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THE DRAZIN INVERSE THROUGH THE MATRIX PENCIL
APPROACH AND ITS APPLICATION TO THE STUDY OF
GENERALIZED LINEAR SYSTEMS WITH RECTANGULAR OR
SQUARE COEFFICIENT MATRICES*

GRIGORIS I. KALOGEROPOULOS', ATHANASIOS D. KARAGEORGOSt, AND
ATHANASIOS A. PANTELOUST

Abstract. In several applications, e.g., in control and systems modeling theory, Drazin in-
verses and matrix pencil methods for the study of generalized (descriptor) linear systems are used
extensively. In this paper, a relation between the Drazin inverse and the Kronecker canonical form
of rectangular pencils is derived and fully investigated. Moreover, the relation between the Drazin
inverse and the Weierstrass canonical form is revisited by providing a more algorithmic approach.
Finally, the Weierstrass canonical form for a pencil through the core-nilpotent decomposition method
is defined.
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1. Introduction. In this paper, our main purpose is to study the relation be-
tween the Drazin inverse (both for rectangular and square constant coefficient matri-
ces) and the relevant matrix pencil approach for the solution of autonomous singular
(or regular) linear differential systems of the form

Fa!(t) = Gu(t), (1.1)

or, in the discrete analogue, autonomous singular (or regular) linear difference systems
of the form

Fryp = Gry, (1.2)

where z € C" is the state control vector and F,G € C™*" (or F,G € C"*"). For
details, see e.g., [2, 3] and also [5, 8]. In many applications (e.g., circuit systems
[7], the multi-input multi-output (MIMO) Leontief model in Economy [2], the Leslie
population model [2]) it is necessary to solve (1.1) and (1.2) counsidering the two
special cases when the matrices are rectangular. If m > n (i.e., more equations
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than unknowns parameters) the systems (1.1) and (1.2) are called over-determined;
otherwise, if m < n (more unknowns parameters than equations), they are called
under-determined.

Given the constant matrices F,G € C™*™ and an indeterminate s, the pencil
sF — G is called regular when m = n and det(sF — G) # 0. In any other case, the
pencil is called singular, i.e., when m # n or m = n with det(sF' — G) = 0.

DEFINITION 1.1. [8] The pencil sF' — G is said to be strictly equivalent to the
pencil sFy — Gy if and only if P(sF — G)Q = sFy — G1, where P € C™*" @ € C™*™,
and det P, det QQ # 0.

A class of strict equivalence, say Es(sF — @), is characterized by a uniquely defined
element, known as the complex Kronecker canonical form, sFy, — Q. (see [4]), which
is specified by the complete set of invariants of E(sF' — G).

Unlike the case of regular pencils, the characterization of singular pencils requires
the definition of additional sets of invariants known as the minimal indices. Let us
assume that m # n and r = rankg(s) (sF' — G) < min{m,n}, where R(s) denotes the
field of rational functions having real coefficients. Then, the equations

(sF —G)z(s) =0 and ¢'(s)(sF —G) =0 (1.3)
have solutions z(s) and 1 (s) which are vectors in the rational vector spaces
No() £ No(sF — G) and Ni(s) £ Ni(sF — ),
respectively, where

Ni(s) & {z(s) € C'(s) : (sF — G)a(s) = 0}, (1.4)

Ni(s) = {b(s) € C*(s) : ' (s)(sF — G) = 0'}. (1.5)
Obviously, N,.(s) and NV (s) are vector spaces over R(s) with
dimN,(s) =n—7r and dimN(s) =m —r.

It is known that N.(s) and N(s) are spanned by minimal polynomial bases {z;(s),
1=1,2,...,n—r} and {ytj(s), i=1,2,...,m —r} of minimal degrees, namely (see

[5]),
{vi=v2="=v3=0<vg41 <vg42 <+ < Up_r} (1.6)
and

{u1:u2:'~:uh:0<uh+1§uh+2§'~§um,r}. (17)
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The sets of the minimal degrees {v;, 1 <i<n—r}and {u;, 1 <j<m-—r} are
known in [4] as column minimal indices (c.m.i.) and row minimal indices (r.m.i.) of
sI" — G, respectively. Furthermore, If r = rankg(,(sF' — G) < min{m,n}, then it is
evident that

r= Z v; + Z uj + rﬂg(g%i(st — Gu), (1.8)
i=g+1 j=h+1

where sF,, — Gy, is the complex Weierstrass canonical form (see [4]) specified by
the set of elementary divisors (e.d.) obtained by factoring the invariant polynomials
f(s,8) over Ris, §] (the ring of polynomials in s and § = 1/s with real coefficients),
which are the nonzero elements on the diagonal of the Smith canonical form of the
homogeneous pencil sF' — §G, into powers of homogeneous irreducible polynomials
over C.

