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UNICYCLIC GRAPHS WITH THE STRONG RECIPROCAL
EIGENVALUE PROPERTY∗

S. BARIK† , M. NATH† , S. PATI† , AND B. K. SARMA†

Abstract. A graph G is bipartite if and only if the negative of each eigenvalue of G is also an

eigenvalue of G. It is said that a graph has property (R), if G is nonsingular and the reciprocal of

each of its eigenvalues is also an eigenvalue. Further, if the multiplicity of an eigenvalue equals that

of its reciprocal, the graph is said to have property (SR). The trees with property (SR) have been

recently characterized by Barik, Pati and Sarma. Barik, Neumann and Pati have shown that for

trees the two properties are, in fact, equivalent. In this paper, the structure of a unicyclic graph with

property (SR) is studied. It has been shown that such a graph is bipartite and is a corona (unless it

has girth four). In the case it is not a corona, it is shown that the graph can have one of the three

specified structures. Families of unicyclic graphs with property (SR) having each of these specific

structures are provided.
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1. Introduction. Let G be a simple graph on vertices 1, 2, . . . , n. The adjacency
matrix of G is defined as the n × n matrix A(G), with (i, j)th entry 1 if {i, j} is an
edge and 0 otherwise. Since A(G) is a real symmetric matrix, all its eigenvalues are
real. Throughout the spectrum of G is defined as

σ(G) = (λ1(G), λ2(G), · · · , λn(G)),

where λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) are the eigenvalues of A(G). The largest eigen-
value of A(G) is called the spectral radius of G and is denoted by ρ(G). If G is
connected then A(G) is irreducible, thus by the Perron-Frobenius theory, ρ(G) is sim-
ple and is afforded by a positive eigenvector, called the Perron vector. A graph G is
said to be singular (resp. nonsingular) if A(G) is singular (resp. nonsingular).

Definition 1.1. [7] Let G1 and G2 be two graphs on disjoint sets of n and
m vertices, respectively. The corona G1 ◦ G2 of G1 and G2 is defined as the graph
obtained by taking one copy of G1 and n copies of G2, and then joining the i-th vertex
of G1 to every vertex in the i-th copy of G2.
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Note that the corona G1 ◦G2 has n(m+1) vertices and |E(G1)|+n(|E(G2)|+m)
edges. Let us denote the cycle on n vertices by Cn and the complete graph on n

vertices by Kn. The coronas C3 ◦K2 and K2 ◦ C3 are shown in Figure 1.1.

G1 G2 G1 ◦ G2 G2 ◦ G1

Fig. 1.1. Corona of two graphs.

Connected graphs in which the number of edges equals the number of vertices are
called unicyclic graphs [7]. The unique cycle in a unicyclic graph G is denoted by Γ.
If u is a vertex of the unicyclic graph G then a component T of G− u not containing
any vertex of Γ is called a tree-branch at u. We say that the tree-branch is odd (even)
if the order of the tree-branch is odd (even). Recall that the girth of a unicyclic graph
G is the length of Γ.

It is well known (see [4] Theorem 3.11 for example) that a graph G is bipartite if
and only if the negative of each eigenvalue of G is also an eigenvalue of G. In contrast
to the plus-minus pairs of eigenvalues of bipartite graphs, Barik, Pati and Sarma,
[1], have introduced the notion of graphs with property (R). Such graphs G have the
property that 1

λ is an eigenvalue of G whenever λ is an eigenvalue of G. When each
eigenvalue λ of G and its reciprocal have the same multiplicity, then G is said to
have property (SR). It has been proved in [1] that when G = G1 ◦ K1, where G1 is
bipartite, then G has property (SR) (see Theorem 1.2). However, there are graphs
with property (SR) which are not corona graphs. For example, one can easily verify
that the graphs in Figure 1.2 have property (SR). Note that, in view of Lemma 2.3,
H1 cannot be a corona and that H2 is not a corona has been argued in [1]. Note also
that the graph H1 is unicyclic and H2 is not even bipartite.

H1 H2

Fig. 1.2. Graphs with property (SR) which are not coronas.

The following result gives a class of graphs with property (SR).
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Theorem 1.2. [1] Let G = G1 ◦ K1, where G1 is any graph. Then λ is an
eigenvalue of G if and only if −1/λ is an eigenvalue of G. Further, if G1 is bipartite
then G has property (SR).

