xv1 = 2xv0 + 2(n− 3)xw.

Then

ρ(H)(xw + xv0 − xv1) = −xw + 3xv1 + xv0 > −xw + 3xv1 ,

which implies (ρ(H) + 1)(xw + xv0 − xv1) > xv0 + 2xv1 > 0. Thus, for any w ∈ e3 \ {v2, v0}, we have

xw + xv0 − xv1 > 0.

As we pass from G to H, the distance between a vertex of e1 \ {v0, v1} and v1 is increased by 1, the

distance between a vertex of e1 \ {v0, v1} and e3 \ {v0} is decreased by 1, the distance between a vertex of

e2 \ {v1, v2} and v1 is increased by 1, the distance between a vertex of e2 \ {v1, v2} and e3 \ {v2} is decreased

by 1, and the distances between all other vertex pairs are decreased or remain unchanged. Then, for any

w ∈ e3 \ {v2, v0}, we have

1

2
(ρ(G)− ρ(H)) ≥ 1

2
x>(D(G)−D(H))x

≥ σH(e1 \ {v0, v1}) (σH(e3 \ {v0})− xv1)

+σH(e2 \ {v1, v2}) (σH(e3 \ {v2})− xv1)

≥ σH(e1 \ {v0, v1}) (xw + xv2 − xv1)

+σH(e2 \ {v1, v2}) (xw + xv0 − xv1)

= σH(e′3 \ e3) (xw + xv0 − xv1)

> 0,

and thus, ρ(G) > ρ(H), a contradiction. It follows that |e2| = 2. Therefore, G ∼= U3
n.

By combining Cases 1 and 2, we conclude that G ∼= U2
n or U3

n. With proper labelling of the vertices, U2
n

and U3
n have the same distance matrix, and thus, ρ(U2

n) = ρ(U3
n). From the distance eigenequations of U3

n

used above in Case 2, it is easily seen that ρ(U3
n) is the largest root of the equation ρ3 + (3− n)ρ2 + (12−

5n)ρ+ 4− 2n = 0.

6. Distance spectral radius of hypertrees with given matching number. For 2 ≤ β ≤ bn2 c, let

Fn,β be the hypertree obtained from a hypertree on n− β vertices consisting of a single edge e by attaching

a pendant edge of size two to each of β chosen vertices of e, respectively. Obviously, β(Fn,β) = β.

Theorem 6.1. Let T be a hypertree on n vertices with matching number β, where 2 ≤ β ≤ bn2 c. Then

ρ(T ) ≥ ρ(Fn,β) with equality if and only if T ∼= Fn,β.

Proof. Let T be a hypertree on n vertices with matching number β that minimizes the distance spectral

radius.
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Let M = {e1, . . . , eβ} be a maximum matching in T . Suppose that there is an edge in M , say e1, which

has two vertices of degree at least two, say w1 and w2. Let T ′ be the hypertree obtained from T by moving

all edges containing w2 except e1 from w2 to w1. Obviously, M is also a maximum matching of T ′. By

Theorem 2.4, ρ(T ) > ρ(T ′), a contradiction. Thus, e1, . . . , eβ are all pendant edges.

For i = 1, . . . , β, let vi be the unique vertex in ei of degree at least two. Let V1 = V (T )\ ∪βi=1 ei\{vi}.
Obviously, |V1| ≥ β ≥ 2. Suppose that there are two vertices in V1, say z1 and z2, which are not adjacent.

Let T ′′ be the hypertree obtained from T by deleting all edges in T except the edges in M , and adding an

edge V1. Obviously, β(T ′′) = β. By Lemma 2.3, ρ(T ) > ρ(T ′′), a contradiction. Thus, any two vertices in

V1 are adjacent, which implies that V1 is an edge.

We may assume that |e1| ≥ · · · ≥ |eβ | ≥ 2. Suppose that |e1| ≥ 3. For i = 1, . . . , β, choose a vertex v′i of

degree one in ei. Let w ∈ e1\{v1, v′1}. Let T ∗ be the hypertree obtained from T by moving all the vertices

in ei\{vi, v′i} from ei to e for each i = 1, . . . , β. Obviously, T ∗ ∼= Fn,β . Let x = x(T ∗). By Lemma 2.1,

xv1 = · · · = xvβ , xv′1 = · · · = xv′β and xv = xw if v ∈ V (T )\ ∪βi=1 {vi, v′i}.