Thus, in the case that sF' — G is a singular pencil, we have elementary divisors
of the following types:

e c.d. of the type s?, d € N, called zero finite elementary divisors (z. f.e.d.),

e c.d. of the type (s — a)¢, a # 0, ¢ € N, called nonzero finite elementary
divisors (nz. f.e.d.),

e.d. of the type §9, called infinite elementary divisors (i.e.d),

c.m.i. of the type v € NU{0}, called column minimal indices (c.m.i.) deduced

from the column degrees of minimal polynomial bases of the maximal sub
module M embedded in N, (s) with a free R(s)-module structure,
r.m.i. of the type u € NU {0}, called row minimal indices (r.m.i.) deduced

from the row degrees of minimal polynomial bases of the maximal sub module
M embedded in NV (s) with a free R(s)-module structure.

For further details, see [5, 6, 8].

Thus, there exist P € C™*™ and @ € C"*" such that the complexr Kronecker
form of the singular pencil sF' — G is defined as

P(sF — GQ)Q = sF, — Gi,
£ block diag{Qp g, Ay — Ay, SAL, — X, sT,, — Jp, sH, — I}, (1.9)

In more detail, matrix Qp, is uniquely defined by the sets {0,0,...,0} and
—_——

g
{0,0,...,0} of zero column and row minimal indices, respectively.

h

The second normal block sA, — A, is uniquely defined by the set of nonzero column
minimal indices (a new arrangement of the indices of v must be noted in order to
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simplify the notation) {vg4+1 < vgyo < -+ <wvp_p} of sF — G and has the form

sA, — A, = block diag{sA - A G S8hy, = Ay ey SAy L — Ay}, (1.10)

Vg+1 Vg1

where A, = [I,, 0] € Cv*HD X\, = [H,, g,] € C**®+D for every i = g+
1,9+2,...,n—r, and I,, and H,, denote the v; x v; identity and the nilpotent (with
annihilation index v;) matrix, respectively. 0 and g, = [0 --- 0 1] € C¥ are the
zero column and the column with element 1 in the last position, respectively.

The third normal block sA!, — X!, is uniquely determined by the set of nonzero
row minimal indices (a new arrangement of the indices of v must be noted in order
to simplify the notation) {up+1 < upto < -+ < Up—pr t of SF — G and has the form

sAL — )\ 2 block diag{sAfm+1 - )\ZHI, ce sALj - )\Zj, cosAL =LY (111
el 0

where Af“ = e € Cluit)xu; )\Lj = | - | € Clwstxu for every j =
Hy, L,

h+1,h+2,...,m—r, and I,; and H,, denote the u; X u; identity and nilpotent
(with annihilation index u;) matrix and the zero column matrix, respectively. 0 and
ey, =1[1--0 0]7 € C% are the zero column and the column with element 1 at the
first position, respectively.

The forth and the fifth normal matrix block is the complex Weierstrass form
sFy, — Gy, of the regular pencil sF' — G, which is defined by

sF, — Gy = block diag{sl, — J,,sH, — I, }; (1.12)

the first normal Jordan type block sI, — J, is uniquely defined by the set of f.e.d.
(S_ai)piv"w(s_av)pvvzpj =D (113)
j=1

of sF' — G and has the form
sI, — J, £ block diag{sl,, — Jp, (a1),...,8L,, — Jp,(ay)}. (1.14)

Finally, the g blocks of the second uniquely defined block sH, — I, correspond to the
ie.d.
(g)q17~"7(‘§)qaszj:(I(q1SQQS"'SQU) (115)
j=1

of sF' — G, having the form

sH, — I, = block diag{sH,, — I ,,...,sH,, — 1, }. (1.16)
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Thus, Hy is a nilpotent matrix of index ¢ = max{q; : j =1,2,...,0}, where
q _
HI=0. (1.17)

The matrices I,,, Jp, (a;), Hy, are

10 0
01 - 0
Lu=| . . . . |errm (1.18)
00 1
a 0 0 01 0 - 0
0 a 1 0 00 1 0
Jpla)=| 1 ¢ . o | eCh P and Hy = | 0 . | @RI
00 0 a 00 0 o0 1
00 0 0 a 00 0 0 0

DEFINITION 1.2. The dimension of a vector subspace is denoted by dim(-). Given
A € C™"*" the range (column space) of A is denoted by R(A); the null space of A,
{z #0: Az = 0}, is denoted by R(A). Recall that dim X(A) + dim R(A) = n.