In [1], it is proved that a tree T has property (SR) if and only if T = T1 ◦K1, for
some tree T1. This was strengthened in [2] where it is proved that a tree has property
(R) if an only if it has property (SR).

In view of the previous example it is clear that a unicyclic graph with property
(SR) may not be a corona and this motivates us to study unicyclic graphs with
property (SR).

For a graph G, by P (G;x) we denote the characteristic polynomial of A(G). If S
is a set of vertices and edges in G, by G− S we mean the graph obtained by deleting
all the elements of S from G. It is understood that when a vertex is deleted, all edges
incident with it are deleted as well, but when an edge is deleted, the vertices incident
with it are not. For a vertex v in G, d(v) denotes the degree of v in G.

If G1 = (V1, E1) and G2 = (V2, E2) be two graphs on disjoint sets of m and n

vertices, respectively, their union is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Let G be a graph. A linear subgraph L of G is a disjoint union of some edges and
some cycles in G. A k-matching M in G is a disjoint union of k edges. If e1, e2, . . . , ek

are the edges of a k-matching M , then we write M = {e1, e2, . . . , ek}. If 2k is the
order of G, then a k-matching of G is called a perfect matching of G.

Let G be a graph on n vertices. Let

P (G;x) = a0x
n + a1x

n−1 + · · · + an,(1.1)

be the characteristic polynomial of A(G). Then a0(G) = 1, a1(G) = 0 and −a2(G) is
the number of edges in G. In general, we have (see [4] Theorem 1.3)

ai =
∑

L∈ Li

(−1)c1(L)(−2)c2(L), i = 1, 2, . . . , n,(1.2)

where Li is the set of all linear subgraphs L of G of size i and c1(L) denotes the
number of components of size 2 in L and c2(L) denotes the number of cycles in L. We
note that if G has two pendant vertices with a common neighbor, then G is singular,
because in that case G can not have a linear subgraph of size n. If G is bipartite,
then one gets ai = 0, whenever i is odd, and

P (G;x) =
[n/2]∑
i=0

(−1)i b2i x
n−2i,(1.3)

where b2i are nonnegative.
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The following results are often used to calculate the characteristic polynomials of
graphs.

Lemma 1.3. [4] Let e = {u, v} be an edge of G, and C(e) be the set of all cycles
containing e. Then

P (G;x) = P (G− e;x) − P (G− u− v;x) − 2
∑

Z∈C(e)

P (G− Z;x).

Lemma 1.4. [4] Let v be a vertex in the graph G and C(v) be the set of all cycles
containing v. Then

P (G;x) = xP (G − v;x) −
∑

u

P (G− u− v;x) − 2
∑

Z∈C(v)

P (G− Z;x),

where the first summation extends over all u adjacent to v.

Lemma 1.5. [4] Let v be a vertex of degree 1 in the graph G and u be the vertex
adjacent to v. Then

P (G;x) = xP (G− v;x) − P (G− u− v;x).

2. Unicyclic graphs with property (SR). In this section we study the struc-
ture of unicyclic graphs with girth g and property (SR). We show that any such graph
is bipartite. Further, if g �= 4, then the graph is a corona graph.

Lemma 2.1. Let G be a graph on n vertices with property (SR) and P (G;x) be
as given in (1.1). Then |ai(G)| = |an−i(G)|, for i = 0, 1, . . . , n.

Proof. Since G has property (SR), G is nonsingular. Moreover, P (G;x) and
xnP (G; 1

x ) have the same roots. Since P (G;x) is monic and the leading coefficient
of xnP (G; 1

x) is an = ±1, it follows that P (G;x) = ± xnP (G; 1
x ) and the conclusion

follows.

Lemma 2.2. Let G be a unicyclic graph of order n with property (SR). Then G

has a unique perfect matching. In particular n = 2m, for some integer m and there
is an odd tree-branch of G at a vertex of the cycle.

Proof. As G has property (SR), from (1.2), we have

|an| = 1, and an(G) = ±
(
m0(G) ± 2 ×m0(G− Γ)

)
,(2.1)

where m0(H) is the number of perfect matchings of H .
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It follows from (2.1) that m0(G) �= 0, that is, G has a perfect matching. Conse-
quently, n is even. Let n = 2m.