As we pass from T to T ∗, for i = 1, . . . , β, the distance between a vertex of ei\{vi, v′i} and v′i is increased

by 1, the distance between a vertex of ei\{vi, v′i} and {vj , v′j} with j ∈ {1, . . . , β}\{i} is decreased by 1, and

the distances between all other vertex pairs are decreased or remain unchanged. Thus,

1

2
(ρ(T )− ρ(T ∗)) ≥ 1

2
x>(D(T )−D(T ∗))x

≥
β∑
i=1

σT∗(ei \ {vi, v′i})

 ∑
1≤j≤β
j 6=i

(xv′j + xvj )− xv′i


>

β∑
i=1

σT∗(ei \ {vi, v′i})
∑

1≤j≤β
j 6=i

xvj

> 0,

and therefore, ρ(T ) > ρ(T ∗), a contradiction. It follows that |e1| = · · · = |eβ | = 2, i.e., T ∼= Fn,β .

7. Distance spectral radius of power hypertrees with given matching number. Nath and

Paul [12] determined the unique tree with maximum distance spectral radius among trees on n vertices

with matching number β, where 1 ≤ β ≤ bn2 c. In this section, we determine the unique hypertree with

maximum distance spectral radius among k-th power hypertrees with m edges and matching number β,

where 1 ≤ β ≤ bm+1
2 c.

Lemma 7.1. [16] For t ≥ 3, let G be a hypergraph consisting of t connected subhypergraphs G1, . . . , Gt
such that |V (Gi)| ≥ 2 for 1 ≤ i ≤ t and V (Gi) ∩ V (Gj) = {u} for 1 ≤ i < j ≤ t. Suppose that ∅ 6= I ⊆
{3, . . . , t}. Let v ∈ V (G2)\{u} and G′ be the hypergraph obtained from G by moving all the edges containing

u in Gi for all i ∈ I from u to v. If σG(G1) ≥ σG(G2), then ρ(G) < ρ(G′).

For positive integers p, q and d, let T2d(p, q) be the k-uniform hypertree obtained from a k-uniform loose

path

(ud, ed, ud−1, . . . , u2, e2, u1, e1, u0(v0), e′1, v1, e
′
2, v2, . . . , vd−1, e

′
d, vd)

by attaching p − 1 pendant edges to ud−1 and q − 1 pendant edges to vd−1. In particular, T2(p, q) is a
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k-uniform hyperstar with p+ q edges. Let T2d(0, 1) be a k-uniform loose path on 2d− 1 edges.

Lemma 7.2. For d ≥ 2 and 2 ≤ p ≤ q, ρ(T2d(p, q)) > ρ(T2d(p− 1, q + 1)).

Proof. Let H = T2d(p, q). Let H ′ be the hypergraph obtained from H by moving the pendant edge ed
from ud−1 to vd−1. Obviously, H ′ ∼= T2d(p− 1, q + 1).

Let x = x(H ′). By Lemma 2.1, the entry of x corresponding to each vertex of degree one in the p − 1

pendant edges containing ud−1 is the same, which we denote by µ, the entry of x corresponding to each

vertex of degree one in the q + 1 pendant edges containing vd−1 is the same, all equal to xud , the entry of

x corresponding to each vertex of ei\{ui−1, ui} for i = 1, . . . , d− 1 is the same, which we denote by ai, the

entry of x corresponding to each vertex of e′i\{vi−1, vi} is the same, which we denote by bi.

For i = 1, . . . , d− 1, from the distance eigenequations of H ′ at ui and vi, we have

ρ(H ′)xui =

d−1∑
j=0

(i+ j)xvj +

d−1∑
j=1

(k − 2)(i+ j)bj + (k − 1)(q + 1)(d+ i)xud

+

d−1∑
j=0

|i− j|xuj +

i∑
j=1

(k − 2)(i− j + 1)aj

+

d−1∑
j=i+1

(k − 2)(j − i)aj + (k − 1)(p− 1)(d− i)µ,

ρ(H ′)xvi =

d−1∑
j=0

|i− j|xvj +

i∑
j=1

(k − 2)(i− j + 1)bj +

d−1∑
j=i+1

(k − 2)(j − i)bj

+(k − 1)(q + 1)(d− i)xud +

d−1∑
j=0

(i+ j)xuj

+

d−1∑
j=1

(k − 2)(i+ j)aj + (k − 1)(p− 1)(d+ i)µ,

and for k ≥ 3 and i = 1, . . . , d − 1, from the distance eigenequations of H ′ at a vertex in ei\{ui−1, ui} and