DEFINITION 1.3. Let A € C"*". The nonnegative integer k is the index of A,
denoted by Ind(A) = k, if k is the smallest nonnegative integer such that

rank(A") = rank(A**1).

DEFINITION 1.4. [3] The Moore-Penrose inverse of rectangular matrix A € C™*"
is the matrix AT € C"*" that satisfies

(i) AATA = 4,

(i) ATAAT = Af,
(iii) (AAT)* = AAT,
(iv) (ATA)* = At A,

where * denotes the conjugate transpose.

Moreover, the Drazin inverse of A € C™*™ with Ind(A) = k is the matrix AP
satisfying
(i) APAAD = AP,
(i) AAP = AP A,
(iii) AHLAP = Al for | > k = Ind(A).

Note that if A is nonsingular, then AT = AP = A~
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THEOREM 1.5. [11] For any square matriv A € C™*™ with Ind(A) = k and
rank(AF) = r, there ewists unique matriz X of order n such that

A*X =0, XA*=0, X*’=X, rank(X)=n-—r (1.19)
For the above-mentioned matriz X, there exists a unique matriz Y of order n such
that

A I-X
rank I_x v = rank(A). (1.20)

The matriz Y is the Drazin inverse AP of A and X =1 — AAP.

THEOREM 1.6. [11] Consider a square matriz A € C™*™ with rank(A) =r > 1.
Let Ala|b] be the r x r nonsingular submatriz of A which has row index set a =
{i1,12,...,i,} and the column index set b = {j1,Jo,...,jr}. If the matrix X satisfies
condition (1.19), then we have

AP = (I - X)[Nla](Ala|o])) (I — X)[b|N], (1.21)
where N = {1,2,...,n}.
A theorem and a corollary characterizing the Moore-Penrose inverse are Theorem

11in [7, p. 130] and its corollary in [7, p. 132].

2. Main results for rectangular coefficient matrices. In this section we
shall consider two important cases with many practical applications. First of all, we
investigate the relation between the Drazin inverse and the matrix pencil approach.
If uF' + G is one-to-one (i.e. full column rank - only row minimal indices) for some
u € C, then m > n and the system is over-determined (i.e. unique solution). If
wF + G is onto (i.e. full row rank - only column minimal indices) for some pu € C,
then m < n and the system is under-determined (i.e. the solution always exists but
it is not unique).

DEFINITION 2.1. Let F', G € C"™*™

a) When pF + G is one-to-one, we define the n-square matrices
E, 2 (uF+G)'FeC™ and G, 2 (uF +G)'G e .
b) When pF + G is onto, we define the m-square matrices
F, 2 (uF+G)fFeC™™ and G, 2 (uF + Q)G e ™™,
The following known result is very important for the entire discussion.

LEMMA 2.2. [5] Let F, G € C"™*™.
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a) If uF + G is one-to-one (i.e. full column rank and r = rank(pF + G) =
Yoy =n < m) for some p € C (or similarly Ni.(u) = {0}), then there exist
P e C™™ and Q € C" ™ such as the complex Kronecker form pFy,+ Gy of the pencil

uF + G is given by
P(uF + G)Q = uFy, + G

£ block diag {

@hm, 1 t t t t
:UAt _{it\t ] ’MAU}L+2 + )\uh+27 e ’IJ’Aum—n + >‘um—n ’

Uh+1 Uh+1

(2.1)

where the blocks uAZj + )\Lj forj=h+1,h+2,...,m—n are uniquely determined by
the set of nonzero row minimal indices; see expression (1.11) and Section 1 for more
details.

b) If nF + G is onto (i.e. full row rank and r = rank(uF + G) = E;:g“fﬂ v; =
m < n) for some € C (or similarly Nij(u) = {0'}), then there exist P € C™*™ and

Q € C™™™ such as the complex Kronecker form of the pencil uF + G is given by

P(uF + G)Q = pFy, 4+ Gy = block diag{ [Oy,,,.g #huv,,, + Avyii ]

PAVg o+ Ny gy ey BN + Xonm b (2.2)

Un—m

where the blocks plAy, + Ay, fori=g+1,9+2,...,n—m are uniquely defined by the
set of nonzero column minimal indices; see expression (1.10) and Section 1 for more
details.

