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ON THE VERTEX-FACE GRAPHS OF TRIANGULATIONS∗

WEIGEN YAN† AND SHULI LI‡

Abstract. Let G = (V (G), E(G)) be a triangulation with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) embedded

on an orientable surface with genus g. Define G∇ to be the graph obtained from G by inserting a new vertex vφ to each face

φ of G and adding three new edges (u, vφ), (v, vφ) and (w, vφ), where u, v and w are the three vertices on the boundary of φ.

Let G� be the graph obtained from G∇ by deleting all edges in E(G) of G∇. In this paper, first some spectral properties of

G∇ and G� are considered, then it is proved that t(G∇) = 3n+4g−35n−1t(G) and t(G�) = 3n+4g−32n−1t(G), where t(G) is

the number of spanning trees of G. As applications, the number of spanning trees and Kirchhoff indices of some lattices in the

context of statistical physics are obtained.
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1. Introduction. Unless otherwise specified, graphs in this paper are simple. Let AG and DG denote

the adjacency matrix and the diagonal matrix of vertex degrees of the graph G with n vertices, respectively.

The matrices LG = DG−AG and LG = D
−1/2
G LGD

−1/2
G are called the Laplacian matrix and the normalized

Laplacian matrix of G, respectively. The polynomials µ(G, x) = det(xIn−LG) and χ(G, x) = det(xIn−LG)

are called the Laplacian characteristic polynomial and the normalized Laplacian characteristic polynomial

of G, respectively.

Let G be a triangulation embedded on an orientable surface Σ with genus g with vertex set V (G) =

{v1, v2, . . . , vn}, edge set E(G) = {e1, e2, . . . , em}, and face set F (G) = {φ1, φ2, . . . , φf}. The dual graph G⊥

of G is the graph whose vertices, edges and faces correspond to faces, edges and vertices of G, respectively.

We can embed G and G⊥ simultaneously in Σ such that an edge e of G crosses the corresponding dual edge

e⊥ of G⊥ exactly once and crosses no other edge of G⊥. Hence, V (G⊥) = F (G), E(G⊥) =
{
e⊥1 , e

⊥
2 , . . . , e

⊥
m

}
,

and F (G⊥) = V (G).

By the Eulerian formula, n−m+f = 2−2g. Let V (φ) denote the set of vertices on the boundary of face

φ of G. Note that each face φ of G (including the unbounded face) is a triangle. So |V (φ)| = 3 and 2m = 3f .

Hence, f = 2n+ 4g− 4 and m = 3n+ 6g− 6. Now we define two new graphs G∇ and G� from G, which are

called the vertex-face graph of the first kind and the second kind of G, respectively, as follows. The vertex sets

V (G∇) and V (G�) of G∇ and G� are the union of V (G) and F (G), i.e., V (G∇) = V (G�) = V (G)∪ F (G),

and the edge sets E(G∇) = E(G)∪{(u, φ)|u ∈ V (φ), φ ∈ F (G)} and E(G�) = {(u, φ)|u ∈ V (φ), φ ∈ F (G)}.
Obviously, G∇ is a triangulation with n + f vertices embedded on Σ, and G� is a bipartite graph with

n+ f vertices and m faces embedded on Σ. Furthermore, |V (φ)| = 4 for every face φ ∈ F (G�). If G is the

complete graph with four vertices which is embedded on the plane as illustrated in Figure 1(a), then the

corresponding vertex-face graphs G∇ and G� are the graphs illustrated in Figure 1(b) and (c), respectively.
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Figure 1. (a) A plane triangulation G with vertex set V (G) = {1, 2, 3, 4} and face set F (G) = {a, b, c, d}. (b) The

vertex-face graph G∇ of the first kind of G. (c) The vertex-face graph G� of the second kind of G.