a vertex in e′i\{vi−1, vi}, respectively, we have

ρ(H ′)ai =

d−1∑
j=0

(i+ j)xvj +

d−1∑
j=1

(k − 2)(i+ j)bj + (k − 1)(q + 1)(d+ i)xud

+

i−1∑
j=0

(i− j)xuj +

d−1∑
j=i

(j − i+ 1)xuj +

d−1∑
j=1

(k − 2)(|i− j|+ 1)aj

+(k − 1)(p− 1)(d− i+ 1)µ− ai,

ρ(H ′)bi =

d−1∑
j=0

(i+ j)xuj +

d−1∑
j=1

(k − 2)(i+ j)aj + (k − 1)(p− 1)(d+ i)µ

+

i−1∑
j=0

(i− j)xvj +

d−1∑
j=i

(j − i+ 1)xvj +

d−1∑
j=1

(k − 2)(|i− j|+ 1)bj

+(k − 1)(q + 1)(d− i+ 1)xud − bi.
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Then

ρ(H ′) (xui − xvi) = 2i

d−1∑
j=i

(xvj − xuj ) + 2i

d−1∑
j=i+1

(k − 2)(bj − aj)

+2i(k − 1)(q + 1)xud − 2i(k − 1)(p− 1)µ

+

i−1∑
j=0

2j(xvj − xuj ) +

i∑
j=1

(k − 2)(2j − 1)(bj − aj),

(ρ(H ′) + 1) (ai − bi) = (2i− 1)

d−1∑
j=i

(xvj − xuj ) + (2i− 1)

d−1∑
j=i+1

(k − 2)(bj − aj)

+(2i− 1)(k − 1)(q + 1)xud − (2i− 1)(k − 1)(p− 1)µ

+

i−1∑
j=0

2j(xvj − xuj ) +

i∑
j=1

(k − 2)(2j − 1)(bj − aj).

Let A =
∑d−1
j=1((k − 2)aj + xuj ) + (k − 1)(p− 1)µ and B =

∑d−1
j=1((k − 2)bj + xvj ) + (k − 1)(q + 1)xud .

Now we prove A < B. Suppose this is not true. Next we prove that ai ≤ bi and xui ≤ xvi by induction on i

for 1 ≤ i ≤ d− 1. For i = 1,

(ρ(H ′) + 1) (a1 − b1) =

d−1∑
j=1

(xvj − xuj ) +

d−1∑
j=2

(k − 2)(bj − aj) + (k − 1)(q + 1)xud

−(k − 1)(p− 1)µ+ (k − 2)(b1 − a1)

= B −A
≤ 0,

we have a1 ≤ b1, and then

ρ(H ′) (xu1
− xv1) = 2

d−1∑
j=1

(xvj − xuj ) + 2

d−1∑
j=2

(k − 2)(bj − aj)

+2(k − 1)(q + 1)xud − 2(k − 1)(p− 1)µ+ (k − 2)(b1 − a1)

= 2(B −A) + (k − 2)(a1 − b1) ≤ 0,

implying that xu1 ≤ xv1 . Now suppose that i ≥ 2, aj ≤ bj and xuj ≤ xvj for 1 ≤ j ≤ i− 1. Then

(ρ(H ′) + 1) (ai − bi)− ρ(H ′)
(
xui−1 − xvi−1

)
=

d−1∑
j=i

(
(k − 2) bj + xvj − (k − 2) aj − xuj

)
+(k − 1)(q + 1)xud − (k − 1)(p− 1)µ

= (B −A)−
i−1∑
j=1

(
(k − 2) (bj − aj) + (xvj − xuj )

)
≤ 0.
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Thus, (ρ(H ′) + 1) (ai − bi) ≤ ρ(H ′)
(
xui−1 − xvi−1

)
≤ 0, from which we have ai ≤ bi. Note that

ρ(H ′)(xui − xvi)− (ρ(H ′) + 1)(ai − bi) =

d−1∑
j=i

(
xvj − xuj

)
+

d−1∑
j=i+1

(k − 2)(bj − aj)

+(k − 1)(q + 1)xud − (k − 1)(p− 1)µ

= (B −A)−
i−1∑
j=1

(
xvj − xuj

)
−

i∑
j=1

(k − 2)(bj − aj)

≤ 0.