Suppose, if possible, that m0(G−Γ) > 0, i.e. G−Γ has a perfect matching. Thus
Γ is an even cycle. As m0(Γ) = 2, and since a matching of G− Γ and a matching of
Γ give rise to a matching of G, we have

2m0(G− Γ) = m0(G− Γ)m0(Γ) ≤ m0(G).

By (2.1) the above inequality is strict. Thus there is a perfect matching M of G which
does not contain a perfect matching of Γ. That is, in M a vertex u of Γ is matched
to a vertex v of G − Γ. So there is an odd tree-branch at v. But then G − Γ cannot
have a perfect matching. This is a contradiction.

Hence m0(G−Γ) = 0 and so m0(G) = 1. The final conclusion now follows easily.

Lemma 2.3. Let G be a unicyclic graph with property (SR). If G = G1 ◦G2 then
G2 = K1.

Proof. Let G1 be of order n1 and G1 be of order n2. Suppose that G2 �= K1. Then
n2 ≥ 2. Notice that if G2 has more than one isolated vertex, then G can not have
a perfect matching. Therefore, G2 must have an edge. As G is unicyclic, it follows
that n1 = 1 and G2 = K2 or G2 = K2 +K1. In both the cases G does not have the
property (SR).

Definition 2.4. [6] Let K be any graph with a perfect matching M . An
alternating path P (relative to M) in K is a path of odd length such that alternate
edges (including the terminating ones) of P are in M .

Lemma 2.5. Suppose G is a unicyclic graph of order n = 2m with a perfect
matching. Then the number of (m− 1)-matchings of G is at least n.

Proof. Let M = {e1, e2, . . . , em} be a perfect matching of G. Let f1, f2, . . . , fm

be the other m edges of G, which are not in M. Now,

{e1, . . . , em} − {e1}, {e1, . . . , em} − {e2}, . . . , {e1, . . . , em} − {em}
are (m − 1)-matchings of G. Moreover, for each fj we have a unique alternate path
eifjek of length three in G, and thereby an (m − 1)-matching (M − {ei, ek}) ∪ {fj}
of G.

Let LG denote the collection of linear subgraphs of the unicyclic graph G of size
n− 2 with Γ as a component. By m1 we denote the number of (m− 1)-matchings of
G. We note that the linear subgraphs in LG have the same number of components (t
say). Thus, from Equation (1.2), we have
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an−2(G) = (−1)m−1m1 + (−1)t2|LG|.(2.2)

For the rest of the paper, we write “G is a simple corona” to mean that G =
G1 ◦K1 for some graph G1.

Lemma 2.6. Let G be a unicyclic graph of order n with property (SR). Then the
following are equivalent.

(i) G is a simple corona,
(ii) there is no alternating path in G of length 5,
(iii) m1 = n,
(iv) LG is empty.

Proof. By Lemma 2.2, n = 2m, for some m.

(i)⇒(ii). If G is a simple corona then G has m pendant vertices and has the
unique perfect matching containing all the leaves. So there is no alternating path of
length 5 in G.

(ii)⇒(iii). Since G has a unique matching, arguing along the line of the previous
lemma, we see that a (m− 1)-matching is either a subset of the perfect matching or
it corresponds to an alternating path. As there is no alternating path of length more
than 3, it follows from the previous lemma that m1 = n.

(iii)⇒(iv). Note that by Lemma 2.1 |an−2| = |a2| = n, the number of edges in G.
As m1 = n, it follows now from (2.2) that LG is empty.

(iv)⇒(i). If LG is empty, using |an−2| = |a2| = n, we get that m1 = n and hence
by previous lemma there is no alternating path of length more than 3. If G is not
a simple corona, then there is an edge (u, v) ∈ M, the perfect matching such that
d(u), d(v) ≥ 2. Thus there is a path [u0, u, v, v0] such that (u0, u), (v, v0) /∈ M. Note
that u0 is matched to some vertex by M, and so is v0. Then we get an alternating
path of length 5, unless (u0, v0) ∈M. But then G has a cycle Γ of girth 4 and G has
more than one perfect matchings. This is not possible, by Lemma 2.2. Thus G is a
simple corona.