In this paper, we first consider some spectral properties of G∇ and G� in Section 2. In Section 3, we

prove that t(G∇) = 3n+4g−35n−1t(G) and t(G�) = 3n+4g−32n−1t(G), where t(G) is the number of spanning

trees of G, which is also referred to as the complexity of G. In Section 4, we obtain a relation between

Kf(G∇), Kf(G�) and Kf(G) and also obtain a relation between Kf
′
(G∇), Kf

′
(G�) and Kf

′
(G), where Kf(G)

and Kf
′
(G) are the Kirchhoff index and degree-Kirchhoff index of G, respectively. As applications, in Section

5, we compute the number of spanning trees and Kirchhoff indices of some lattices in the context of statistical

physics.

2. Spectral properties of G∇ and G�. Suppose that G is a triangulation embedded on an orientable

surface with vertex set V (G) = {v1, v2, . . . , vn}, edge set E(G) = {e1, e2, . . . , em}, and face set F (G) =

{φ1, φ2, . . . , φf}. Define the vertex-face incident matrix as MG = {mij}n×f , where mij = 1 if vertex

vi ∈ V (φj) and mij = 0 otherwise. For the triangulation G illustrated in Figure 1(a), V (G) = {1, 2, 3, 4}
and F (G) = {a, b, c, d}, the vertex-face incident matrix MG is


1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 0

 .

Lemma 2.1. Let G be a triangulation with n vertices and f faces embedded on an orientable surface.

Then

MGM
T
G = DG + 2AG,

where MT
G is the transpose of MG, and AG and DG are the adjacency matrix and the diagonal matrix of

vertex degrees of G, respectively.

Proof. For any i, j ∈ {1, 2, . . . , n}, by the definition of MG,

(
MGM

T
G

)
ii

=

f∑
k=1

mikmik =

f∑
k=1

mik = di
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and (
MGM

T
G

)
ij

=

f∑
k=1

mikmjk.

Note that mikmjk = 1 if and only if vi, vj ∈ V (φk). Since G is a triangulation, the boundary of each face of

G is a triangle. So vi, vj ∈ V (φk) if and only if (vi, vj) is an edge of G. Note that G has no cut edge (since

G is a triangulation). Hence, each edge (vi, vj) is incident to exactly two faces. Thus,

(
MGM

T
G

)
ij

=

f∑
k=1

mikmjk = 2aij ,

where AG = (aij)n×n.

Hence, we have proved that MGM
T
G = DG + 2AG.

By a suitable labelling of vertices of G∇ and G�, the adjacency matrices A(G∇) and A(G�), and the

diagonal matrices of vertex degrees D(G∇) and D(G�) of G∇ and G� have the following forms:

(2.1) A(G∇) =

(
AG MG

MT
G 0f

)
, A(G�) =

(
0n MG

MT
G 0f

)
,

(2.2) D(G∇) =

(
2DG 0n×f
0f×n 3If

)
, D(G�) =

(
DG 0n×f

0f×n 3If

)
,

where AG, DG, and MG are the adjacency matrix, the diagonal matrix of vertex degrees, and the vertex-face

incident matrix of G, respectively, and 0n×f and If are the n× f matrix with all entries equal to zero and

the unit matrix of order f . Hence, the Laplacian matrices L(G∇) and L(G�) of G∇ and G� are

(2.3) L(G∇) =

(
2DG −AG −MG

−MT
G 3If

)
, L(G�) =

(
DG −MG

−MT
G 3If

)
.

Theorem 2.2. Let G be a triangulation with n vertices and f faces embedded on an orientable surface,

and G∇ and G� the vertex-face graphs of the first kind and the second kind of G, respectively. Suppose the

normalized Laplacian spectrum of G is {θ1, θ2, . . . , θn}. Then:

(1) The normalized Laplacian spectrum of G∇ is
{ f−n︷ ︸︸ ︷

1, . . . , 1,
9+3θi±

√
(9+3θi)2−120θi
12 , i = 1, 2, . . . , n

}
.

