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ADDITIVE MAPS ON RANK K BIVECTORS∗

WAI LEONG CHOOI† AND KIAM HEONG KWA†

Abstract. Let U and V be linear spaces over fields F and K, respectively, such that dim U = n > 2 and |F| > 3. Let
∧2 U

be the second exterior power of U . Fixing an even integer k satisfying n−1
2

6 k 6 n, it is shown that a map ψ :
∧2 U →

∧2 V
satisfies

ψ(u+ v) = ψ(u) + ψ(v)

for all rank k bivectors u, v ∈
∧2 U if and only if ψ is an additive map. Examples showing the indispensability of the assumption

on k are given.
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1. Introduction. Let n > 2 be an integer and let F be a field. We denote by Mn(F) the algebra of n×n
matrices over F. Given a nonempty subset S of Mn(F), a map ψ : Mn(F)→Mn(F) is called commuting on S

(respectively, additive on S) if ψ(A)A = Aψ(A) for all A ∈ S (respectively, ψ(A+B) = ψ(A) +ψ(B) for all

A,B ∈ S). In 2012, using Brešar’s result [1, Theorem A], Franca [3] characterized commuting additive maps

on invertible (respectively, singular) matrices of Mn(F). He continued to characterize commuting additive

maps on rank k matrices of Mn(F) in [4], where 2 6 k 6 n is a fixed integer, and commuting additive maps

on rank one matrices of Mn(F) in [5]. Later, Xu and Yi [8] improved the result of Franca [4] and showed

that the same result holds when charF = 2 and charF = 3. Recently, Xu, Pei and Yi [7] initiated the study

of additive maps on invertible matrices of Mn(F) and showed that the additivity of a map on Mn(F) can be

determined by its invertible matrices. This work was continued by Xu and Liu [6] to study additive maps

on rank k matrices Mn(F) with n/2 6 k 6 n. Motivated by these works, the authors studied additive maps

on rank k tensors and rank k symmetric tensors in [2], which have slightly improved the result of [6] and

provided an affirmative answer for the case of symmetric matrices. In this note we continue our investigation

to study additive maps on rank k bivectors of the second exterior powers of linear spaces.

We now introduce some notation to describe our main result precisely and to present some examples for

showing the indispensability of the assumption on k in the result. Let U be a linear space over a field. We

denote by
∧2 U the second exterior power of U , i.e., the quotient space

∧2 U :=
⊗2 U/Z, where

⊗2 U is the

tensor product of U with itself, and Z is the subspace of
⊗2 U spanned by tensors of the form u ⊗ u. The

elements of
∧2 U are referred to as bivectors. Bivectors in

∧2 U of the form u1 ∧u2, for some u1, u2 ∈ U , are

called decomposable. Note that u1 ∧ u2 6= 0 if and only if u1, u2 are linearly independent in U . A bivector

u ∈
∧2 U is said to be of rank 2r, denoted ρ(u) = 2r, provided that r is the least integer such that u can

be represented as a sum of r decomposable bivectors. It is a known fact that u ∈
∧2 U is of rank 2r, with
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r > 1, if and only if

(1.1) u =

r∑
i=1

u2i−1 ∧ u2i

for some linearly independent vectors u1, . . . , u2r ∈ U . If u has another representation u =
∑r

i=1 v2i−1 ∧ v2i
for some v1, . . . , v2r ∈ U , then 〈u1, . . . , u2r〉 = 〈v1, . . . , v2r〉. Here 〈u1, . . . , u2r〉 denotes the subspace of U
spanned by u1, . . . , u2r. Evidently, ρ(u) = dim 〈u1, . . . , u2r〉 if u is of rank 2r of the form (1.1). In what

follows, Rk(
∧2 U) denotes the totality of rank k bivectors in

∧2 U . We write it as Rk for brevity when it is

clear from the context.

We can now state the main theorem.

Theorem 1.1. Let n > 2 be an integer and let k be a fixed even integer such that n−1
2 6 k 6 n. Let

U and V be linear spaces over fields F and K, respectively, with dim U = n and |F| > 3. Then a map

ψ :
∧2 U →

∧2 V satisfies ψ(u+ v) = ψ(u) + ψ(v) for all rank k bivectors u, v ∈
∧2 U if and only if ψ is an

additive map.