We know from Theorem 1.2 that if G is a bipartite graph which is also a simple
corona, then G has property (SR). Let us ask the converse. Suppose that we have
a unicyclic graph with property (SR). Is it necessarily bipartite? Is it necessarily a
corona? The following lemma answers the first question affirmatively.

Theorem 2.7. Let G be a unicyclic graph with property (SR). Then the girth g
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of G is even. Further, if g �≡ 0 (mod 4) then G is a simple corona.

Proof. Suppose that g is odd. Then |LG| = 0, and therefore by Lemma 2.6, G is
a simple corona. In view of Theorem 1.2, λ,− 1

λ have the same multiplicity in σ(G).
As G has property (SR), − 1

λ ,−λ have the same multiplicity in σ(G). Thus λ,−λ
have the same multiplicity in σ(G). Thus G is bipartite, contradicting the fact that
G has an odd cycle. So g is even.

Let g = 2l. Then by (2.2), we have

an−2(G) = (−1)m−1m1 + (−1)m−l2|LG| = (−1)m−1(m1 + (−1)l−12|LG|).(2.3)

Since l is odd in the present case, n = |an−2(G)| = m1 + 2|LG|. As m1 ≥ n, we must
have |LG| = 0, and the result follows from Lemma 2.6.

Lemma 2.8. Let G be a non-corona unicyclic graph with property (SR). Then
G has exactly two odd tree-branches at (say) u, v ∈ Γ. Every other vertex on Γ is
matched to a point on Γ and the distance between u and v on Γ is odd.

Proof. From Theorem 2.7, g ≡ 0 (mod 4). Moreover, by Lemma 2.6, we have
|LG| �= 0. By Lemma 2.2, there is at least one odd tree-branch at a vertex, say, u ∈ Γ.
As the order of the graph and the cycle are both even, there must be another odd
tree-branch, say, at v ∈ Γ.

Let D be a linear subgraph of G in LG. Clearly D misses at least one vertex
from each odd tree-branch at a vertex of Γ. Since D covers n − 2 vertices of G, it
follows that the number of such odd tree-branches is at most 2. Thus G has exactly
two such odd tree-branches. Thus every other vertex on Γ is matched to a point on
Γ and hence the distance between u and v on Γ is odd.

Let G be graph with a perfect matching. Then, by PG we denote the set of all
alternating paths of length more than 3 in G.

Lemma 2.9. Let G be a unicyclic graph with property (SR). Then |PG| = 2|LG|.
Proof. If g �≡ 0 (mod 4) then G is a simple corona, by Theorem 2.7. Hence

PG = ∅ = LG. Suppose now that g ≡ 0 (mod 4). It follows from (2.3) that

n = |an−2(G)| = m1 − 2|LG|.(2.4)

Let M be the unique matching in G and m = |M |. Note that any (m− 1)-matching
is either a subset of M or is obtained uniquely by an alternating path. Following the
argument in the proof of Lemma 2.5, we see that the number of (m − 1)-matchings
in G (recall that it is m1) is exactly n+ |PG|. The result follows by using (2.4).
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Suppose that G is a non-corona unicyclic graph with property (SR). Then by
Lemma 2.8, G has exactly two odd tree-branches at vertices of Γ. For convenience, we
shall always use that T1, T2 are the odd tree-branches of G at the vertices w1, w2 ∈ Γ,
respectively, and the edges {w1, v1}, {w2, v2} are edges in the unique perfect matching,
where vi ∈ Ti, respectively. We call a vertex u of Ti, i = 1, 2, a distinguished vertex if
Ti−u has a perfect matching. Let ri (i = 1, 2) be the number of distinguished vertices
in Ti. The following relation between ri and LG is crucial for further developments.

Lemma 2.10. Let G be a non-corona unicyclic graph with property (SR). Then
|LG| = r1r2.

Proof. Let D be any linear subgraph of G of size n − 2 containing Γ. Then D

will miss exactly one vertex from the trees T1 and T2. If these points are u1 and u2

respectively, then D will induce a perfect matching of Ti − ui, for i = 1, 2. Thus ui

are distinguished points. Since the perfect matching of a forest (if it exists) is unique,
each such pair (u1, u2) will give rise to a unique linear subgraph of G of size n − 2
containing Γ. Hence the result follows.