(2) The normalized Laplacian spectrum of G� is
{ f−n︷ ︸︸ ︷

1,. . ., 1, 3±
√
9−6θi
3 , i = 1, 2,. . ., n

}
.

Proof. (1) Note that the normalized Laplacian characteristic polynomial of G is

χ(G, x) = det
(
xIn − LG

)
= |xIn −DG

−1/2LGDG
−1/2|

= |(x− 1)In +DG
−1/2AGDG

−1/2|
= |DG

1/2||(x− 1)In +DG
−1AG||DG

−1/2|
= |xIn − (In −DG

−1AG)|.
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By equations (2.1) and (2.2),

D(G∇)−1A(G∇) =

(
1
2DG

−1AG
1
2DG

−1MG
1
3MG

T 0f

)
.

Then

χ(G∇, x) = det
(
xIn+f − (In+f −D(G∇)−1A(G∇))

)
= det

(
(x− 1)In + 1

2DG
−1AG

1
2DG

−1MG
1
3MG

T (x− 1)If

)
= (x− 1)f det

(
(x− 1)In + 1

2DG
−1AG

1
2DG

−1MG
1

3(x−1)MG
T If

)
= (x− 1)f det

(
(x− 1)In + 1

2DG
−1AG − 1

6(x−1)DG
−1MGMG

T
)
.

By Lemma 2.1, MGM
T
G = DG + 2AG. Thus,

χ(G∇, x) = ( 1
6 )n(x− 1)f−n det

(
6(x− 1)2In + 3(x− 1)DG

−1AG −DG
−1 (DG + 2AG)

)
= ( 1

6 )n(x− 1)f−n det
(
(6x2 − 9x)In − (3x− 5)

(
In −DG

−1AG
))
.

Note that the normalized Laplacian spectrum of G (or AG) is {θ1, θ2, . . . , θn}. Then

χ(G∇, x) =
(1

6

)n
(x− 1)f−n

n∏
i=1

[
6x2 − 9x− (3x− 5)θi

]
.

Thus, the zeros of χ(G∇, x) are

f−n︷ ︸︸ ︷
1, . . . , 1,

9 + 3θi ±
√

(9 + 3θi)2 − 120θi
12

, i = 1, 2, . . . , n.

(2) Similarly, we can prove that the normalized Laplacian spectrum of G� is

{ f−n︷ ︸︸ ︷
1, . . . , 1,

3±
√

9− 6θi
3

, i = 1, 2, . . . , n
}
.

Theorem 2.3. Let G be a k-regular triangulation with n vertices and f faces embedded on an orientable

surface, and G∇ and G� the vertex-face graphs of the first kind and the second kind of G, respectively. Let

{λ1, λ2, . . . , λn} be the spectrum of G. Then:

(1) The spectrum of G∇ is
{ f−n︷ ︸︸ ︷

0, . . . , 0,
λi±
√
λ2
i+8λi+4k

2 , i = 1, 2, . . . , n
}

.

(2) The spectrum of G� is
{ f−n︷ ︸︸ ︷

0, . . . , 0,±
√
k + 2λi, i = 1, 2, . . . , n

}
.

(3) The Laplacian spectrum of G∇ is
{ f−n︷ ︸︸ ︷

3, . . . , 3,
3+2k−λi±

√
(3+2k−λi)2−20k+20λi

2 , i = 1, 2, . . . , n
}

.

(4) The Laplacian spectrum of G� is
{ f−n︷ ︸︸ ︷

3, . . . , 3,
3+k±

√
(3+k)2−8k+8λi

2 , i = 1, 2, . . . , n
}

.
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Proof. (1) By equation (2.1), the characteristic polynomial of G∇ is

φ(G∇, x) = det

(
xIn −AG −MG

−MT
G xIf

)
= xf det

(
xIn −AG −MG

− 1
xM

T
G If

)
= xf det

(
xIn −AG − 1

xMGM
T
G

)
.

