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Abstract. In several applications, e.g., in control and systems modeling theory, Drazin in-

verses and matrix pencil methods for the study of generalized (descriptor) linear systems are used

extensively. In this paper, a relation between the Drazin inverse and the Kronecker canonical form

of rectangular pencils is derived and fully investigated. Moreover, the relation between the Drazin

inverse and the Weierstrass canonical form is revisited by providing a more algorithmic approach.

Finally, the Weierstrass canonical form for a pencil through the core-nilpotent decomposition method

is defined.
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1. Introduction. In this paper, our main purpose is to study the relation be-
tween the Drazin inverse (both for rectangular and square constant coefficient matri-
ces) and the relevant matrix pencil approach for the solution of autonomous singular
(or regular) linear differential systems of the form

Fx′(t) = Gx(t), (1.1)

or, in the discrete analogue, autonomous singular (or regular) linear difference systems
of the form

Fxk+1 = Gx k, (1.2)

where x ∈ Cn is the state control vector and F,G ∈ Cm×n (or F,G ∈ Cn×n). For
details, see e.g., [2, 3] and also [5, 8]. In many applications (e.g., circuit systems
[7], the multi-input multi-output (MIMO) Leontief model in Economy [2], the Leslie
population model [2]) it is necessary to solve (1.1) and (1.2) considering the two
special cases when the matrices are rectangular. If m > n (i.e., more equations
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than unknowns parameters) the systems (1.1) and (1.2) are called over-determined ;
otherwise, if m < n (more unknowns parameters than equations), they are called
under-determined.

Given the constant matrices F,G ∈ Cm×n and an indeterminate s, the pencil
sF − G is called regular when m = n and det(sF − G) �= 0. In any other case, the
pencil is called singular, i.e., when m �= n or m = n with det(sF −G) ≡ 0.

Definition 1.1. [8] The pencil sF − G is said to be strictly equivalent to the
pencil sF1 −G1 if and only if P (sF −G)Q = sF1 −G1, where P ∈ Cm×n, Q ∈ Cn×n,
and detP , detQ �= 0.

A class of strict equivalence, say Es(sF−G), is characterized by a uniquely defined
element, known as the complex Kronecker canonical form, sFk −Qk (see [4]), which
is specified by the complete set of invariants of Es(sF −G).

Unlike the case of regular pencils, the characterization of singular pencils requires
the definition of additional sets of invariants known as the minimal indices. Let us
assume that m �= n and r = rankR(s)(sF −G) ≤ min{m,n}, where R(s) denotes the
field of rational functions having real coefficients. Then, the equations

(sF −G)x(s) = 0 and ψt(s)(sF −G) = 0t (1.3)

have solutions x(s) and ψ(s) which are vectors in the rational vector spaces

Nr(s) � Nr(sF −G) and Nl(s) � Nl(sF −G),

respectively, where

Nr(s) � {x(s) ∈ Cn(s) : (sF −G)x(s) = 0}, (1.4)

Nl(s) = {ψ(s) ∈ Cn(s) : ψt(s)(sF −G) = 0t}. (1.5)

Obviously, Nr(s) and Nl(s) are vector spaces over R(s) with

dimNr(s) = n− r and dimNl(s) = m− r.

It is known that Nr(s) and Nl(s) are spanned by minimal polynomial bases {x i(s),
i = 1, 2, . . . , n− r} and {ψt

j
(s), i = 1, 2, . . . ,m− r} of minimal degrees, namely (see

[5]),

{v1 = v2 = · · · = vg = 0 < vg+1 ≤ vg+2 ≤ · · · ≤ vn−r} (1.6)

and

{u1 = u2 = · · · = uh = 0 < uh+1 ≤ uh+2 ≤ · · · ≤ um−r}. (1.7)
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The sets of the minimal degrees {vi, 1 ≤ i ≤ n− r} and {uj, 1 ≤ j ≤ m− r} are
known in [4] as column minimal indices (c.m.i.) and row minimal indices (r.m.i.) of
sF − G, respectively. Furthermore, If r = rankR(s)(sF −G) < min{m,n}, then it is
evident that

r =
n−r∑
i=g+1

vi +
m−r∑
j=h+1

uj + rank
R(s)

(sFw −Gw), (1.8)

where sFw − Gw is the complex Weierstrass canonical form (see [4]) specified by
the set of elementary divisors (e.d.) obtained by factoring the invariant polynomials
f(s, ŝ) over R[s, ŝ] (the ring of polynomials in s and ŝ = 1/s with real coefficients),
which are the nonzero elements on the diagonal of the Smith canonical form of the
homogeneous pencil sF − ŝG, into powers of homogeneous irreducible polynomials
over C.