Let An(F) denote the linear space of all n× n alternate matrices over a field F. In matrix language, we

obtain the corresponding result for additive maps on rank k alternate matrices on An(F).

Corollary 1.2. Let F and K be fields with |F| > 3. Let m and n be integers such that m,n > 2

and let k be a fixed even integer such that n−1
2 6 k 6 n. Then a map ψ : An(F) → Am(K) satisfies

ψ(A+B) = ψ(A) + ψ(B) for all rank k matrices A,B ∈ An(F) if and only if ψ is an additive map.

We give some examples to highlight that the condition n−1
2 6 k 6 n in Theorem 1.1 is indispensable.

Example 1.3. Let n > 6 be an integer. Let U be an n-dimensional linear space and let V be a non-trivial

linear space. Given a fixed nonzero vector w ∈ V, we let ϕ :
∧2 U →

∧2 V be the map defined by

ϕ(u) =

(
n−2∏
i=1

ρ(u)− i

)
w for all u ∈

2∧
U .

Note that ϕ(u + v) = 0 = ϕ(u) + ϕ(v) for every even rank k bivectors u, v ∈
∧2 U with 1 6 k < n−1

2 .

Nevertheless, ϕ is not an additive map on
∧2 U . To see this, we select u1 = b1 ∧ b2 and

u2 =

{
b3 ∧ b4 + · · ·+ bn−1 ∧ bn when n is even,

b3 ∧ b4 + · · ·+ bn−2 ∧ bn−1 when n is odd,

where {b1, . . . , bn} is a basis of U . Clearly, ϕ(u1) = 0 = ϕ(u2) and

ϕ(u1 + u2) =

{
(n− 1)!w when n is even,

(n− 2)!w when n is odd.

Hence, ϕ(u1 + u2) 6= ϕ(u1) + ϕ(u2).

Example 1.4. Let U be a 2-dimensional linear space over the Galois field of two elements and let V be

a non-trival linear space over a field of characteristic not two. Notice that
∧2 U = {0, b1 ∧ b2} where {b1, b2}

is a basis of U . Let z be a fixed nonzero bivector in
∧2 V and let ϕ :

∧2 U →
∧2 V be the map defined by

ϕ(u) =

{
z if u = 0,

2−1z if u = b1 ∧ b2.
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Clearly, ϕ is not additive since ϕ(0) 6= 0. However, ϕ(u+ v) = z = ϕ(u) + ϕ(v) for every u, v ∈ R2.

Example 1.5. Let F be a field and let n > 6 be an integer. Let E ∈ An(F) be a fixed nonzero matrix

and let ϕi : An(F)→ An(F), i = 1, 2, 3, 4, be the maps defined by

ϕ1(A) = adjA for all A ∈ An(F);

ϕ2(A) =

{
0 when A is singular,

E when A is invertible,
with n even;

ϕ3(A) =

{
A when A is of rank less than n− 1,

0 when A is of rank n− 1,
with n odd;

ϕ4(A) =

{
tr(A)E when A is singular,

0 when A is invertible,
with n even,

where adjA and tr(A) denote the classical adjoint of A and the trace of A, respectively. Note that no ϕi is

an additive map on An(F), but ϕi(A+B) = ϕi(A) + ϕi(B) for all even rank k matrices A,B ∈ An(F) with

1 6 k < n−1
2 .

2. Results. We start with three lemmas.

Lemma 2.1. Let U and V be linear spaces over fields F and K, respectively, such that dim U = 2 with

|F| > 3, or dim U = n > 3. Let r be a fixed even integer with 2 6 r 6 n. If ψ :
∧2 U →

∧2 V is a map

satisfying ψ(x+ y) = ψ(x) + ψ(y) for every x, y ∈ Rr, then the following hold.

(i) ψ(0) = 0 and ψ(−u) = −ψ(u) for every u ∈ Rr.

(ii) ψ(u− v) = ψ(u)− ψ(v) for every u, v ∈ Rr.

(iii) Let u, v ∈
∧2 U be such that u, u+ v ∈ Rr. Then ψ(u+ v) = ψ(u) + ψ(v).