Thus, ρ(H ′)(xui − xvi) ≤ (ρ(H ′) + 1) (ai − bi) ≤ 0, implying that xui ≤ xvi . It follows that ai ≤ bi and

xui ≤ xvi for 1 ≤ i ≤ d− 1. Thus,
∑d−1
j=1((k − 2)aj + xuj ) ≤

∑d−1
j=1((k − 2)bj + xvj ).

By Lemma 2.2, (ρ(H ′) +k)(µ−xud) = ρ(H ′)(xud−1
−xvd−1

) ≤ 0, and thus, µ ≤ xud . This is impossible,

because it would imply that A < B. Therefore, A < B.

As above, we have ai > bi and xui > xvi for 1 ≤ i ≤ d− 1, and since

ρ(H ′)(xui − xvi) > (ρ(H ′) + 1)(ai − bi) > ρ(H ′)(xui−1 − xvi−1) > 0,

we have xui − xvi > ai − bi for 1 ≤ i ≤ d − 1 and xui − xvi > xui−1 − xvi−1 for 2 ≤ i ≤ d − 1. By Lemma

2.2, µ− xud = ρ(H′)
ρ(H′)+k (xud−1

− xvd−1
) < xud−1

− xvd−1
.

As we pass from H to H ′, the distance between a vertex of ed\{ud−1} and a vertex of degree one

in the remaining p − 1 pendant edges at ud−1 is increased by 2d − 2 (p ≥ 2) , the distance between a

vertex of ed\{ud−1} and a vertex of degree one in the q pendant edges at vd−1 is decreased by 2d − 2, for

0 ≤ i ≤ d− 1,the distance between a vertex of ed\{ud−1} and ui is increased by 2i, the distance between a

vertex of ed\{ud−1} and vi is decreased by 2i, the distance between a vertex of ed\{ud−1} and ei\{ui−1, ui}
is increased by 2i− 1, the distance between a vertex of ed\{ud−1} and e′i\{vi−1, vi} is decreased by 2i− 1,

and the distances between all other vertex pairs remain unchanged. Thus,

(7.5)
1

2
(ρ(H)− ρ(H ′)) ≥ 1

2
x>(D(H)−D(H ′))x = (k − 1)xudW,

where

W = (k − 1)(2d− 2)(qxud − (p− 1)µ) +

d−1∑
i=1

2i(xvi − xui) + (k − 2)

d−1∑
i=1

(2i− 1)(bi − ai).

Let

F =

d−1∑
i=1

(2i+ (k − 2)(2i− 1)) + 2(p− 1)(k − 1)(d− 1).
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By the distance eigenequations of H ′ at ud−1 and vd−1, we have

ρ(H ′)(xud−1
− xvd−1

) = (k − 1)(2d− 2) ((q + 1)xud − (p− 1)µ)

+

d−1∑
i=1

2i(xvi − xui) + (k − 2)

d−1∑
i=1

(2i− 1)(bi − ai)

= W + (k − 1)(2d− 2)xud

= 2W +

d−1∑
i=1

2i(xui − xvi) + (k − 2)

d−1∑
i=1

(2i− 1)(ai − bi)

+(k − 1)(2d− 2) ((p− 1)µ− (q − 1)xud)

< 2W +
d−1∑
i=1

2i(xui − xvi) + (k − 2)
d−1∑
i=1

(2i− 1)(xui − xvi)

+(k − 1)(2d− 2)(p− 1) (µ− xud)

< 2W + F (xud−1
− xvd−1

).

That is,

(7.6) 2W > (ρ(H ′)− F )(xud−1
− xvd−1

).

For any w ∈ V (H ′), there is a subhypergraph H∗ of H ′ (obtained from H ′ by removing q−p+2 pendant

edges at vd−1 and the resulting isolated vertices) such that w ∈ V (H∗) and H∗ ∼= T2d(p− 1, p− 1). Then∑
z∈V (H′)

dH′(w, z) >
∑

z∈V (H∗)

dH∗(w, z).

It is easy to see that∑
z∈V (H∗)

dH∗(w, z) ≥
∑

z∈V (H∗)

dH∗(u0, z)

=

d−1∑
i=1

dH∗(u0, ui) + dH∗(u0, vi)

+
∑

z∈ei\{ui−1,ui}

dH∗(u0, z) +
∑

z∈e′i\{vi−1,vi}

dH∗(u0, z)


+(p− 1)

 ∑
z∈ed\{ud−1}

dH∗(u0, z) +
∑

z∈e′d\{vd−1}

dH∗(u0, z)


=

d−1∑
i=1

(2i+ 2(k − 2)i) + 2(p− 1)(k − 1)d

> F.