Thus, in the case that sF − G is a singular pencil, we have elementary divisors
of the following types:

• e.d. of the type sd, d ∈ N, called zero finite elementary divisors (z. f.e.d.),
• e.d. of the type (s − a)c, a �= 0, c ∈ N, called nonzero finite elementary

divisors (nz. f.e.d.),
• e.d. of the type ŝq, called infinite elementary divisors (i.e.d),
• c.m.i. of the type v ∈ N∪{0}, called column minimal indices (c.m.i.) deduced
from the column degrees of minimal polynomial bases of the maximal sub
module MN embedded in Nr(s) with a free R(s)-module structure,

• r.m.i. of the type u ∈ N ∪ {0}, called row minimal indices (r.m.i.) deduced
from the row degrees of minimal polynomial bases of the maximal sub module
MN embedded in Nl(s) with a free R(s)-module structure.

For further details, see [5, 6, 8].

Thus, there exist P ∈ Cm×m and Q ∈ Cn×n such that the complex Kronecker
form of the singular pencil sF −G is defined as

P (sF −G)Q = sFk −Gk

� block diag{Qh,g, sΛv − λv, sΛtu − λtu, sIp − Jp, sHq − Iq}. (1.9)

In more detail, matrix Qh,g is uniquely defined by the sets {0, 0, . . . , 0}︸ ︷︷ ︸
g

and

{0, 0, . . . , 0}︸ ︷︷ ︸
h

of zero column and row minimal indices, respectively.

The second normal block sΛv−λv is uniquely defined by the set of nonzero column
minimal indices (a new arrangement of the indices of v must be noted in order to
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simplify the notation) {vg+1 ≤ vg+2 ≤ · · · ≤ vn−r} of sF −G and has the form

sΛv − λv � block diag{sΛvg+1 − λvg+1 , . . . , sΛvi − λvi , . . . , sΛvn−r − λvn−r}, (1.10)

where Λvi = [Ivi 0 ] ∈ Cvi×(vi+1), λvi = [Hvi ε vi
] ∈ Cvi×(vi+1) for every i = g +

1, g+2, . . . , n− r, and Ivi and Hvi denote the vi× vi identity and the nilpotent (with
annihilation index vi) matrix, respectively. 0 and ε vi

= [0 · · · 0 1]T ∈ Cvi are the
zero column and the column with element 1 in the last position, respectively.

The third normal block sΛtu − λtu is uniquely determined by the set of nonzero
row minimal indices (a new arrangement of the indices of v must be noted in order
to simplify the notation) {uh+1 ≤ uh+2 ≤ · · · ≤ um−r} of sF −G and has the form

sΛtu−λtu � block diag{sΛtuh+1
−λtuh+1

, . . . , sΛtuj
−λtuj

, . . . , sΛtum−r
−λtum−r

}, (1.11)

where Λtuj
=


 etuj

· · ·
Huj


 ∈ C(uj+1)×uj , λtuj

=


 0t

· · ·
Iuj


 ∈ C(uj+1)×uj for every j =

h + 1, h + 2, . . . ,m − r, and Iuj and Huj denote the uj × uj identity and nilpotent
(with annihilation index uj) matrix and the zero column matrix, respectively. 0 and
euj

= [1 · · · 0 0]T ∈ Cuj are the zero column and the column with element 1 at the
first position, respectively.

The forth and the fifth normal matrix block is the complex Weierstrass form
sFw −Gw of the regular pencil sF −G, which is defined by

sFw −Gw � block diag{sIp − Jp, sHq − Iq}; (1.12)

the first normal Jordan type block sIp − Jp is uniquely defined by the set of f.e.d.

(s− ai)pi , . . . , (s− av)pv ,

v∑
j=1

pj = p (1.13)

of sF −G and has the form

sIp − Jp � block diag{sIp1 − Jp1(a1), . . . , sIpv − Jpv (av)}. (1.14)

Finally, the q blocks of the second uniquely defined block sHq − Iq correspond to the
i.e.d.

(ŝ)q1 , . . . , (ŝ)qσ ,
σ∑
j=1

qj = q (q1 ≤ q2 ≤ · · · ≤ qσ) (1.15)

of sF −G, having the form

sHq − Iq � block diag{sHq1 − Iq1 , . . . , sHqσ − Iqσ}. (1.16)
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Thus, Hq is a nilpotent matrix of index q̃ = max{qj : j = 1, 2, . . . , σ}, where

H q̃q = O. (1.17)

The matrices Ipi , Jpi(ai), Hqi are

Ipi =

2
66664

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

3
77775
∈ R

pi×pi , (1.18)

Jpi(ai) =

2
6666664

a 1 0 · · · 0

0 a 1 · · · 0
...

...
. . .

...
...

0 0 0 a 1

0 0 0 0 a

3
7777775
∈ C

pi×pi , and Hqi =

2
6666664

0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...
...

0 0 0 0 1

0 0 0 0 0

3
7777775
∈ R

qi×qi .

Definition 1.2. The dimension of a vector subspace is denoted by dim(·). Given
A ∈ Cn×n, the range (column space) of A is denoted by �(A); the null space of A,
{x �= 0 : Ax = 0}, is denoted by ℵ(A). Recall that dimℵ(A) + dim�(A) = n.

Definition 1.3. Let A ∈ Cn×n. The nonnegative integer k is the index of A,
denoted by Ind(A) = k, if k is the smallest nonnegative integer such that

rank(Ak) = rank(Ak+1).