REMARK 2.3. In this part of the paper, we should stress out that the matrix

Qt Iuh+1
can also be written as e CwitDxu;  In the same sense, the
Hu, o'
matrix [H,, ¢, ] can also be expressed as [0 I,,,] € CY*(“+1) As we may see in the

following lemmas, Remark 2.1 is very useful indeed.

LEMMA 2.4. For the identity matriz I, € CP*P, the nilpotent matriz H, € CP*P
(with annihilation index p), the column vectore,,, € CY for j=h+1,h+2,...,m—r
(with element 1 at the first place), and ¢,,, € C” fori=g+1,9+2,...,n =7 (with
element 1 at the v;-place) and p € C~\ {0}, we have that

i)

i
pely,
: = [(ap+ DLy, + pHy, + pHy 7
by 4 Lo,

[ﬂI"J + H’“’J‘ §uj] € (Cqu(uj+1)7 (23)
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[nly, + Hy, ‘e ct

Sy

]T = |:ﬂIv‘ + Hfh
Vs

|

[(Ep+ D)Ly, + iy, + pH, ]~ € CletDxe,

Proof. 1) Consider the block matrix

I
1

t
A N ILLQ/U/J' O
pHuy; + I, :
0
| 0

00
no 0
I
00
00

o

c C(’U,J'Jrl)XuJ' .

Now, by Theorem 1.3.2 of [2], the Moore-Penrose inverse matrix of A is given by

Al = (A" A)7tA*.

o 1 0 0
0 p 1 0
0 0 j 0
Finally, since A* = .
0 0 O
| 0 0 0 1
[ ap+1 p
Iz e+ 1
0 f
A*A = .
0 0
| 0 0

= [iaI“j + H“J éuj] € (Cu,~><(u,~+1),

0

o

e+ 1
i

= [(ap + 1)Iu3 + pHy, +ﬂHij] € CW*ui

o

7]
e+ 1]

where the i € C is the conjugate of . Expression (2.3) is proven.
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ii) Consider the block matrix

w1 0
0 p 1 0
B2 [uly +Hy, e, )= . . . . |eCwrt
0O 0 0 ---
L0 0 0 - 1|

Again by Theorem 1.3.2 of [2], the Moore-Penrose inverse matrix of A is given by

B' = B*(BB*)"%.

g 0 0 0
1 4 0 0
0 1 @ 0 = t
Finally, since B* = . | = { fil, j—Hvi } € Cluitl)xvi
0 0 0 i
L0 0 0 1]
ap+1 i 0 0 0 |
pooopptl o p 0 0
0 Iz pp+1 0 0
BB* = .
0 0 0 - mp+l 4
0 0 0o .- T 1T

= (B + VLo, + iHy, + pH, ] € C,
where the i € C is the conjugate of p. Expression (2.4) is proven. O
THEOREM 2.5. Consider matrices E, € C**™ and G,, € C™*™.

a) If uF + G is one-to-one, then

[(Apt 1) Ly 1oy FaH L, 17 (L g, )
o . -1
F,=Q - Q
(A1) Ly, ey, +AHG 7 (L, Hoy, )

and Gu =1, - uﬁ‘u,
b) If uF + G is onto, then

— t — = t -1
(Blogy+Hy | DAV ug g +AH o +rH, ]

F,=p! P

uw=

(ﬁlvn—m +Ht )[(ﬁ+1)1”n—m +ﬁH“’n77n +HH1t"n—m ] -

Yn—m

(2.6)

(2.7)

(2.8)
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and Gu =1, — uﬁ‘u,

Proof. Following Definition 2.1 (a) and Lemma 2.2, there always exists yu € C
such that the matrix (uF + G) is one-to-one for rectangular matrices F, G € C™*".

a) Now, multiplying on the left with (uF + G)T the system (1.1) (analogously,
the system (1.2)), we obtain

(WF +G)IFe/(t) = (uF + G)'Ga(t) 22 B/ (1) = Ca(t).