By Lemma 2.1, MGM
T
G = DG + 2AG. Since G is k-regular. Thus,

φ(G∇, x) = xf−n det
(
x2In − xAG −DG − 2AG

)
= xf−n det

(
(x2 − k)In − (x+ 2)AG

)
.

Note that the spectrum of G (or AG) is {λ1, λ2, . . . , λn}. Then

φ(G∇, x) = xf−n
n∏
i=1

[
x2 − k − (x+ 2)λi

]
.

Thus, the zeros of φ(G∇, x) are

f−n︷ ︸︸ ︷
0, . . . , 0,

λi ±
√
λ2i + 8λi + 4k

2
, i = 1, 2, . . . , n.

(2) Similarly, by equation (2.1), we can show that the spectrum of G� is

{ f−n︷ ︸︸ ︷
0, . . . , 0,±

√
k + 2λi, i = 1, 2, . . . , n

}
.

(3) By equation (2.3), the Laplacian characteristic polynomial µ(G∇, x) of G∇ is

µ(G∇, x) = det

(
xIn − 2DG +AG MG

MT
G (x− 3)If

)
.

Hence,

µ(G∇, x) = (x− 3)f det

(
xIn − 2DG +AG MG

1
x−3M

T
G If

)
= (x− 3)f det

(
xIn − 2DG +AG − 1

x−3MGM
T
G

)
.

Since MGM
T
G = DG + 2AG, and G is k-regular,

µ(G∇, x) = (x− 3)f−n det (x(x− 3)In − 2(x− 3)DG + (x− 3)AG −DG − 2AG)

= (x− 3)f−n det
(
(x2 − 3x)In + (5− 2x)kIn + (x− 5)AG

)
.

Note that the spectrum of G (or AG) is {λ1, λ2, . . . , λn}. Thus,

µ(G∇, x) = (x− 3)f−n
n∏
i=0

[
x2 − 3x+ (5− 2x)k + (x− 5)λi

]
.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 616-628, September 2020.

621 On the Vertex-Face Graphs of Triangulations

Therefore, the zeros of µ(G∇, x) are

f−n︷ ︸︸ ︷
3, . . . , 3,

3 + 2k − λi ±
√

(3 + 2k − λi)2 − 20k + 20λi
2

, i = 1, 2, . . . , n.

(4) Similarly, we can prove that the Laplacian spectrum of G� is

{ f−n︷ ︸︸ ︷
3, . . . , 3,

3 + k ±
√

(3 + k)2 − 8k + 8λi
2

, i = 1, 2, . . . , n
}
.

Remark 2.4. For the k-regular triangulations with n vertices and f faces embedded on an orientable

surface Σ with genus g, the three variables k, g and n satisfy the equation (k− 6)n = 12(g− 1), which shows

that for fixed genus g not equal to 1, there are only finitely many such triangulations. Only when the genus

is 1 and k = 6, there are infinite families. For example, for any m ≥ 2, n ≥ 2, the triangular lattices T t(n,m)

defined in Section 5 are 6-regular graphs on torus (i.e, genus g = 1).

3. Counting spanning trees of the vertex-face graphs. The enumeration of spanning trees of

a graph G was first considered by Kirchhoff in the analysis of electric circuits [12]. It is a problem of

fundamental interest in mathematics [1, 3, 18] and in physics [4, 16, 19]. The number of spanning trees is

closely related to the partition function of the q-state Potts model in statistical mechanics [9, 20]. Some

recent studies on the enumeration of spanning trees and the calculation of their asymptotic growth constants

on regular lattices were carried out in [4, 5, 15, 17]. We denote by t(G) the number of spanning trees of G.

For convenience, we present a fundamental result about the normalized Laplacian spectrum and the number

of spanning trees t(G) of a graph G, for more details see [7].

Theorem 3.1. Let G be a connected graph with n vertices m edges, then the number of spanning trees

of G is

(3.1) t(G) =
1

2m

n∏
i=1

di

n∏
k=2

θk,

where di is the degree of vertex vi of G, and the θk are the nonzero normalized Laplacian eigenvalue of G.