Proof. (i) Let u ∈ Rr. We distinguish two cases.

Case 1. charK = 2. We first claim that ψ(−u) = −ψ(u). If in addition, charF = 2, then ψ(−u) = ψ(u),

and we have ψ(−u) = −ψ(u). Now consider the case charF 6= 2. Notice that ψ(2u) = ψ(u + u) =

ψ(u) +ψ(u) = 0. Thus, −ψ(u) = ψ(u) = ψ(2u+ (−u)) = ψ(2u) +ψ(−u) = ψ(−u) as claimed. For ψ(0) = 0,

we note that ψ(0) = ψ(u) + ψ(−u) = ψ(u)− ψ(u) = 0.

Case 2. charK 6= 2. If in addition, charF 6= 2, we have ψ(u) = ψ(2u + (−u)) = ψ(2u) + ψ(−u) =

2ψ(u) +ψ(−u). Hence, ψ(−u) = −ψ(u). A similar argument as in the proof of Case 1 shows ψ(0) = 0. Now

suppose that charF = 2. Then 2ψ(u) = ψ(u) + ψ(u) = ψ(u + u) = ψ(0), so ψ(u) = 2−1ψ(0). Therefore

ψ(v) = 2−1ψ(0) for every v ∈ Rr. We next claim that there exist v1, v2 ∈ Rr such that

(2.2) v1 + v2 ∈ Rr.

Let {b1, . . . , br, . . . , bn} be a basis for U . When |F| > 2, let v1 = b1 ∧ b2 + · · · + br−1 ∧ br and v2 = λv1 for

some nonzero λ ∈ F with λ+ 1 6= 0. Clearly, v1, v2, v1 + v2 ∈ Rr as required. When |F| = 2, we have n > 3.

Let

v1 =

{
b1 ∧ b2 when r = 2,

b1 ∧ br + b2 ∧ b3 + · · ·+ br−2 ∧ br−1 when 2 < r 6 n,

v2 =

{
b1 ∧ b3 when r = 2,

b1 ∧ (b2 + br) + b3 ∧ b4 + · · ·+ br−1 ∧ br when 2 < r 6 n
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be two rank r bivectors in
∧2 U . Then

v1 + v2 =

{
b1 ∧ (b2 + b3) when r = 2,

b1 ∧ b2 + b3 ∧ (b2 + b4) + · · ·+ br−1 ∧ (br−2 + br) when 2 < r 6 n.

Clearly, v1+v2 ∈ Rr as claimed. It follows from (2.2) that 2−1ψ(0)+2−1ψ(0) = ψ(v1)+ψ(v2) = ψ(v1+v2) =

2−1ψ(0), so ψ(0) = 0. Hence, ψ(−u) = 0 = −ψ(u) for every u ∈ Rr.

(ii) Let u, v ∈ Rr. Then ψ(u− v) = ψ(u) + ψ(−v) = ψ(u)− ψ(v) by (i).

(iii) By (ii), ψ(u+ v)− ψ(u) = ψ((u+ v)− u) = ψ(v). Thus, ψ(u+ v) = ψ(u) + ψ(v).

Remark 2.2. Let U and V be linear spaces over fields F and K, respectively, with dim U = n. As an

immediate consequence of Lemma 2.1, we notice that when n = 2 with |F| > 3, or n = 3, ψ :
∧2 U →

∧2 V
is additive if and only if ψ(u+ v) = ψ(u) + ψ(v) for all rank two bivectors u, v ∈

∧2 U .

Let U be a linear space over a field F. Then u1, . . . , uk ∈ U are linearly independent if and only if so are

(2.3) u1, . . . , ui +

k∑
j=1, j 6=i

αjuj , . . . , uk

for any 1 6 i 6 k and any scalars αj ∈ F, j 6= i. This fact will be frequently employed in our argument.

Lemma 2.3. Let n > 4 be an even integer. Let U be an n-dimensional linear space over a field F with

at least three elements. Then for each even integer 0 6 k 6 n and each u ∈ Rk and v ∈ R2, there exists

z ∈ Rn such that u+ z, v − z ∈ Rn.