Lemma 2.11. Let T be a tree such that T − v has a perfect matching Mv and u
be another vertex in T. Suppose that [v = v1, · · · , vr = u] is the unique path from v to
u in T. Then T − u has a perfect matching Mu if and only if r = 2k + 1, for some k
and the edges {v2i, v2i+1} ∈Mv.

Proof. If [v = v1, · · · , v2k+1 = u] be a path such that the edges {v2i, v2i+1} ∈Mv,

then clearly,

Mu = Mv ∪
{
{v2i−1, v2i} : i = 1, · · · , k

}
\

{
{v2i, v2i+1} : i = 1, · · · , k

}

is a perfect matching of T − u.

Conversely, take a u such that T − u has a perfect matching Mu. Let [v =
v1, · · · , vr = u] is the unique path from v to u in T. Suppose if possible, that {v, x} ∈
Mu, x �= v2. In that case the component of T − v which contains x is odd. Thus
T − v could not be a perfect matching. Thus {v1, v2} ∈Mu and {v2, v3} /∈Mu. Thus
T − u− v1 − v2 has no odd components.

Obviously {v1, v2} /∈ Mv. If {v2, y} ∈ Mv, y �= v3 then T − v1 − v2 has an odd
component containing y. But then T − u − v1 − v2 has the same odd component, a
contradiction. Thus {v2, v3} ∈ Mv. Hence T − v3 has a perfect matching (apply the
first paragraph). Hence as in the last paragraph, {v3, v4} ∈Mu and {v3, v4} /∈Mv.

Continuing this way, we see that {v2i, v2i+1} ∈ Mv and {v2i−1, v2i} ∈ Mu. Since
{vr−1, vr} /∈Mu, we see that r is odd.
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Theorem 2.12. Let G be a unicyclic graph with property (SR) and girth g �= 4.
Then G is a simple corona.

Proof. Suppose that G is not a simple corona. In view of Lemma 2.9 and Lemma
2.10 we have

|PG| = 2r1r2.(2.5)

Moreover, G has exactly two odd tree-branches. Let Ti, wi, vi, i = 1, 2 be as in the
discussion following Lemma 2.9. We prove that (2.5) can not hold and the result will
follow.

By Lemma 2.8, both the v1-v2 paths are alternating and at least one of them has
length more than 5. Let x1, x2 be the vertices on the longer paths, adjacent to w1, w2,

respectively.

It follows from Lemma 2.11 that from any distinguished vertex (other than v1)
u1 of T1 there are two alternating paths to each distinguished vertex of T2 and these
paths have lengths at least 5. Similarly, from any distinguished vertex (other than v2)
u2 of T2 there are two alternating paths to v1 and these paths have lengths at least
5. Thus

|PG| ≥ 2(r1 − 1)r2 + 2(r2 − 1) + 3 = 2r1r2 + 1,

where the term 3 counts the alternating path between v1, v2, the alternating path
between v1, x2, and the alternating path between v2, x1.

3. Non-corona unicyclic graphs with property (SR). A necessary condi-
tion for a non-corona unicyclic graph to have property (SR) is that the girth is four.
One can easily see that it is not sufficient. In this section, we study the structure of
a non-corona unicyclic graph with property (SR) and show that it has one of three
specific structures. We supply examples to show the existence of families of graphs
with property (SR) in each of these cases.

Lemma 3.1. Let G be a non-corona unicyclic graph with property (SR). Let
Ti, i = 1, 2 be the two odd-tree branches of G and ri be the number of distinguished
vertices in Ti, i = 1, 2, respectively. Then 2 ≤ r1 + r2 ≤ 3.

Proof. It is obvious that 2 ≤ r1 + r2. Note that from any distinguished vertex
(other than v1) u1 of T1 there are two alternating paths to each distinguished vertex
of T2, one alternating path to the vertex 3 and these paths have lengths at least 5.
(See Figure 3.1).

From any distinguished vertex (other than v2) u2 of T2 there are two alternating
paths to v1, one alternating path to the vertex 4 and these paths also have lengths at
least 5.
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v1

v2

1

2

T1

T2

3

4

Fig. 3.1. The graph G.

There is one alternating path of length 5 from v1 to v2. Thus

|PG| ≥ 2(r1 − 1)r2 + (r1 − 1) + 2(r2 − 1) + (r2 − 1) + 1 = 2r1r2 + r1 + r2 − 3.