Hence, there exist invertible matrices P € C™*™ @ € C"*" giving the complex
Kronecker canonical form; see (2.1) (or (2.2)). Consequently,

Fy=(uF+ G F=wpP ' RQ +PGQ ) P RQ™
= Q(uFy, + Gy) FL,Q™* (2.9)

and

Gu=(WF+G)G= WP 'RQ '+ P 'GQ ) P 'GQ !
= Q(uFx + Gr)'GrQ ™" (2.10)

Moreover, using expressions (1.11) and (2.1), we obtain

(uFy + Gp)T

t t +
Quyyqn (“AH;L+1+)‘WL+1)
(WAL, A, )T
42 h+2
_ . (2.11)

+A! )

Um—n

(A

Um—n

Consequently, substituting the above expression into (2.9), expression (2.1) follows,
that is,

(uFy, + Gi)TFy,

(pAf X

TAt
Up 41 “h,+1) A

Uph41
)AL

t t
(g A Upto

Yh+42

(nA, +AL )AL

Um—mn Um—mn Um—mn
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et f et
He Up41 SUp41
mHup, g+l gy Hupyy
Et T ef’
/‘Li Um—n —Um—mn
i PHou A, Hupn |

Considering Lemma 2.2, we obtain

n

t
pe Eu;

L

o

= [(ﬂ/’l/ + 1)Iu7 + /'[/HUJ' + ﬂHthJ]_l[ﬂIUq + HUJ' éuJ]

pHy, +1; Hy, Hy,

= [(ap + VL, + pHoy + pHy )" (Al + Hy,y) € CHX%
Note also that uﬁu—i—éu =1, = éu =1, —Mﬁm because uﬁ‘u—i—éu = u(uF+G)F+
(WF+G)'G=WuF+G)(uF+G)=1.

b) Following Definition 2.1 (b) and Lemma 2.2, there always exists y € C such
that the matrix (uF' + G) is onto for rectangular matrices F, G € C™*".

Here, defining P, = (uF +G)" (uF +@G), the system (1.1) (analogously, the system
(1.2)) gets transformed to

FP.a/(t) + F(In — Pu)z'(t) = GPux(t) + G(In — Pu)z(t),
or equivalently,
F(uF + G)'[(uF + G)z'(t)] + F(I, — Pu)z(t)
= G(uF + G)'[(uF + G)z(t)] + G(I, — Pu)a(t)
B F(uF + Gz (1)) + F (L = Pz (1) = Gul(uF + G)z(0)] + Gl — P)z(t):
Since pF, + G, = I,,, the system above is, in terms of (uF + G)z(t), a differential

equation of the type already solved and hence has a solution for any choice of (I, —

Pu)x(t).

Hence, there exist invertible matrices P € C™*™ Q € C™"*™ giving the complex
Kronecker canonical form; see (2.1) (or (2.2)). Consequently,

F,=F(uF +G)' =P 'F.Q (P 'FQ ™'+ P'GQ7")
= P R (uFy + Gy)'TP (2.12)
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and

Gu=GuF +G)f = PT'GQ ' (uP ' FQ ™' + P GLQ ™)
:P_le(/.LFk—l-Gk)TP. (2.13)

Furthermore, using expressions (1.10) and (2.2)

Og,vg41
(D L

(HAvg+2 +)\vg+2 )T

(uFy + Gk)T =

(7 IS W
(2.14)

Consequently, substituting the above expression into (2.12), expression (2.2) follows,
that is,

Fk(qu + Gk)]L

N (7 D Y L
A“g+2 (“A’”9+2 +)"”g+2 )T

L Ay (1,20, )t

[ (FL, Qlple, +Ho,y e,

Ly

[FI

L Ym—n

0l[pls,, _, +Ho, e "

~Un—m

Considering Lemma 2.4, we obtain

laIvl + Hitjl
t

§U1

[Im Q][Mlvl + H,, Qvl]T = [Im Q] |: ] [(ﬂu—l— 1)[1,1 + pH,, +MH51]71

= (ily, + H. )[(ipn + 1)1y, + jiHy, + pH. |71 € CVvi,

Note the formulas above can be simplified considerably if F' or G are onto. In applica-
tions, the case when G is onto is more important. Moreover, we can easily verify that
pwF,+G, =1, = G, = I, —uF,, because uF, +G,, = pF(uF +G) +G(uF +G)t =
(WF +G)(pF + Q) =1,.0