Definition 1.4. [3] The Moore-Penrose inverse of rectangular matrix A ∈ Cm×n

is the matrix A† ∈ Cn×n that satisfies

(i) AA†A = A,
(ii) A†AA† = A†,
(iii) (AA†)∗ = AA†,
(iv) (A†A)∗ = A†A,

where ∗ denotes the conjugate transpose.

Moreover, the Drazin inverse of A ∈ Cn×n with Ind(A) = k is the matrix AD

satisfying

(i) ADAAD = AD,
(ii) AAD = ADA,
(iii) Al+1AD = Al for l ≥ k = Ind(A).

Note that if A is nonsingular, then A† ≡ AD ≡ A−1.
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Theorem 1.5. [11] For any square matrix A ∈ Cn×n with Ind(A) = k and
rank(Ak) = r, there exists unique matrix X of order n such that

AkX = O, XAk = O, X2 = X, rank(X) = n− r. (1.19)

For the above-mentioned matrix X, there exists a unique matrix Y of order n such
that

rank
[

A I −X

I −X Y

]
= rank(A). (1.20)

The matrix Y is the Drazin inverse AD of A and X = I −AAD.

Theorem 1.6. [11] Consider a square matrix A ∈ Cn×n with rank(A) = r ≥ 1.
Let A[a|b] be the r × r nonsingular submatrix of A which has row index set a =
{i1, i2, . . . , ir} and the column index set b = {j1, j2, . . . , jr}. If the matrix X satisfies
condition (1.19), then we have

AD = (I −X)[N |a](A[a|b])−1(I −X)[b|N ], (1.21)

where N = {1, 2, . . . , n}.
A theorem and a corollary characterizing the Moore-Penrose inverse are Theorem

1 in [7, p. 130] and its corollary in [7, p. 132].

2. Main results for rectangular coefficient matrices. In this section we
shall consider two important cases with many practical applications. First of all, we
investigate the relation between the Drazin inverse and the matrix pencil approach.
If µF + G is one-to-one (i.e. full column rank - only row minimal indices) for some
µ ∈ C, then m > n and the system is over-determined (i.e. unique solution). If
µF + G is onto (i.e. full row rank - only column minimal indices) for some µ ∈ C,
then m < n and the system is under-determined (i.e. the solution always exists but
it is not unique).

Definition 2.1. Let F , G ∈ Cm×n

a) When µF +G is one-to-one, we define the n-square matrices

F̂µ � (µF +G)†F ∈ Cn×n and Ĝµ � (µF +G)†G ∈ Cn×n.

b) When µF +G is onto, we define the m-square matrices

F̂µ � (µF +G)†F ∈ Cm×m and Ĝµ � (µF +G)†G ∈ Cm×m.

The following known result is very important for the entire discussion.

Lemma 2.2. [5] Let F , G ∈ Cm×n.
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a) If µF + G is one-to-one (i.e. full column rank and r = rank(µF + G) =∑m−n
j=h+1 uj = n < m) for some µ ∈ C (or similarly Nr(µ) = {0}), then there exist

P ∈ Cm×m and Q ∈ Cn×n such as the complex Kronecker form µFk+Gk of the pencil
µF +G is given by

P (µF +G)Q = µFk +Gk

� block diag

{[
Oh,uh+1

µΛtuh+1
+ λtuh+1

]
, µΛtuh+2

+ λtuh+2
, . . . , µΛtum−n

+ λtum−n

}
,

(2.1)

where the blocks µΛtuj
+λtuj

for j = h+1, h+2, . . . ,m−n are uniquely determined by
the set of nonzero row minimal indices; see expression (1.11) and Section 1 for more
details.

b) If µF + G is onto (i.e. full row rank and r = rank(µF + G) =
∑n−m
j=g+1 vj =

m < n) for some µ ∈ C (or similarly Nl(µ) = {0t}), then there exist P ∈ Cm×m and
Q ∈ Cn×n such as the complex Kronecker form of the pencil µF +G is given by

P (µF +G)Q = µFk +Gk = block diag
{ [

Ovg+1,g µΛvg+1 + λvg+1

]
µΛvg+2 + λvg+2 , . . . , µΛvn−m + λvn−m

}
, (2.2)

where the blocks µΛvi +λvi for i = g+1, g+2, . . . , n−m are uniquely defined by the
set of nonzero column minimal indices; see expression (1.10) and Section 1 for more
details.

Remark 2.3. In this part of the paper, we should stress out that the matrix
 et

· · ·
Huj


 can also be written as


 Iuh+1

· · ·
0t


 ∈ C(uj+1)×uj . In the same sense, the

matrix [Hvi ε vi
] can also be expressed as [0 Ivi ] ∈ Cvi×(vi+1). As we may see in the

following lemmas, Remark 2.1 is very useful indeed.