For the notation above we have the following result.

Theorem 3.2. Let G be a triangulation with n vertices and f faces embedded on an orientable surface Σ

with genus g, and G∇ and G� the vertex-face graphs of the first kind and the second kind of G, respectively.

Then

t(G∇) = 3n+4g−35n−1t(G), t(G�) = 3n+4g−32n−1t(G).

Proof. Note that G is a triangulation with n vertices and f faces, then |V (G∇)| = |V (G�)| = n + f ,

m(G∇) = m+ 3f,m(G�) = 3f , and m is the number of edges of G. And 3f = 2m. Thus,

(3.2) m(G∇) = 3m,m(G�) = 2m.

Obviously, the degree sequences of G∇ and G� are {2d1, 2d2, . . . , 2dn,
f︷ ︸︸ ︷

3, . . . , 3} and {d1, d2, . . . , dn,
f︷ ︸︸ ︷

3, . . . , 3}.
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By Theorem 2.2 and equations (3.1) and (3.2), we have

t(G∇) = 1
2m(G∇)

n+f∏
i=1

di(G
∇)

n+f∏
k=2

θk(G∇)

= 2n3f

6m

n∏
i=1

di

[
3
2×1f−n

n∏
k=2

(
9+3θk+

√
(9+3θk)2−120θk
12

)(
9+3θk−

√
(9+3θk)2−120θk
12

)]
= 3f−n+15n−1

2m

n∏
i=1

di
n∏
k=2

θk

= 3f−n+15n−1t(G).

Since G is a triangulation embedded on an orientable surface with genus g, n−m+f = 2−2g and 3f = 2m.

So f = 2n+ 4g − 4. Hence,

t(G∇) = 3f−n+15n−1t(G) = 3n+4g−35n−1t(G).

Similarly, we can show that t(G�) = 3n+4g−32n−1t(G).

By the theorem above, we have:

Corollary 3.3. Let G be a plane triangulation with n vertices. Then

t(G∇) = 3n−35n−1t(G), t(G�) = 3n−32n−1t(G).

Corollary 3.4. Let G be a toroidal triangulation with n vertices. Then

t(G∇) = 3n+15n−1t(G), t(G�) = 3n+12n−1t(G).

4. Kirchhoff index and degree-Kirchhoff index of vertex-face graphs. On the basis of electrical

network theory, the study of resistance distance was initiated by Klein and Randić [13], and the related index,

known as the Kirchoff index, is well studied in [10, 21]. For any two vertices u and v in a connected graph

G, the resistance distance Ω(u, v) between u and v is defined as the effective resistance between u and v by

replacing each edge of G with unit resistors. The Kirchhoff index of a graph G, denoted by Kf(G), is defined

as the sum of resistance distances between all pairs of vertices [2, 13]; that is,

Kf(G) =
∑

{u,v}⊂V (G)

Ω(u, v).

At almost the same time, Gutman and Mohar [10] and Zhu et al. [23] proved that, if G is a connected

simple graph with n vertices, then

(4.1) Kf(G) = n

n−1∑
i=1

1

µi
,

where µ1, µ2, . . . , µn−1 are the non-zero Laplacian eigenvalues of G.

Recently, one modification of the Kirchhoff index, which takes the degrees of the graph into account,

has been considered. The degree-Kirchhoff index is defined by Chen and Zhang [6]:

Kf
′
(G) =

∑
{u,v}⊂V (G)

dudvΩ(u, v),
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where du is the degree of the vertex u of G. They proved that, if G is a connected simple graph with n

vertices m edges, then

(4.2) Kf
′
(G) = 2m

n∑
k=2

1

θk(G)
,

where θ2, θ3, . . . , θn are the non-zero normalized Laplacian eigenvalues of G.