COROLLARY 2.6. Matrices FM e C™™"™ and FM € C™*™ qre invertible and their
inverses, respectively, are
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(Wl g+ Houg )7 (A gy By, +BH
—1 . —1
F =Q . Q. (2.15)

(T +Huy ) (@EpA DTy, ApHu,, _ +BH, ]

b)

_ = t = t —1
[(HN+1)I’u9+1 +.U'Hug+1 +/"Hug+1](l"1vg+1 +va+1 )

Fl=p! P. (2.16)

(Ep+D)Tu, _, +iHu, ., +uH,

Un—m

Wale, ., +H, )7

Yn—m

Proof. Since the proofs of a) and b) are similar, only the proof for b) is presented.

b) The square matrix PF, P~' € C™*™ has rank(PF, P~') = rank(F),) = m >
1. According to Theorem 1.6, since P}:"'HP_1 is a m X m nonsingular matrix, the
unique matrix X of order m that satisfies conditions (1.19) is X = Q,,. In order to
prove expression (2.14), we should also consider that

(PE,P~")P = PEPP~. (2.17)

Since the proof of (2.17) is a straightforward application of the (Drazin) inverse defi-
nition, we finally obtain the required expression. O

EXAMPLE 2.7. Consider the system (1.1) (analogously with system (1.2))

Fz'(t) = Gz(t)

01 -1 0 00 1 -1
ith F= - .
wit [00 10]andG {000 1]

01 0 -1

Ifwesetu—l,F—l—G—{O 01 1

} is onto with rank(F' 4+ G) = vy = 2. Then,

11

th ist P =
ere exis [ 01

} and @Q = I such that

P(F+G)Q—{8 (1) ! H
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Using Lemma 2.3 (b) and (2.13), we obtain

Ot
F+G)' =QF, +Gr)'P=Q - P
( ) ( g k) [Iv2 +H’U2 sz]T
Ot
=Q I, +H} 1 | P
f | 2loy o+ Ho + H
€%,
0 0 00
1 _
:_142111]3:1 21,
3 1 1 0 1 3 1 2
-1 2 -1 1
00 00
110 2 1 1
P =(F s .
1= (F+G@)H(F+G) 3101 2 1|
011 2

. . _ _ 2 1
FP=F' =P 12I, + H, + H! (I, + H})) Ip = [ ] ;

By = P~ (Ly, + HL,) (2L, + Hy, + HL| ' P = { 1 _; } ’

A - 0 1
and Gy = I, — F| = [ }, respectively. Thus, the solution (see e.g., [2,3]) is

-1 -1
given by

T = (F + G)Teiﬁf)éltplﬁng—f— [I4 - Pl]h

0 0 1 3 0 0 0

2 1 ‘{_1 _g]t 1| o — 11
1 2|° =3 o1 1 | B

11 0o 1 1 -1

for arbitrary ¢ € C? and function h € C*.

3. The Drazin inverse for square matrices. In this section, we revisit the
recent results of [9], in order to provide a more algorithmic method for the calculation
of the Drazin inverse of FM (and F') through the Weierstrass canonical form in the
sense of [11]. More analytically, let us firstly introduce the following definition and
lemma.
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DEFINITION 3.1. Define the matrices £, £ (uF+G)~'F and G, & (uF+G)~'G,
for p € C, where F,G € C"*™,

LEMMA 3.2. [9] For matrices I, € RP*P, J,()\;) € CP*P, and H, € C9*9, 4t
follows that matrices F), and G, satisfy

(ndp + Jp)il Op.q

Q'FQ= _ :
. Og,p (MHq +Iq) 1Hq

(3.1)

and G, = I — pF),, respectively.

The algorithmic approach for the calculation of the Drazin inverse of matrix F P
(and F) is derived via Proposition 3.3 (and Proposition 3.4, respectively).

PRrROPOSITION 3.3. The Drazin inverse of FM is given by

~ ply +Jp Opg

D __ _
FP=qQ O, o, Q" (3.2)

w

Proof. Considering (3.1), we can easily verify that
rank(QFHQfl) = rank(ﬁ‘u) =¢=max{qg;: j=1,2,...,0}%
see also (1.17) and Proposition 2.1 of [9]. Moreover rank(Fg) =p.