Lemma 2.4. For the identity matrix Ip ∈ Cp×p, the nilpotent matrix Hp ∈ Cp×p

(with annihilation index p), the column vector euj
∈ Cuj for j = h+1, h+2, . . . ,m−r

(with element 1 at the first place), and ε vi
∈ Cvi for i = g + 1, g + 2, . . . , n− r (with

element 1 at the vi-place) and µ ∈ C � {0}, we have that

i) 
 µetuj

· · ·
µHuj + Iuj



†

= [(µ̄µ+ 1)Iuj + µHuj + µ̄Htuj
]−1

[µ̄Iuj +Huj εuj
] ∈ Cuj×(uj+1), (2.3)
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ii)

[µIvi +Hvi

... ε vi
]† =

[
µ̄Ivi +Htvi

εtvi

]
[(µ̄µ+ 1)Ivi + µ̄Hvi + µHtvi

]−1 ∈ C(vi+1)×vi . (2.4)

Proof. i) Consider the block matrix

A �


 µetuj

· · ·
µHuj + Iuj


 =




µ 0 0 · · · 0
1 µ 0 · · · 0
0 1 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ

0 0 0 · · · 1



∈ C(uj+1)×uj .

Now, by Theorem 1.3.2 of [2], the Moore-Penrose inverse matrix of A is given by

A† = (A∗A)−1A∗. (2.5)

Finally, since A∗ =




µ̄ 1 0 · · · 0
0 µ̄ 1 · · · 0
0 0 µ̄ · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 1



= [µ̄Iuj +Huj εuj

] ∈ Cuj×(uj+1),

A∗A =




µ̄µ+ 1 µ 0 · · · 0 0
µ̄ µ̄µ+ 1 µ · · · 0 0
0 µ̄ µ̄µ+ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · µ̄µ+ 1 µ

0 0 0 · · · µ̄ µ̄µ+ 1




= [(µ̄µ+ 1)Iuj + µHuj + µ̄Htuj
] ∈ Cuj×uj ,

where the µ̄ ∈ C is the conjugate of µ. Expression (2.3) is proven.
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ii) Consider the block matrix

B � [µIvi +Hvi e vi
] =




µ 1 0 · · · 0
0 µ 1 · · · 0
0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 1



∈ Cvi×(vi+1).

Again by Theorem 1.3.2 of [2], the Moore-Penrose inverse matrix of A is given by

B† = B∗(BB∗)−1. (2.6)

Finally, since B∗ =




µ̄ 0 0 · · · 0
1 µ̄ 0 · · · 0
0 1 µ̄ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ̄

0 0 0 · · · 1



=

[
µ̄Ivi +Htvi

εtvi

]
∈ C(vi+1)×vi ,

BB∗ =




µ̄µ+ 1 µ̄ 0 · · · 0 0
µ µ̄µ+ 1 µ̄ · · · 0 0
0 µ µ̄µ+ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · µ̄µ+ 1 µ̄

0 0 0 · · · µ µ̄µ+ 1




= [(µ̄µ+ 1)Ivi + µ̄Hvi + µHtvi
] ∈ Cvi×vi ,

where the µ̄ ∈ C is the conjugate of µ. Expression (2.4) is proven.

Theorem 2.5. Consider matrices F̂µ ∈ Cn×n and Ĝµ ∈ Cm×m.

a) If µF +G is one-to-one, then

F̂µ = Q




[(µ̄µ+1)Iuh+1+µHuh+1+µ̄Ht
uh+1

]−1(µ̄Iuh+1+Huh+1 )

...
[(µ̄µ+1)Ium−n

+µHum−n
+µ̄Ht

um−n
]−1(µ̄Ium−n

+Hum−n
)


Q−1 (2.7)

and Ĝµ = In − µF̂µ.

b) If µF +G is onto, then

F̂µ = P−1




(µ̄Ivg+1+Ht
vg+1

)[(µ̄µ+1)Iug+1+µ̄Hug+1+µHt
ug+1

]−1

...
(µ̄Ivn−m

+Ht
vn−m

)[(µ̄+1)Iun−m
+µ̄Hun−m

+µHt
un−m

]−1


P (2.8)
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and Ĝµ = Im − µF̂µ.

Proof. Following Definition 2.1 (a) and Lemma 2.2, there always exists µ ∈ C

such that the matrix (µF +G) is one-to-one for rectangular matrices F,G ∈ Cm×n.

a) Now, multiplying on the left with (µF + G)† the system (1.1) (analogously,
the system (1.2)), we obtain

(µF +G)†Fx′(t) = (µF +G)†Gx(t) D 2.1⇐⇒ F̂µx
′(t) = Ĝµx(t).