In view of Lemma 2.9 and Lemma 2.10, we have

|PG| = 2|LG| = 2r1r2.

So, r1 + r2 ≤ 3.

In view of the previous lemma, we have two cases: r1 = r2 = 1 or r1 = 1, r2 = 2.
Accordingly the necessary conditions on the structure of G are described by the
following results.

Theorem 3.2. Let G be a non-corona unicyclic graph with property (SR) and
Ti, ri, i = 1, 2, be as discussed earlier. Suppose that r1 = r2 = 1. Then G has one of
the two structures as shown in Figure 3.2, where

(a) F2a, F2b, F1b, Fw are forests of simple corona trees; a non-pendant vertex of each
tree in F2a, F2b is adjacent to 2; a non-pendant vertex of each tree in F1b is
adjacent to 1; a non-pendant vertex of each tree in Fw is adjacent to w in G.

(b) F1a is a forest in which all but one tree, say T3, are simple coronas and a non-
pendant vertex of each simple corona tree is adjacent to 1 in G, and

(c) the graph induced by 1, v1 and vertices of T3 has exactly one alternating path of
length 5 (thus it has no alternating paths of length more than 5).

Proof. As r1 = r2 = 1, the number of alternating paths of length more than 3
has to be exactly 2. The path [v1, 1, 4, 3, 2, v2] is an alternating path of length 5.

Notice that any even tree-branch at 3 (or 4, which is similar) will give us at least
one more such path. Suppose that T is such a tree-branch at 4 and let w be the vertex
adjacent to 3. Recall that w is matched to a vertex v outside the cycle, thus v ∈ T .
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F2b

F1b

1

2

(B)

Fw

wv

4 v1

v2

F2a

3

(A)

1

2

v1

v2

F1a

3

4

T3

Fig. 3.2. Case of r1 = r2 = 1.

So the path [v2, 2, 3, 4, w, v] is an alternating path of length 5. If d(v) ≥ 2, then we
will have an alternating path of length at least 7. Therefore d(v) = 1. It follows that
the other tree-branches at w are even and have perfect matchings and cannot have
an alternating path of length at least 5. Thus they are simple corona trees. It follows
that only a non-pendant vertex of each simple corona tree can be adjacent to w in
G. Further in this case, a similar argument shows that the forests F1b, F2b consist of
simple corona trees only and only a non-pendant vertex of each simple corona tree in
F1b, F2b is adjacent to 2, 3, respectively. Since we already have the required number
of alternating paths of length 5, we see that there is no tree-branch at vertex 4. The
rest of the proof is now routine.

Theorem 3.3. Let G be a non-corona unicyclic graph with property (SR) and
Ti, ri, i = 1, 2, be as discussed earlier. Suppose that r1 = 1, r2 = 2. Then the structure
of G is as shown in Figure 3.3, where F1 and F5 are forests of simple corona trees; a
non-pendant vertex of each tree in F1 (resp. F5) is adjacent to the vertex 1 (resp. 5)
in G.

Proof. Similar to the proof of Theorem 3.2.

We note that each of the graphs with structures described above can be obtained
from certain simple corona graphs by deleting two specific pendant vertices with
distance 3. The following two theorems give necessary and sufficient conditions for
unicyclic graphs of structures as in Figure 3.2(B) and Figure 3.3 to have property
(SR).
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3
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5
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Fig. 3.3. Case of r1 = 1, r2 = 2.

Theorem 3.4. Let G be a unicyclic graph having structure as in Figure 3.2(B).
Let T and T4 be the components of G− 2 − 4 containing the vertices 1 and w respec-
tively. Then G has property (SR) if and only if

P (T ;x)P (T4 − w − w′;x) = P (T − 1 − v1;x)P (T4;x).(3.1)

In particular, if T and T4 in G are isomorphic with 1 and w as corresponding vertices,
then G has property (SR).