Following Theorems 1.5 and 1.6, an analytic expression for the Drazin inverse of
matrix QF, Q! is constructed:

(QF.Q™P =QEPQ™" = (I - X)[N|a)(QE,Q alb) ™' (I — X)[BIN],

where QFHQ_l[aU)] is an p X p nonsingular submatrix of QF Q™1 with row index set

a = {i1,42,...,ip} and column index set b = {j1,J2,...,Jp}. Obviously, the matrix
I
X = [ Op  Opg ] satisfies condition (1.19), and I — X = [ r o Ong } Thus,
Opp I Ogp Oy

(1-0Wl = | o7 | @oBINI =11, 0,

q9,p

and

(QFuQil[aw])il = (qu + Jp)~

Consequently,

QFPQ = | 7 |ty ity Ol = EP =@ | B Do | g
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The matrix (3.2) is a Drazin inverse of F},. [

According to the preceding discussion, the following theorem on the relation be-
tween the Drazin inverse and the Weierstrass canonical form of F' follows.

PROPOSITION 3.4. The Drazin inverse of F is given by

D _ Jp Opg -1
F”=qQ |: Ous O, ]Q . (3.3)

Proof. In practice, the Drazin inverse of F' is related to the study of the systems

Fa!(t) =1Ixz(t), or Fx, = Iz,

where det F' = 0. Using Proposition 3.3 and letting = 0 and G = 1, expression (3.3)
is a straightforward result. O

As a consequence, the following algorithmic approach follows.

Algorithm. Let F,G € C™"*".

1. Determine the Weierstrass canonical form of the matrix pencil sF' — G.
Thus, index[(uF + G)F| = q, rank[(uF + G)F] = q, rank[(uF + G)F]? = p, the
index sets a and b, J,, and the nonsingular matrix @ (and Q') are all obtained.

IP @p,q

Ogp  Oq
(I - X)[b|N] - [Ip @qm]-

Ip

2. Compute I — X = [
Ogp

} and submatrices (I — X)[N|a] = [ } and

3. Finally, compute the Drazin inverse of FHD (13‘”)

. I
F/iD =Q [ @;p } (1lp + Jp)p @nq]Q_l-

(In the special case that ¢ =0 and G = I, we compute the Drazin inverse of F.)

EXAMPLE 3.5. Let us determine the Drazin inverse of

2 0 0
F=| -1 1 1
-1 -1 -1

For this purpose, consider the system Fa'(t) = z(t) (or equivalently Fz, , = Iz,),
where det F' = 0, and consider the matrix pencil given by

2s—1 0 0
sk — 1= -5 s—1 s
—s —s —s—1
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According to the detailed steps in the algorithm, firstly, we determine the Weierstrass
canonical form for the matrix pencil above. We obtain the nonsingular 3 x 3 matrix

1 0 0 1 0 0 1 1
Q=] -1 1 1(,Q'=]0 0 —1|and.J; <§> =3 Since index(F) = 2,
0 -1 0 11 1

rank(F) = 2 and rank(F?) = 1, we determine the index sets a = {i,i2}, b = {41, 72}

According to the second step, we have

1
(I —X)[Nla]=1| 0 and (I — X)[b|N]=1[100],
0
and finally,
I 1
D _ 1 1 —1
F Q[@271}J1<2>[I1 01,2]Q
1 0 0 1 1 0 0 1
1 1
= -1 1 1 0 5[100] 00 —-1|=| -1 5[100]
0 -1 0 0 1 1 1 0
N
2 0 0 O

Compare the result above with [2, pp. 126-127], [9, p. 204] and [11, pp. 187-188].

In the last part of this section, we present important core-nilpotent decomposition
method.

THEOREM 3.6 (Core-Nilpotent Decomposition Method). [2] For F € C**™ with
Ind(F) =k > 0, dimR(F*) = s, dimR(F*) =t (s+t = n), there exists a nonsingular
matriz T such that

Cs ©st —1
F=T A 4
|: ©t,s Nt :| ’ (3 )

where Cp, is a p X p nonsingular matriz and where Ny is a g X q nilpotent matriz with
indez k.