Hence, there exist invertible matrices P ∈ Cm×m, Q ∈ Cn×n giving the complex
Kronecker canonical form; see (2.1) (or (2.2)). Consequently,

F̂µ = (µF +G)†F = (µP−1FkQ
−1 + P−1GkQ

−1)†P−1FkQ
−1

= Q(µFk +Gk)†FkQ−1 (2.9)

and

Ĝµ = (µF +G)†G = (µP−1FkQ
−1 + P−1GkQ

−1)†P−1GkQ
−1

= Q(µFk +Gk)†GkQ−1. (2.10)

Moreover, using expressions (1.11) and (2.1), we obtain

(µFk +Gk)†

=




Quh+1,h (µΛt
uh+1

+λt
uh+1

)†

(µΛt
uh+2

+λt
uh+2

)†

. ..
(µΛt

um−n
+λt

um−n
)†


 . (2.11)

Consequently, substituting the above expression into (2.9), expression (2.1) follows,
that is,

(µFk +Gk)†Fk

=




(µΛt
uh+1

+λt
uh+1

)†Λt
uh+1

(µΛt
uh+2

+λt
uh+2

)†Λt
uh+2

. . .
(µΛt

um−n
+λt

um−n
)†Λt

um−n



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=





 µet

uh+1

···
µHuh+1+Iuh+1



† 
 et

uh+1

···
Huh+1




. . . 
 µet

um−n

···
µHum−n

+Ium−n



† 
 et

um−n

···
Hum−n






.

Considering Lemma 2.2, we obtain
 µet

uj

···
µHuj

+Iuj



† 
 euj

···
Huj


 = [(µ̄µ+ 1)Iuj + µHuj + µ̄Htuj

]−1[µ̄Iuj +Huj εuj
]


 εuj

···
Huj




= [(µ̄µ+ 1)Iuj + µHuj + µ̄Htuj
]−1(µ̄Iuj +Huj ) ∈ Cuj×uj .

Note also that µF̂µ+Ĝµ = In ⇒ Ĝµ = In−µF̂µ, because µF̂µ+Ĝµ = µ(µF +G)†F +
(µF +G)†G = (µF +G)†(µF +G) = I.

b) Following Definition 2.1 (b) and Lemma 2.2, there always exists µ ∈ C such
that the matrix (µF +G) is onto for rectangular matrices F,G ∈ Cm×n.

Here, defining Pµ = (µF+G)†(µF+G), the system (1.1) (analogously, the system
(1.2)) gets transformed to

FPµx
′(t) + F (In − Pµ)x′(t) = GPµx(t) +G(In − Pµ)x(t),

or equivalently,

F (µF +G)†[(µF +G)x′(t)] + F (In − Pµ)x(t)

= G(µF +G)†[(µF +G)x(t)] +G(In − Pµ)x(t)
D 2.1⇐⇒ F̂µ[(µF +G)x′(t)] + F (In − Pµ)x′(t) = Ĝµ[(µF +G)x(t)] +G(In − Pm)x(t).

Since µF̂µ + Ĝµ = Im, the system above is, in terms of (µF + G)x(t), a differential
equation of the type already solved and hence has a solution for any choice of (Im −
Pµ)x(t).

Hence, there exist invertible matrices P ∈ Cm×m, Q ∈ Cn×n giving the complex
Kronecker canonical form; see (2.1) (or (2.2)). Consequently,

F̂µ = F (µF +G)† = P−1FkQ
−1(µP−1FkQ

−1 + P−1GkQ
−1)†

= P−1Fk(µFk +Gk)†P (2.12)
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and

Ĝµ = G(µF +G)† = P−1GkQ
−1(µP−1FkQ

−1 + P−1GkQ
−1)†

= P−1Gk(µFk +Gk)†P. (2.13)

Furthermore, using expressions (1.10) and (2.2)

(µFk +Gk)† =




Og,vg+1

(µΛvg+1+λvg+1 )†

(µΛvg+2+λvg+2 )†

. . .
(µΛvn−m

+λvn−m
)†


 .

(2.14)

Consequently, substituting the above expression into (2.12), expression (2.2) follows,
that is,

Fk(µFk +Gk)†

=




Λvg+1 (µΛvg+1+λvg+1 )†

Λvg+2 (µΛvg+2+λvg+2 )†

. . .
Λvn−m

(µΛvn−m
+λvn−m

)†




=




[FIv1 0][µIv1+Hv1 e v1
]†

. . .
[FIvm−n

0][µIvn−m
+Hv1 e vn−m

]†


 .

Considering Lemma 2.4, we obtain

[Iv1 0][µIv1 +Hv1 e v1 ]
† = [Iv1 0]

[
µ̄Iv1 +Htv1

εtv1

]
[(µ̄µ+ 1)Iv1 + µ̄Hv1 + µHtv1 ]

−1

= (µ̄Iv1 +Htv1)[(µ̄µ+ 1)Iv1 + µ̄Hv1 + µHtv1 ]
−1 ∈ Cvi×vi .

Note the formulas above can be simplified considerably if F or G are onto. In applica-
tions, the case when G is onto is more important. Moreover, we can easily verify that
µF̂µ+Ĝµ = Im ⇒ Ĝµ = Im−µF̂µ, because µF̂µ+Ĝµ = µF (µF+G)†+G(µF+G)† =
(µF +G)(µF +G)† = Im.