Proof. Let v = x ∧ y ∈ R2 for some linearly independent vectors x, y ∈ U . If k = 0, we take a basis

{x, y, b3, . . . , bn} for U and set

z1 = x ∧ b3 + y ∧ b4 +

n/2∑
i=3

b2i−1 ∧ b2i.

Then z1 ∈ Rn and z1 − v = x ∧ (b3 − y) + y ∧ b4 +
∑n/2

i=3 b2i−1 ∧ b2i ∈ Rn.

Suppose that 2 6 k 6 n. Let u =
∑k/2

i=1 u2i−1∧u2i ∈ Rk for some linearly independent vectors u1, . . . , uk
in U . Four cases are consided below.

Case I. {x, y, u1, . . . , uk} is linearly independent. Let {x, y, u1, . . . , uk, bk+1, . . . , bn−2} be a basis for U .

We set

z2 = x ∧ u2 + uk−1 ∧ y +

k
2−1∑
i=1

u2i−1 ∧ u2i+2 +

n
2−1∑

i= k
2+1

b2i−1 ∧ b2i ∈ Rn.

Note that

z2 − v = x ∧ (u2 − y) + uk−1 ∧ y +

k
2−1∑
i=1

u2i−1 ∧ u2i+2 +

n
2−1∑

i= k
2+1

b2i−1 ∧ b2i ∈ Rn,

since x, y, u1, u2− y, u3, . . . , uk, bk+1, . . . , bn−2 are linearly independent by (2.3). Also, when k = 2, u+ z2 =
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(x+ u1) ∧ u2 + u1 ∧ y +
∑n

2−1
i=2 b2i−1 ∧ b2i ∈ Rn. When k > 4, we have

u+ z2 = (x+ u1) ∧ u2 + uk−1 ∧ (y + uk) + u1 ∧ u4

+

k
2−1∑
i=2

u2i−1 ∧ (u2i+2 + u2i) +

n
2−1∑

i= k
2+1

b2i−1 ∧ b2i ∈ Rn,

as x+u1, y+uk, u1, u2, u3, u4, u5, u6 +u4, . . . , uk−3, uk−2 +uk−4, uk−1, uk +uk−2, bk+1, . . . , bn−2 are linearly

independent by (2.3).

Case II. {x, u1, . . . , uk} is linearly independent and y ∈ 〈x, u1, . . . , uk〉. Then k + 2 6 n. By a suitable

rearrangement of subscripts, we assume y = αk+1x +
∑k

i=1 αiui for some α1, . . . , αk+1 ∈ F with αk−1 6= 0.

We extend {x, u1, . . . , uk} to a basis {x, q, u1, . . . , uk, bk+1, . . . , bn−2} for U . Let

z3 =

{
x ∧ u2 + uk−1 ∧ q + w when α2 = 0,

x ∧ (α2u2) + (u2 + uk−1) ∧ q + w when α2 6= 0,

where w :=
∑ k

2−1
i=1 u2i−1 ∧ u2i+2 +

∑n
2−1
i= k

2+1
b2i−1 ∧ b2i with

∑ k
2−1
i=1 u2i−1 ∧ u2i+2 = 0 when k = 2. Clearly,

z3 ∈ Rn. Note that

z3 − v =

 x ∧
(
u2 −

∑k
i=1,i6=2 αiui

)
+ uk−1 ∧ q + w when α2 = 0,

−x ∧
(∑k

i=1,i6=2 αiui

)
+ (u2 + uk−1) ∧ q + w when α2 6= 0.

Note that z3−v ∈ Rn as {x, q, u1, u2−
∑k

i=1,i6=2 αiui, u3, . . . , uk−1, uk, bk+1, . . . , bn} and {x, q, u1, u2 +uk−1,

u3, . . . , uk−2,
∑k

i=1,i6=2 αiui, uk, bk+1, . . . , bn} are linearly independent sets by (2.3). Note also that if k = 2,