Theorem 4.1. Let G be a triangulation with n vertices and f faces embedded on an orientable surface,

and G∇ and G� the vertex-face graphs of the first kind and the second kind of G, respectively. Then

Kf
′
(G∇) =

3f

5
(15f − 6n+ 1) +

27

5
Kf
′
(G)

and

Kf
′
(G�) = 3f(2f − 2n+ 1) + 6Kf

′
(G).

Proof. Note that G is a triangulation with n vertices and f faces, then |V (G∇)| = |V (G�)| = n + f ,

m(G∇) = m + 3f,m(G�) = 3f , where m is the number of edges of G. And 3f = 2m, then m(G∇) =

3m,m(G�) = 2m.

By Theorem 2.2 and equation (4.2), the degree-Kirchhoff index of G∇ is

Kf
′
(G∇) = 2m(G∇)

n+f∑
k=2

1
θk(G∇)

= 6m

(
(f − n) + 1

3
2

+
n∑
k=2

(
12

9+3θk+
√

(9+3θk)2−120θk
+ 12

9+3θk−
√

(9+3θk)2−120θk

))
= 6m(f − n) + 4m+ 6m

n∑
k=2

(
9

5θk
+ 3

5

)
= 3f

5 (15f − 6n+ 1) + 27
5 Kf

′
(G),

and the degree-Kirchhoff index of G� is

Kf
′
(G�) = 2m(G�)

n+f∑
k=2

1
θk(G�)

= 4m

(
(f − n) + 1

2 +
n∑
k=2

(
3

3+
√
9−6θk

+ 3
3−
√
9−6θk

))
= 4m(f − n) + 2m+ 4m

n∑
k=2

3
θk

= 3f(2f − 2n+ 1) + 6Kf
′
(G).

Theorem 4.2. Let G be a k-regular triangulation with n vertices and f faces embedded on an orientable

surface, and G∇ and G� the vertex-face graphs of the first kind and the second kind of G, respectively. Then

Kf(G∇) =
f2 − n2

3
+
n+ f

k + 3
+

(n+ f)(n− 1)

5
+

(n+ f)(k + 3)

5n
Kf(G)

and

Kf(G�) =
f2 − n2

3
+
n+ f

k + 3
+

(n+ f)(k + 3)

2n
Kf(G).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 616-628, September 2020.

Weigen Yan and Shuli Li 624

Proof. Suppose that the spectrum of G is {λ1, λ2, . . . , λn = k}. Then the Laplacian spectrum of G is

{µ1 = k − λ1, µ2 = k − λ2, . . . , µn−1 = k − λn−1, µn = 0}. By equation (4.1), the Kirchhoff index of G is

Kf(G) = n

n−1∑
i=1

1

µi(G)
= n

n−1∑
i=1

1

k − λi
.

Note that V (G∇) = V (G�) = n+ f . By Theorem 2.3, the Kirchhoff index of G∇ is

(4.3)

Kf(G∇) = (n+ f)

[
1
3 (f − n) + 1

k+3 +
n−1∑
i=1

1
µi(G∇)

]
= 1

3 (f2−n2) + n+f
k+3 +(n+ f)

n−1∑
i=1

(
2

3+2k−λi+
√

(3+2k−λi)2−20k+20λi

+ 2

3+2k−λi−
√

(3+2k−λi)2−20k+20λi

)
= f2−n2

3 + n+f
k+3 + (n+f)(n−1)

5 + (n+f)(k+3)
5n Kf(G),

and the Kirchhoff index of G� is

(4.4)

Kf(G�) = (n+ f)

[
1
3 (f − n) + 1

k+3 +
n−1∑
i=1

1
µi(G�)

]
= 1

3 (f2−n2)+ n+f
k+3 +(n+f)

n−1∑
i=1

(
2

3+k+
√

(3+k)2−8k+8λi

+ 2

3+k−
√

(3+k)2−8k+8λi

)
= f2−n2

3 + n+f
k+3 + (n+f)(k+3)

2n Kf(G).