Corollary 2.6. Matrices F̂µ ∈ Cn×n and F̂µ ∈ Cm×m are invertible and their
inverses, respectively, are
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a)

F̂−1
µ = Q




(µIuh+1+Huh+1 )−1[(µ̄µ+1)Iuh+1+µHuh+1+µ̄Ht
uh+1

]

. . .
(µIum−n

+Hum−n
)−1[(µ̄µ+1)Ium−n

+µHum−n
+µ̄Ht

um−n
]


Q−1. (2.15)

b)

F̂−1
µ = P−1




[(µ̄µ+1)Iug+1+µ̄Hug+1+µHt
ug+1

](µ̄Ivg+1+Ht
vg+1

)−1

...
[(µ̄µ+1)Iun−m

+µ̄Hun−m
+µHt

un−m
](µ̄Ivn−m

+Ht
vn−m

)−1


P. (2.16)

Proof. Since the proofs of a) and b) are similar, only the proof for b) is presented.

b) The square matrix PF̂µP
−1 ∈ Cm×m has rank(PF̂µP−1) = rank(F̂µ) = m ≥

1. According to Theorem 1.6, since PF̂µP
−1 is a m × m nonsingular matrix, the

unique matrix X of order m that satisfies conditions (1.19) is X = Om. In order to
prove expression (2.14), we should also consider that

(PF̂µP−1)D = PF̂Dµ P
−1. (2.17)

Since the proof of (2.17) is a straightforward application of the (Drazin) inverse defi-
nition, we finally obtain the required expression.

Example 2.7. Consider the system (1.1) (analogously with system (1.2))

Fx′(t) = Gx(t)

with F =
[
0 1 −1 0
0 0 1 0

]
and G =

[
0 0 1 −1
0 0 0 1

]
.

If we set µ = 1, F +G =
[
0 1 0 −1
0 0 1 1

]
is onto with rank(F +G) = v2 = 2. Then,

there exist P =
[
1 1
0 1

]
and Q = I4 such that

P (F +G)Q =
[
0 1 1 0
0 0 1 1

]
.
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Using Lemma 2.3 (b) and (2.13), we obtain

(F +G)† = Q(Fk +Gk)†P = Q

[
0t

[Iv2 +Hv2 e v2 ]
†

]
P

= Q


 0t[

Iv2 +Htv2
εtv2

]
[2Iv2 +Hv2 +Htv2 ]

−1


P

=
1
3
I4




0 0
2 −1
1 1

−1 2




[
1 1
0 1

]
P =

1
3




0 0
2 1
1 2

−1 1


 ,

P1 = (F +G)†(F +G) =
1
3




0 0 0 0
0 2 1 1
0 1 2 1
0 1 1 2


 ,

F̂D1 ≡ F̂−1
1 = P−1[2Iv2 +Hv2 +Htv2 ](Iv2 +Htv2)

−1P =
[

2 1
−1 1

]
,

F̂1 = P−1(Iv2 +Htv2)[2Iv2 +Hv2 +Htv2 ]
−1
P =

[
1 −1
1 2

]
,

and Ĝ1 = I2 − F̂1 =
[

0 1
−1 −1

]
, respectively. Thus, the solution (see e.g., [2,3]) is

given by

x = (F +G)†e−F̂
D
1 Ĝ1tF̂1F̂

D
1 q + [I4 − P1]h

=




0 0
2 1
1 2

−1 1


 e

−
2
4 −1 1

−1 −2
3
5t
q − 1

3




−3 0 0 0
0 −1 1 1
0 1 −1 1
0 1 1 −1


h

for arbitrary q ∈ C2 and function h ∈ C4.

3. The Drazin inverse for square matrices. In this section, we revisit the
recent results of [9], in order to provide a more algorithmic method for the calculation
of the Drazin inverse of F̂µ (and F ) through the Weierstrass canonical form in the
sense of [11]. More analytically, let us firstly introduce the following definition and
lemma.
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Definition 3.1. Define the matrices F̂µ � (µF+G)−1F and Ĝµ � (µF+G)−1G,
for µ ∈ C, where F,G ∈ Cn×n.

Lemma 3.2. [9] For matrices Ip ∈ Rp×p, Jp(λj) ∈ Cp×p, and Hq ∈ Cq×q, it
follows that matrices F̂µ and Ĝµ satisfy

Q−1F̂µQ =
[
(µIp + Jp)−1 Op,q

Oq,p (µHq + Iq)−1Hq

]
, (3.1)

and Ĝµ = I − µF̂µ, respectively.

The algorithmic approach for the calculation of the Drazin inverse of matrix F̂µ
(and F ) is derived via Proposition 3.3 (and Proposition 3.4, respectively).

Proposition 3.3. The Drazin inverse of F̂µ is given by

F̂Dµ = Q

[
µIp + Jp Op,q
Oq,p Oq

]
Q−1. (3.2)

Proof. Considering (3.1), we can easily verify that

rank(QF̂µQ−1) = rank(F̂µ) = q̃ = max{qj : j = 1, 2, . . . , σ};

see also (1.17) and Proposition 2.1 of [9]. Moreover rank(F̂ q̃µ) = p.