then

u+ z3 =

{
(x+ u1) ∧ u2 + u1 ∧ q +

∑n
2−1
i=2 b2i−1 ∧ b2i when α2 = 0,

(u1 + α2x) ∧ u2 + (u2 + u1) ∧ q +
∑n

2−1
i=2 b2i−1 ∧ b2i when α2 6= 0

is of rank n. Now consider k > 4. When α2 = 0, we have

u+ z3 = (x+ u1) ∧ u2 + uk−1 ∧ (q + uk) + u1 ∧ u4

+

k
2−1∑
i=2

u2i−1 ∧ (u2i+2 + u2i) +

n
2−1∑

i= k
2+1

b2i−1 ∧ b2i ∈ Rn,

as x+u1, q+uk, u1, u2, u3, u4, u5, u6 +u4, . . . , uk−3, uk−2 +uk−4, uk−1, uk +uk−2, bk+1, . . . , bn−2 are linearly

independent by (2.3). When α2 6= 0, we have

u+ z3 = (α2x+ u1 − ∧u2 + uk−1 ∧ (q + uk) + u1 ∧ u4

+

k
2−1∑
i=2

u2i−1 ∧ (u2i+2 + u2i) +

n
2−1∑

i= k
2+1

b2i−1 ∧ b2i ∈ Rn,

as α2x+ u1 − q, q + uk, u1, u2, u3, u4, u5, u6 + u4, . . . , uk−3, uk−2 + uk−4, uk−1, uk + uk−2, bk+1, . . . , bn−2 are

linearly independent by (2.3).

Case III. {y, u1, . . . , uk} is linearly independent and x ∈ 〈y, u1, . . . , uk〉. Repeating the argument for

Case II but interchanging x with y, we can find z ∈ Rn such that u+ z, v − z ∈ Rn.
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Case IV. {x, u1, . . . , uk} and {y, u1, . . . , uk} are linearly dependent sets. Since x, y are linearly in-

dependent, by a suitable rearrangement of subscripts, we may assume x =
∑k

i=1 αiui for some scalars

α1, . . . , αk ∈ F with α1 6= 0, and y =
∑k

i=1 βiui for some scalars β1, . . . , βk ∈ F with β2 6= 0. Then

u1 = α−11 x−
∑k

i=2 α
−1
1 αiui and

y = β1α
−1
1 x+

k∑
i=2

(βi − β1α−11 αi)ui.

Note that {x, u2, u3, . . . , uk} is linearly independent. We argue in the following two subcases.

Case IV-1. k < n. We extend {x, u2, u3, . . . , uk} to a basis {x, u2, u3, . . . , uk, bk+1, . . . , bn} for U . Let

z4 = x ∧ bk+1 + u2 ∧ bk+2 +

k/2∑
i=2

η2i−1u2i−1 ∧ u2i +

n/2∑
i= k

2+2

b2i−1 ∧ b2i

for some scalars η2i−1 ∈ F \{0,−1}, i = 2, . . . , k/2. Then

z4 − v = x ∧ (bk+1 − y) + u2 ∧ bk+2 +

k/2∑
i=2

η2i−1u2i−1 ∧ u2i +

n/2∑
i= k

2+2

b2i−1 ∧ b2i

= x ∧

(
bk+1 −

k∑
i=2

(βi − β1α−11 αi)ui

)
+ u2 ∧ bk+2

+

k/2∑
i=2

η2i−1u2i−1 ∧ u2i +

n/2∑
i= k

2+2

b2i−1 ∧ b2i ∈ Rn,

since x, u2, u3, . . . , uk, bk+1 −
∑k

i=2(βi − β1α−11 αi)ui, bk+2, . . . , bn are linearly independent, and

z4 + u = x ∧ bk+1 + u2 ∧ (bk+2 − u1) +

k/2∑
i=2

(η2i−1 + 1)u2i−1 ∧ u2i +

n/2∑
i= k

2+2

b2i−1 ∧ b2i

= x ∧ bk+1 + u2 ∧

(
bk+2 − α−11 x+

k∑
i=3

α−11 αiui

)

+

k/2∑
i=2

(η2i−1 + 1)u2i−1 ∧ u2i +

n/2∑
i= k

2+2

b2i−1 ∧ b2i ∈ Rn,

since x, u2, u3, . . . , uk, bk+1, bk+2 − α−11 x+
∑k

i=3 α
−1
1 αiui, bk+3, . . . , bn are linearly independent as desired.