5. Applications. As applications of the results in Section 2, 3 and 4, in this section we enumerate

spanning trees of the dual lattice of the 3.12.12 lattice and the dice lattice with toroidal boundary condition

in the context of statistical physics. We also obtain a formula of Kirchhoff indices of these two lattices.

The 3.12.12 lattice Rt(n,m) with toroidal boundary condition is shown in Figure 2(a). For any given

vertex, the incident faces are list in, say, clockwise order, by the number of edges in the face, the list being

the name of the lattice. Several lattices get multiple names, depending on the starting face, the convention

is then to choose the lexicographically smallest name [14]. This is the origin of the name of the 3.12.12

lattice. For Rt(n,m) in Figure 2(a), all ai’s, a
∗
i ’s, bi’s, and b∗i ’s are some vertices on the left, right, lower and

upper boundaries, respectively, and the left and right (resp. the lower and upper) boundaries of the picture

are identified such that (a1, a
∗
1), (a2, a

∗
2), . . . , (am, a

∗
m) and (b1, b

∗
1), (b2, b

∗
2), . . . , (bn, b

∗
n) are edges in Rt(n,m).

The 3.12.12 lattice Rt(n,m) has been used by Fisher [8] in a dimer formulation of the Ising model.

The triangular lattice with toroidal boundary condition, denoted by T t(n,m), can be regarded as an

n×m square lattice with toroidal boundary condition with an additional diagonal edge added, in the same

way, to every square, see Figure 2(b).

The dice lattice Dt(n,m) with toroidal boundary condition is the dual lattice of the kagomé lattice,

depicted in Figure 2(c), which can be obtained from the hexagonal toroidal lattice by inserting a new vertex

vf to each face f and adding three edges
(
vf , ui(f)

)
, where u1(f), u2(f) and u3(f) are mutually non-adjacent

vertices on the boundary of f , such that two vertices vf1 and vf2 have a common neighbor ui(f), i ∈ {1, 2, 3},
where f1, f2 are two adjacent faces.
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Figure 2. (a) The 3.12.12 lattice Rt(n,m) with toroidal boundary condition. (b) The triangular lattice T t(n,m) with

toroidal boundary condition. (c) The dice lattice Dt(n,m) with toroidal boundary condition.

It is not difficult to see that the dual lattice of 3.12.12 lattice Rt(n,m) and the dice lattice Dt(n,m) are

the two vertex-face graphs of the triangular lattice T t(n,m), that is, Rt(n,m)⊥ = T t(n,m)∇, Dt(n,m) =

T t(n,m)�. Note that the eigenvalues of T t(n,m) [22] are

(5.1) λij = 2 cos
2πi

n
+ 2 cos

2πj

m
+ 2 cos

(
2πi

n
+

2πj

m

)
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1.

Then, by Theorem 2.3, the spectra of Rt(n,m)⊥ and Dt(n,m) are0mn,
λij ±

√
λ2ij + 8λij + 24

2
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1


and {

0mn,±

√
2

(
3+2 cos

2πi

n
+2 cos

2πj

m
+2 cos

(
2πi

n
+

2πj

m

))
, 0≤ i≤n−1, 0≤j≤m−1

}
,

respectively. The Laplacian spectra of Rt(n,m)⊥ and Dt(n,m) are3mn,
15− λij ±

√
λ2ij − 10λij + 105

2
, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1


and 3mn,

9±
√

9+8
(
3+2 cos 2πi

n +2 cos 2πj
m +2 cos

(
2πi
n + 2πj

m

))
2

, 0≤ i≤n−1, 0≤j≤m−1

 .