Following Theorems 1.5 and 1.6, an analytic expression for the Drazin inverse of
matrix QF̂µQ−1 is constructed:

(QF̂µQ−1)D = QF̂Dµ Q
−1 = (I −X)[N |a](QF̂µQ−1[a|b])−1(I −X)[b|N ],

where QF̂µQ−1[a|b] is an p× p nonsingular submatrix of QF̂µQ−1 with row index set
a = {i1, i2, . . . , ip} and column index set b = {j1, j2, . . . , jp}. Obviously, the matrix
X =

[
Op Op,q

Oq,p Ip

]
satisfies condition (1.19), and I −X =

[
Ip Op,q

Oq,p Oq

]
. Thus,

(I −X)[N |a] =
[

Ip
Oq,p

]
, (IX)[b|N ] = [Ip Op,q]

and

(QF̂µQ−1[a|b])−1 = (µIp + Jp).

Consequently,

QF̂Dµ Q
−1 =

[
Ip

Oq,p

]
(µIp + Jp)[Ip Op,q] ⇒ F̂Dµ = Q

[
µIp Op,q
Oq,p Oq

]
Q−1.
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The matrix (3.2) is a Drazin inverse of F̂µ.

According to the preceding discussion, the following theorem on the relation be-
tween the Drazin inverse and the Weierstrass canonical form of F follows.

Proposition 3.4. The Drazin inverse of F is given by

FD = Q

[
Jp Op,q

Oq,p Oq

]
Q−1. (3.3)

Proof. In practice, the Drazin inverse of F is related to the study of the systems

Fx′(t) = Ix(t), or Fx k+1 = Ix k,

where detF = 0. Using Proposition 3.3 and letting µ = 0 and G = 1, expression (3.3)
is a straightforward result.

As a consequence, the following algorithmic approach follows.

Algorithm. Let F,G ∈ Cn×n.

1. Determine the Weierstrass canonical form of the matrix pencil sF −G.
Thus, index[(µF +G)F ] = q, rank[(µF +G)F ] = q, rank[(µF +G)F ]q = p, the
index sets a and b, Jp and the nonsingular matrix Q (and Q−1) are all obtained.

2. Compute I −X =
[

Ip Op,q

Oq,p Oq

]
and submatrices (I −X)[N |a] =

[
Ip

Oq,p

]
and

(I −X)[b|N ] = [Ip Oq,p].

3. Finally, compute the Drazin inverse of F̂Dµ (F̂µ)

F̂Dµ = Q

[
Ip

Oq,p

]
(µIp + Jp)[Ip Op,q]Q−1.

(In the special case that µ = 0 and G = I, we compute the Drazin inverse of F .)

Example 3.5. Let us determine the Drazin inverse of

F =


 2 0 0

−1 1 1
−1 −1 −1


 .

For this purpose, consider the system Fx′(t) = x(t) (or equivalently Fx k+1 = Ix k),
where detF = 0, and consider the matrix pencil given by

sF − I =


 2s− 1 0 0

−s s− 1 s

−s −s −s− 1


 .
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According to the detailed steps in the algorithm, firstly, we determine the Weierstrass
canonical form for the matrix pencil above. We obtain the nonsingular 3× 3 matrix

Q =


 1 0 0

−1 1 1
0 −1 0


, Q−1 =


 1 0 0

0 0 −1
1 1 1


 and J1

(
1
2

)
=

1
2
. Since index(F ) = 2,

rank(F ) = 2 and rank(F 2) = 1, we determine the index sets a = {i1, i2}, b = {j1, j2}.
According to the second step, we have

(I −X)[N |a] =

 1

0
0


 and (I −X)[b|N ] = [1 0 0],

and finally,

FD = Q

[
I1

O2,1

]
J1

(
1
2

)
[I1 O1,2]Q−1

=


 1 0 0

−1 1 1
0 −1 0





 1

0
0


 1
2
[1 0 0]


 1 0 0

0 0 −1
1 1 1


 =


 1

−1
0


 1
2
[1 0 0]

=
1
2


 1 0 0

−1 0 0
0 0 0


 .

Compare the result above with [2, pp. 126–127], [9, p. 204] and [11, pp. 187–188].

In the last part of this section, we present important core-nilpotent decomposition
method.

Theorem 3.6 (Core-Nilpotent Decomposition Method). [2] For F ∈ Cn×n with
Ind(F ) = k > 0, dim�(F k) = s, dimℵ(F k) = t (s+ t = n), there exists a nonsingular
matrix T such that

F = T

[
Cs Os,t

Ot,s Nt

]
T−1, (3.4)

where Cp is a p× p nonsingular matrix and where Nq is a q× q nilpotent matrix with
index k.