Case IV-2. k = n. Then {x, u2, u3, . . . , un} is a basis for U . Set

z5 = µx ∧ u4 + ηu2 ∧ u3 +

n/2∑
i=3

λ2i−1u2i−1 ∧ u2i,

where µ, η, λ5, . . . , λn−1 ∈ F are nonzero scalars such that µ 6= β4 − β1α−11 α4, η 6= −α−11 (µ−1 + α3) and
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λ2i−1 + 1 6= 0 for i = 3, . . . , n/2. Then

z5 − v = x ∧ (µu4 − y) + ηu2 ∧ u3 +

n/2∑
i=3

λ2i−1u2i−1 ∧ u2i

= x ∧

(µ+ β1α
−1
1 α4 − β4)u4 +

n∑
i=2, i 6=4

(β1α
−1
1 αi − βi)ui


+ ηu2 ∧ u3 +

n/2∑
i=3

λ2i−1u2i−1 ∧ u2i ∈ Rn,

because x, u2, u3, (µ+ β1α
−1
1 α4 − β4)u4 +

∑n
i=2, i 6=4(β1α

−1
1 αi − βi)ui, u5, . . . , un are linearly independent by

(2.3); and

z5 + u = µx ∧ u4 + ηu2 ∧ u3 +

n/2∑
i=3

λ2i−1u2i−1 ∧ u2i +

n/2∑
i=1

u2i−1 ∧ u2i

=

(
α−11 x− (η + α−11 α3)u3 −

n∑
i=4

α−11 αiui

)
∧ u2 + (µx+ u3) ∧ u4

+

n/2∑
i=3

(λ2i−1 + 1)u2i−1 ∧ u2i ∈ Rn,

because η 6= −α−11 (µ−1 + α3) and α−11 x − (η + α−11 α3)u3 −
∑n

i=4 α
−1
1 αiui, µx + u3, u2, u4, u5, . . . , un are

linearly independent by (2.3).

Lemma 2.4. Let n > 4 be an integer and let k and r > 2 be even integers such that 0 6 k 6 r < n. Let

U be an n-dimensional linear space over a field F with at least three elements. Then for any u ∈ Rk and

v ∈ R2, there exists z ∈ Rr such that u+ z, v − z ∈ Rr.

Proof. Let v = x ∧ y for some linearly independent vectors x, y ∈ U , and u =
∑k/2

i=1 u2i−1 ∧ u2i for

some linearly independent subset X = {u1, . . . , uk} of U with the convention that u = 0 and X = ∅ when

k = 0. If 0 6 k < r or dim 〈X ∪ {x, y}〉 = r, then we let W be an r-dimensional subspace of U containing

X ∪ {x, y}. Evidently, v ∈ R2(
∧2W) and u ∈ Rk(

∧2W). By Lemma 2.3, there exists z ∈ Rr(
∧2W)

such that u + z, u − z ∈ Rr(
∧2W). Since any linearly independent set in W is linearly independent in U ,

Rr(
∧2W) ⊆ Rr(

∧2 U) by (1.1). So the result follows.

Suppose that k = r and dim 〈X ∪ {x, y}〉 > r. We only consider the case that X ∪ {x} is linearly

independent and y ∈ 〈X〉 as the other cases can be argued similarly. Let y =
∑k

i=1 βiui for some scalars

β1, . . . , βk ∈ F. Without loss of generality, we assume β1 6= 0. Let z = x ∧ u2 +
∑k/2

i=2 αiu2i−1 ∧ u2i for some

scalars α2, . . . , αk/2 ∈ F\{0,−1}. Clearly, z ∈ Rr and

u+ z = (x+ u1) ∧ u2 +

k/2∑
i=2

(αi + 1)u2i−1 ∧ u2i ∈ Rr,

z − v = x ∧ (u2 − y) +

k/2∑
i=2

αiu2i−1 ∧ u2i ∈ Rr,

as desired.
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We are now ready to prove the main theorem.

Proof of Theorem 1.1. The sufficiency is trivial. We consider the necessity. The result is clear when

n 6 3 by Remark 2.2. Suppose that n > 4. We claim, for any even integer 0 6 h 6 n, that

(2.4) ψ(u+ v) = ψ(u) + ψ(v) for every u ∈ Rh and v ∈ R2.

The discussion is split into two cases.