Thus,
∑
z∈V (H′) dH′(w, z) > F for any w ∈ V (H ′). Since ρ(H ′) is bounded below by the minimum row sum

of D(H ′), we have ρ(H ′) > F . Recall that xud−1
> xvd−1

. So, by (7.6), we have W > 0. Now, from (7.5),

we have ρ(H) > ρ(H ′).
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For positive integers p, q and d, let T2d+1(p, q) be the k-uniform hypertree obtained from a k-uniform

loose path

(ud, ed, ud−1, . . . , u2, e2, u1, e1, u0, e0, v0, e
′
1, v1, e

′
2, v2, . . . , vd−1, e

′
d, vd)

by attaching p− 1 pendant edges to ud−1 and q − 1 pendant edges to vd−1.

Theorem 7.3. Let T be a k-th power hypertree with m edges and matching number β, where 1 ≤ β ≤
bm+1

2 c. Then ρ(T ) ≤ ρ(T2β(bm−2β+2
2 c, dm−2β+2

2 e)) with equality if and only if T ∼= T2β(bm−2β+2
2 c, dm−2β+2

2 e).

Proof. It is trivial when β = 1.

Suppose that β ≥ 2. Let T be a k-th hypertree with m edges and matching number β that maximizes

the distance spectral radius.

If β = m+1
2 , then recalling that T2β(0, 1) is the unique hypertree with maximum distance spectral radius

among k-uniform hypertrees with m edges [8] and noting that β(T2β(0, 1)) = m+1
2 , we have T ∼= T2β(0, 1),

as desired.

Suppose that 2 ≤ β ≤ bm2 c. Let M be a maximum matching in T .

If there is no vertex of degree at least three in T , then since T is a k-th power hypertree, we have

T ∼= Tm(1, 1) with β = m
2 , as desired.

Suppose that there exists a vertex u in T of degree at least three. Let δT (u) = t ≥ 3, and ET (u) =

{e1, . . . , et}. Then T consists of t subhypertrees T1, . . . , Tt such that |E(Ti)| ≥ 1 and ei ∈ E(Ti) for 1 ≤ i ≤ t,
∪ti=1E(Ti) = E(T ), and T1, . . . , Tt have exactly one vertex u in common. Suppose that |E(T1)|, |E(T2)| ≥ 2.

We consider three cases.

Case 1. e3 /∈M .

We may assume that σT (T1) ≥ σT (T2). Let w be a vertex of degree at least two contained in some

pendant edge in T2. Let T ′ be the hypertree obtained from T by moving edge e3 from u to w. Then

β(T ′) = β, and by Lemma 7.1, ρ(T ′) > ρ(T ), a contradiction.

Case 2. e3 ∈M and |E(T3)| ≥ 2.

Since e3 ∈ M , we have e1 /∈ M . We may assume that σT (T2) ≥ σT (T3). Let z be a vertex of degree at

least two contained in some pendant edge in T3. Let T ′′ be the hypertree obtained from T by moving edge

e1 from u to z. Then β(T ′′) = β, and by Lemma 7.1, ρ(T ′′) > ρ(T ), a contradiction.

Case 3. e3 ∈M and |E(T3)| = 1.

Let v be a vertex of degree one in e3. Let T ∗ be the hypertree obtained from T by moving edge e1 from

u to v. Then β(T ∗) = β, and by Lemma 2.4, ρ(T ∗) > ρ(T ), a contradiction.

By combining Cases 1–3, we conclude that, among the t subhypertrees T1, . . . , Tt of T containing u,

only one has at least two edges, as T is not a k-uniform hyperstar. Since u is arbitrary and T is a k-

th power hypertree, it follows that T ∼= T`(p, q) for some positive integers p, q and ` with q ≥ p ≥ 1,

q ≥ 2, 3 ≤ ` ≤ 2β, and p + q + ` = m + 2. Note that β = d `2e. If ` is odd, then by Lemma 2.4,

ρ(T ) = ρ(T`(p, q)) < ρ(T`+1(p, q − 1)), a contradiction. Thus, ` is even and ` = 2β. If q − p ≥ 2, then by

Lemma 7.2, we have ρ(T2β(p, q)) < ρ(T2β(p + 1, q − 1)), a contradiction. It follows that q − p = 0, 1, i.e.,

T ∼= T2β(bm−2β+2
2 c, dm−2β+2

2 e).
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