Shrock and Wu [15] showed that the number of spanning trees and the spanning tree entropy of Rt(n,m)

can be expressed as

(5.2) t(Rt(n,m)) =
75

mn

n−1∏
i=0

m−1∏
j=0

(i,j)6=(0,0)

30

[
3− cos

2πi

m
− cos

2πj

n
− cos

(
2πi

m
+

2πj

n

)]
,

and

lim
n,m→∞

1

6mn
log[t(Rt(n,m))]
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=
1

6
log 30 +

1

24π2

∫ 2π

0

∫ 2π

0

log [6− 2 cosx− 2 cos y − 2 cos (x+ y)] dxdy ≈ 0.7206,

and the number of spanning trees and the spanning tree entropy of T t(n,m) can be expressed as

(5.3) t(T t(n,m)) =
1

mn

n−1∏
i=0

m−1∏
j=0

(i,j)6=(0,0)

[
6− 2 cos

2πi

m
− 2 cos

2πj

n
− 2 cos

(
2πi

m
+

2πj

n

)]
,

lim
n,m→∞

log[t(T t(n,m))]

nm
=

1

4π2

∫ 2π

0

∫ 2π

0

log [6− 2 cosx− 2 cos y − 2 cos (x+ y)] dxdy ≈ 1.6153.

Glasser and Wu [11] also derived the result above for the spanning tree entropy of the triangular lattice with

toroidal boundary.

Since Rt(n,m)⊥ = T t(n,m)∇, Dt(n,m) = T t(n,m)�. By Corollary 3.4 and equation (5.3), the following

results are immediate.

Theorem 5.1. Let Rt(n,m) be the 3.12.12 lattice with toroidal boundary condition. Then

t(Rt(n,m)⊥) =
3mn+15mn−1

mn

n−1∏
i=0

m−1∏
j=0

(i,j)6=(0,0)

[
6−2 cos

2πi

m
−2 cos

2πj

n
−2 cos

(
2πi

m
+

2πj

n

)]
.

Theorem 5.2. Let Dt(n,m) be the dice lattice with toroidal boundary condition. Then

t(Dt(n,m)) =
3mn+12mn−1

mn

n−1∏
i=0

m−1∏
j=0

(i,j)6=(0,0)

[
6−2 cos

2πi

m
−2 cos

2πj

n
−2 cos

(
2πi

m
+

2πj

n

)]
.

By equation (5.2), a direct result of Theorem 5.1 is the following corollary.

Corollary 5.3. Let Rt(n,m) be the 3.12.12 lattice with toroidal boundary condition. Then

3t(Rt(n,m)) = 25t(Rt(n,m)⊥).

Remark 5.4. It is well known that a connected plane graph G and its dual graph G⊥ have the same

number of spanning trees. The corollary above implies that this is not true for graphs embedded on the

torus.

Note that the triangular lattice with toroidal boundary condition T t(n,m) is a 6-regular graph, which

has mn vertices and 2mn faces. By equation (5.1), the Kirchoff index of T t(n,m) is

(5.4) Kf(T t(n,m)) =
mn

2

∑
0≤i≤n−1
0≤j≤m−1
(i,j) 6=(0,0)

1

3− cos 2πi
n − cos 2πj

m − cos( 2πi
n + 2πj

m )

Then, by equations (4.3), (4.4) and (5.4), the following results are immediate.
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Theorem 5.5. Let Rt(n,m) be the 3.12.12 lattice with toroidal boundary condition. Then the Kirchhoff

index of Rt(n,m)⊥ is

Kf(Rt(n,m)⊥) =
8m2n2

5
− 4mn

15
+

27mn

10

∑
0≤i≤n−1
0≤j≤m−1
(i,j) 6=(0,0)

1

3−cos 2πi
n −cos 2πj

m −cos
(
2πi
n + 2πj

m

) .
Theorem 5.6. Let Dt(n,m) be the dice lattice with toroidal boundary condition. Then the Kirchhoff

index of Dt(n,m) is

Kf (DL(m,n)) = m2n2 +
mn

3
+

27mn

4

∑
0≤i≤n−1
0≤j≤m−1
(i,j)6=(0,0)

1

3− cos 2πi
n − cos 2πj

m − cos
(
2πi
n + 2πj

m

) .
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