Case I. n−1
2 6 k < n. We first prove (2.4) for 0 6 h 6 k. By Lemma 2.4, there exists z ∈ Rk

such that u + z, v − z ∈ Rk. It follows from Lemma 2.1 (ii) and (iii) that ψ(u + z) = ψ(u) + ψ(z) and

ψ(v − z) = ψ(v)− ψ(z). So

ψ(u+ v) = ψ(u+ z + v − z)
= ψ(u+ z) + ψ(v − z)
= ψ(u) + ψ(z) + ψ(v)− ψ(z)

= ψ(u) + ψ(v).

Consider now k < h 6 n. We use induction on h and assume (2.4) holds for each 0, 2, . . . , h − 2. Let

u =
∑h/2

i=1 u2i−1 ∧ u2i ∈ Rh and v = uh+1 ∧ uh+2 ∈ R2. Let H = {u1, . . . , uh, uh+1, uh+2}. We distinguish

two cases.

Case I-A. H is linearly dependent. Note that uh+1, uh+2 are linearly independent. By a suitable

rearrangement of subscripts, we may assume uh+1 = ah+2uh+2 +
∑h

i=1 aiui for some a1, . . . , ah, ah+2 ∈ F
with a1 6= 0. Then u1 = a−11 uh+1 − a−11 ah+2uh+2 −

∑h
i=2 a

−1
1 aiui. We thus obtain

u = (a−11 uh+1 − a−11 ah+2uh+2) ∧ u2 +

h/2∑
i=2

Λi,

where Λi = −a−11 (a2i−1u2i−1 + a2iu2i) ∧ u2 + u2i−1 ∧ u2i for i = 2, . . . , h/2. For each 2 6 i 6 h/2, we note

that

Λi =

{
a−11 (a2i−1u2i−1 + a2iu2i) ∧ (a1a

−1
2i−1u2i − u2) if a2i−1 6= 0,

(a−11 a2iu2 + u2i−1) ∧ u2i if a2i−1 = 0.

Since u ∈ Rh, we must have (a−11 uh+1 − a−11 ah+2uh+2) ∧ u2 ∈ R2 and
∑h/2

i=2 Λi ∈ Rh−2. Set

z = (a−11 uh+1 − a−11 ah+2uh+2) ∧ u2.

Then z ∈ R2, u− z ∈ Rh−2 and

v + z = (a−11 uh+1 − a−11 ah+2uh+2) ∧ (a1uh+2 + u2) ∈ R2 ∪ {0}.

Then, by the induction hypothesis, ψ(u+v) = ψ(u−z+v+z) = ψ(u−z)+ψ(z+v) = ψ(u−z)+ψ(z)+ψ(v) =

ψ((u− z) + z) + ψ(v) = ψ(u) + ψ(v). So claim (2.4) holds true for h.

Case I-B. H is linearly independent. Then n−1
2 6 k 6 h < h + 2 6 n. We extend H to a basis

{u1, . . . , uh+2, . . . , un} for U . Let

x =


∑k/2

i=1 u2i−1 ∧ un−k+2i when n is even,∑k/2
i=1 un−k−2+2i ∧ u2i when n is odd,
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and

y =

h/2∑
i= k

2+1

u2i−1 ∧ u2i,

with y = 0 when h = k. It is easily seen that y ∈ Rh−k, and x ∈ Rk as n > k. Note that

u− y =

k/2∑
i=1

u2i−1 ∧ u2i ∈ Rk and v + y =

h
2 +1∑

i= k
2+1

u2i−1 ∧ u2i ∈ Rh−k+2.

Let us proceed to verify that both bivectors u− x− y and v − x− y are of rank k.

When n is even, we see that n − k > 2 is even and n
2 6 k. Thus, n − k + 2 6 k + 2. Therefore

v + x+ y ∈ Rk and

u− x− y =

k/2∑
i=1

u2i−1 ∧ (u2i − un−k+2i) ∈ Rk,

because u1, u3, . . . , uk−1, u2 − un−k+2, u4 − un−k−4, . . . , uk − un are linearly independent.