Theorem 3.7. Let F̂µ ∈ Cn×n with Ind(F̂µ) = k > 0, dim�(F̂ kµ ) = p, dimℵ(F̂ kµ )
= q (p+ q = n), and core-nilpotent decomposition

F̂µ = Tµ

[
Cp,µ Op,q

Op,q Nq,µ

]
T−1
µ (3.5)
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for nonsingular matrices Tµ, Cp,µ and a nilpotent matrix Nq,µ with index K, all of
whom depend on the choice of µ ∈ C. Then there exist nonsingular matrices

Pµ =
[
C−1
p,µ Op,q

Op,q (I − µNq,µ)−1

]
T−1
µ (µF +G)−1 (3.6)

and

Qµ = Tµ (3.7)

such that the Weierstrass canonical form derives if and only if

Nq,µ = (Iq + µHq)−1Hq (3.8)

and

Cp,µ = (µIp + Jp)−1. (3.9)

Proof. In order to construct the Weierstrass canonical form for the regular pencils,
we should calculate

Fw = PµFQµ =
[
C−1
p,µ Op,q

Op,q (Iq − µNq,µ)−1

]
T−1
µ (µF +G)−1FTµ

=
[
C−1
p,µ Op,q

Op,q (Iq − µNq,µ)−1

]
T−1
µ F̂µTµ

=
[
C−1
p,µ Op,q

Op,q (Iq − µNq,µ)−1

] [
Cp,µ Op,q

Op,q Nq,µ

]

=
[

Ip Op,q

Op,q (Iq − µNq,µ)−1Nq,µ

]

and

Gw = PµGQµ =
[
C−1
p,µ Op,q

Op,q (I − µNq,µ)−1

]
T−1
µ (µF +G)−1GTµ

=
[
C−1
p,µ Op,q

Op,q (I − µNq,µ)−1

]
T−1
µ ĜµTµ

=
[
C−1
p,µ Op,q

Op,q (I − µNq,µ)−1

] [
Ip − µCp,µ Op,q

Op,q Iq − µNq,µ

]

=
[
C−1
p,µ(Ip − µCp,µ Op,q

Op,q Iq

]
.
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Now, if we want to obtain the Weierstrass canonical form, then

(Iq − µNq,µ)−1Nq,µ = Hq ⇔ Nq,µ = (Iq − µNq,µ)Hq
⇔ Nq,µ = Hq(Iq + µHq,µ)−1 = (Iq + µHq,µ)−1Hq

since we have already shown that the matrices (Iq+µHq,µ)−1,Hq commute. Moreover,

C−1
p,µ(Ip − µCp,µ) = Jp ⇔ Ip − µCp,µ = Cp,µJp

⇔ Cp,µ(µIp + Jp) = Ip ⇔ Cp,µ = (µIp + Jp)−1.

Example 3.8. Consider the square system (1.1) (analogously with system (1.2))

Fx′(t) = Gx(t)

with

F =




0 1 −1 1
0 −2 2 −1
1 0 0 0
0 0 0 0


 and G =




1 0 0 1
1 −1 1 −1
0 1 0 0
1 0 0 0


 .

If we set µ = 1, then F +G =




−1 1 −1 2
1 −3 3 −2
1 1 0 0
1 0 0 0


 is invertible and

F̂1 = (F +G)−1F =




0 0 0 0
1 0 0 0
1 − 1

2
1
2 0

0 1
4 − 1

4
1
2


 .

Using the core-nilpotent decomposition method, we obtain the expression

F̂1 =




0 0 0 0
1 0 0 0
1 − 1

2
1
2 0

0 1
4 − 1

4
1
2


 = T =




1
2 − 1

4 0 0
0 1

2 0 0
0 0 0 1
0 0 0 0


 T−1

where T1 =



0 0 0 1
0 0 1 0
0 1 1 0
1 1 0 0


, T−1

1 =




0 1 −1 1
0 −1 1 0
0 1 0 0
1 0 0 0


, C2,1 =

[
1
2 − 1

4

0 1
2

]
and

N2,1 =
[
0 1
0 0

]
.
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Now, by using equations (3.6) and (3.7), we have

P1 =




[
2 1
0 2

]
O2,2

O2,2

[
1 1
0 1

]





0 1 −1 1
0 −1 1 0
0 1 0 0
1 0 0 0







−1 −3 3 −2
3 7 −7 4
0 −1 1 0
0 1 −1 1




=



1 0 0 1
1 1 0 0
0 0 1 0
0 0 0 1




and Q1 = T1 =




0 0 0 1
0 0 1 0
0 1 1 0
1 1 0 0


.

Finally, the Weierstrass canonical form derives. Specifically,

P1FQ1 =




1 0 0 1
1 1 0 0
0 0 1 0
0 0 0 1







0 1 −1 1
0 −2 2 −1
1 0 0 0
0 0 0 0







0 0 0 1
0 0 1 0
0 1 1 0
1 1 0 0




=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0


 = Fw

and

P1GQ1 =




1 0 0 1
1 1 0 0
0 0 1 0
0 0 0 1







−1 0 0 1
1 −1 1 −1
0 1 0 0
1 0 0 0







0 0 0 1
0 0 1 0
0 1 1 0
1 1 0 0




=




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = Gw.

Moreover, we can easily verify expressions (3.8) and (3.9).

N2,1 = (I2 +H2)−1H2 =
[
0 1
0 0

]
and H2 = (I2 −N2,1)−1N2,1 =

[
0 1
0 0

]

C2,1 = (I2 + J2(1))−1 =
[
2 1
0 2

]
and J2(1) = C−1

2,1 (I2 − C2,1) =
[
1 1
0 1

]
.
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