Proof. Let e be the edge with end vertices 2 and 3. Using Lemma 1.3 and
Lemma 1.4, we get

P (G; x) = P (G − e; x) − P (G − 3 − 2; x) − 2P (G − Γ; x)

= P (G − e; x) −
[
xP (G − 3 − 2 − 4; x) − P (G − 3 − 2 − 4 − w; x)

−P (G − 3 − 2 − 4 − 1; x)
]
− 2P (G − Γ; x)

= P (G − e; x) − x2P (G − 3 − 2 − 4 − v2; x) + P (G − 3 − 2 − 4 − w; x)

−P (G − Γ; x)

= P (G − e; x) − x2P (G − 3 − 2 − 4 − v2; x)

+x2P (T ; x)P (T4 − w − w′; x)P (F2b; x) − x2P (T − 1 − v1; x)P (T4; x)P (F2b; x).

T4

v1

v2

1

2

4

F2b

3

T

ww′

e

Fig. 3.4. The trees T and T4 in G.
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The components of each of the graphs in the parentheses of the last expression
are simple corona trees, and therefore have property (SR). Let n = 2m. Then for
P (G− e;x), the coefficient an is (−1)m, and we have

P (G − e; x) = (−1)mxn P
(
G − e;

1

x

)
.

Similarly, we have

P (G − 3 − 2 − 4 − v2; x) = (−1)m−2xn−4 P
(

G − 3 − 2 − 4 − v2;
1

x

)
,

P (T ;x)P (T4 − w − w′; x)P (F2b; x) = (−1)m−3xn−6 P
(

T ;
1

x

)
P

(
T4 − w − w′;

1

x

)
P

(
F2b;

1

x

)
,

P (T − 1 − v1; x)P (T4; x)P (F2b; x) = (−1)m−3xn−6 P
(

T − 1 − v1;
1

x

)
P

(
T4;

1

x

)
P

(
F2b;

1

x

)
.

This gives

(−1)mxn P

(
G;

1
x

)
= P (G− e;x) − x2P (G− 3 − 2 − 4 − v2;x)

−x4P (T ;x)P (T4 − w − w′;x)P (F2b;x)

+x4P (T − 1 − v1;x)P (T4;x)P (F2b;x).

Thus G has property (SR) if and only if

P (G;x) = (−1)mxn P

(
G;

1
x

)
,

which is the case if and only if

x2P (T ;x)P (T4 − w − w′;x)P (F2b;x) − x2P (T − 1 − v1;x)P (T4;x)P (F2b;x)

= −x4P (T ;x)P (T4 − w − w′;x)P (F2b;x) + x4P (T − 1 − v1;x)P (T4;x)P (F2b;x).

That is G has property (SR) if and only if

(x4 + x2)P (T ;x)P (T4 − w − w′;x)P (F2b;x) = (x4 + x2)P (T − 1 − v1;x)P (T4;x)P (F2b;x).

This completes the proof of the first assertion. The second assertion now follows.

Theorem 3.5. Let G be a unicyclic graph having structure as in Figure 3.3. Let
T1 and T5 be the components (trees) of the graph G − 2 − 4 − v2 containing vertices
1 and 5 respectively. Then G has property (SR) if and only if

P (T1;x)P (T5 − 5 − w;x) = P (T1 − 1 − v1;x)P (T5;x).

In particular, if T1 and T5 in G are isomorphic with 1 and 5 as corresponding vertices,
then G has property (SR).
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w1 w2 w3
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w4
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Fig. 3.5. A subclass of graphs of Figure 3.2(A).

Proof. Similar to the proof of Theorem 3.4.

Theorem 3.6. Let G be unicyclic graph of the form as shown in figure 3.5. Let
T and T ′ be the components of G − 2 containing the vertices 1 and w1 respectively.
Then G has property (SR) if and only if

P (T ;x)P (T ′ − w1 − w2;x) = P (T − 3 − 4;x)P (T ′;x).

In particular, if T and T ′ are isomorphic with 1 and w3 as corresponding vertices,
then G satisfies property SR.

The proof is omitted as it is similar to that of earlier theorems.

To summarize, we have seen that a unicyclic graph G with girth g �= 4 has
property (SR) if and only if it is a simple corona. In case g = 4, G has property (SR)
if it is either a simple corona or has one of the forms as described in Figures 3.2(A),
3.2(B) and 3.3. Theorems 3.4, 3.5 and 3.6 supply classes of non-corona unicyclic
graphs with property (SR) which are in the forms 3.2(B), 3.3 and 3.2(A), respectively.
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