THEOREM 3.7. Let Fj, € C"™™ with Ind(F),) = k > 0, dimR(F¥) = p, dimR(F})
=q (p+ g =n), and core-nilpotent decomposition

- C.L @ _
FH:T Pt p,q :|TH1

(3.5)
. |: (O)IL(I Nq,p,
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for nonsingular matrices T, Cp . and a nilpotent matriz Ng , with index K, all of
whom depend on the choice of p € C. Then there exist nonsingular matrices

po=| Gu O T (uF +G)! (3.6)
! Op.q (I - Mqu)_l :
and
Qu="T, (3.7)

such that the Weierstrass canonical form derives if and only if
Nop = (Ig+ NHq)_lHq (3.8)
and

Cpp = (pl, + Jp) "t (3.9)

Proof. In order to construct the Weierstrass canonical form for the regular pencils,
we should calculate

ot o _
F,=P,FQ,=| P Pa T Y uF “1PT
w uF'Qp 0,y (I —uNg,)t | n (uF +G) I
rc-1 O T .
=| P b T, 'F.T,
| Opq (Ig—pNg,)~t |70 70
— [ ij/li Op.q | [ Cpu Opyg ]
| Opg (Ig—1Ngw) ™ ]| Opg New
_ A Op,q ]
| Opq (g — uN. ,u)leq,u
and
rc-1 O
G, =P,GQ,=| P+ pa- T Y uF + G)"IGT
. . | Opg (I —uN, ,u) ! a (b ) .
FcL Oy, 1A
= ol o T, 1GNTN
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Now, if we want to obtain the Weierstrass canonical form, then

(Ig = Ny ) ' Noy = Hy < Ny = (Ig — pNg ) Hg
& Ny = Hy(Ig + pHy )™t = (I + pHy )~ Hy

since we have already shown that the matrices (I,+uH, ), H, commute. Moreover,

Cp_,i(lp —uCypp) = Jp & Iy — pCp = Cp
& Cpulply +Jp) =1, & Cp = (pn, + J,) 7t O

EXAMPLE 3.8. Consider the square system (1.1) (analogously with system (1.2))

Fz'(t) = Gz(t)

with
0 1 -1 1 1 0 1
0 -2 2 1 — 1 -1
F= d G=
1 0 0 o 0 0 0
0O 0 0 0 1 0 0
—1 1 -1 2
If we set p =1, then F+ G = 1 7? g 7(2) is invertible and
0 0
0 0 0 O
. 1 0 0 0
Fl:(F+G)71F: 1 1
1 -3 5 0
o § -1

Using the core-nilpotent decomposition method, we obtain the expression

0 0 0 0 i -1 00
R 1 0 0 0 0 L 00
= =T = 2 71
! 1 -1 1o 0 00 1
0 1 -1 3 0 000
00 0 1 0 -1 1
0010 0 — 10 T
hT: T71: :24
where 01 1 0|t 0 0 o |0 2 [o %]and
1100 1 0 0
0 1
N. .
2= 0 o]
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Now, by using equations (3.6) and (3.7), we have

T2 1 o 0 1 -1 1 -1 -3 3 =2
po_ | L02 2 0 -1 10 3 7 -7 4
T o 11 0 1 00 0 -1 1 0

2 0 1 1 00 0 1 -1 1

T1 0 0 1
1100
10 0 10

L0 0 0 1

00 0 1
0010
and Ql—Tl—Ollo
1100
Finally, the Weierstrass canonical form derives. Specifically,
rt 00 1770 1 -1 1 00 0 1
110 0 0 -2 2 -1 0010
PFQ =
0010 1 0 0 0 0110
Lo oo 1JLo 0 0 o0 1100
r1T 0 0 07
0100
= :F
00 0 1 w
L0 0 0 0]
and
rT1T 00 177 -1 0 1 00 0 1
1100 1 -1 1 -1 0010
PGQ, =
16 0010 0 0 0 01 10
L0 0 0 1] 1 0 0 110 0
1T 1 0 07
01 00
_0010_G“"
L0 0 0 1]

Moreover, we can easily verify expressions (3.8) and (3.9).

0 1

Noy = (Ia+ Hy) 'Hy = { 0 0

_ 0 1
:| and H2 = (.[2 —Ng}l) 1N2’1 = |: 0 0 :|

21

0 2

Cos = (B4 2(1) ™ = | -

] and Jy(1) = C3 (I, — Cay) = [ L 1].
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