When n is odd, we see that k < h+ 2 < n since k and h are even. So n− k > 3 is odd. Then

u− x− y =

k/2∑
i=1

(u2i−1 − un−k−2+2i) ∧ u2i ∈ Rk,

since u2, u4, . . . , uk, u1 − un−k, u3 − un−k+2, . . . , uk−1 − un−2 are linearly independent. Moreover, we note

that h+ 1 6 n− 2 as h+ 2 < n, and k+ 1 > n− k since n−1
2 6 k. Consequently, v+ x+ y ∈ Rk as desired.

Now, ψ(u+ v) = ψ((u− x− y) + (v + x+ y)) = ψ(u− x− y) + ψ(v + x+ y). Note that ψ(u− x− y) =

ψ(u− y)− ψ(x) by Lemma 2.1 (ii), and ψ(v + x+ y) = ψ(v + y) + ψ(x) by Lemma 2.1 (iii). It follows that

ψ(u+ v) = ψ(u− y)− ψ(x) + ψ(v + y) + ψ(x) = ψ(u− y) + ψ(v + y). The claim follows when y = 0. Now

consider y 6= 0. Since h − k 6 h − 2, we infer from the induction hypothesis that ψ(v + y) = ψ(v) + ψ(y).

Again, by the induction hypothesis, we have

ψ(u+ v) = ψ(u− y) + ψ(v) + ψ(y)

= ψ(v) + ψ(u− y) + ψ

uk+1 ∧ uk+2 +

h/2∑
i= k

2+2

u2i−1 ∧ u2i


= ψ(v) + ψ(u− y) + ψ(uk+1 ∧ uk+2) + ψ

 h/2∑
i= k

2+2

u2i−1 ∧ u2i

 .

Proceeding in this fashion, we obtain

ψ(u+ v) = ψ(v) + ψ(u− y) +

h/2∑
i= k

2+1

ψ(u2i−1 ∧ u2i).

Since y 6= 0, we get k 6 h− 2. So

ψ(u− y) +

h/2∑
i= k

2+1

ψ(u2i−1 ∧ u2i) = ψ(u− y + uk+1 ∧ uk+2) +

h/2∑
i= k

2+2

ψ(u2i−1 ∧ u2i).
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Next, note that if
∑h/2

i= k
2+2

ψ(u2i−1 ∧ u2i) 6= 0, then h− k − 2 > 2, and hence, k + 2 6 h− 2. It follows that

ψ(u− y + uk+1 ∧ uk+2) +

h/2∑
i= k

2+2

ψ(u2i−1 ∧ u2i) = ψ(u− y + uk+1 ∧ uk+2 + uk+3 ∧ uk+4)

+

h/2∑
i= k

2+3

ψ(u2i−1 ∧ u2i).

Continuing in this way, we get

ψ(u+ v) = ψ(v) + ψ

u− y +

h/2∑
i= k

2+1

u2i−1 ∧ u2i

 = ψ(u) + ψ(v).

Hence, claim (2.4) holds for h.

Consequently, by induction, claim (2.4) is proved.

Case II. k = n. By Lemma 2.3, there exists z ∈ Rn such that u + z, v − z ∈ Rn. We thus obtain

ψ(u + z) = ψ(u) + ψ(z) and ψ(v − z) = ψ(v) − ψ(z) by Lemma 2.1 (i) and (iii). Then ψ(u + v) =

ψ(u+ z) + ψ(v − z) = ψ(u) + ψ(v). So claim (2.4) is proved.

We continue to prove

(2.5) ψ(s+ t) = ψ(s) + ψ(t) for every s, t ∈
2∧
U .

The result clearly holds if t = 0. Let t ∈ R2` for some integer 0 < 2` 6 n. Then t =
∑`

i=1 di for some

nonzero decomposable bivectors d1, . . . , d` in
∧2 U . So

ψ(s+ t) = ψ((s+ d1 + · · ·+ d`−1) + d`) = ψ(s+ t1 + · · ·+ t`−1) + ψ(t`)

by (2.4). Proceeding in this manner we arrive at ψ(s + t) = ψ(s) +
∑`

i=1 ψ(ti). Since
∑`

i=1 ψ(ti) =

ψ(
∑`

i=1 ti) = ψ(t) by (2.4), we infer that (2.5) holds. Hence, ψ is additive.
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