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M-COMMUTING MAPS ON TRIANGULAR AND STRICTLY TRIANGULAR
INFINITE MATRICES*
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Abstract. Let Noo(F') be the ring of infinite strictly upper triangular matrices with entries in an infinite field. The
description of the commuting maps defined on Noo (F'), i.e. the maps f: Noo(F') = Noo(F) such that [f(X), X] = 0 for every
X € Noo(F), is presented. With the use of this result, the form of m-commuting maps defined on T (F') — the ring of infinite
upper triangular matrices, i.e. the maps f: Too (F) = Too(F) such that [f(X), X™] = 0 for every X € Too(F), is found.
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1. Introduction. Denote by [a,b] the standard commutator of a, b, i.e. [a,b] = ab — ba. A map
f+ R — R is called m-commuting if [f(x),2™] = 0 for all € R. In particular, if m = 1, then f is simply
commuting. The study of such maps was inspired by Posner [17] who proved that if a prime ring has a
nonzero centralizing derivation, then it must be commutative. This theorem was generalized in many ways
(see for instance [5, 13, 15, 16, 19]). The first general result regarding commuting maps comes from Bresar
[7] who showed that additive commuting maps f over a simple unital ring R are of the form f(z) = Az + p(z)
for some A € Z(R) and additive 4 : R — Z(R) where Z(R) denotes the center of R. This form is usually
called a standard form for the commuting map. There are plenty of results on commuting maps, and the
reader is referred to the survey paper [8] for acquaintance with the development of the theory of commuting
maps and the various results that have been established.

In this article, we will be interested in upper triangular matrices.

Commuting maps on triangular algebras were first studied in [10], and further in [11, 12]. In 2000,
Beidar, Bresar, and Chebotar [3] proved that any linear commuting map on 7,.(F) — the algebra of r x r
upper triangular matrices over F, f: T,.(F) — T,.(F) is of the standard form: f(z) = Az + p(z) for some
A € F and linear map u: T,.(F) — Z(T,(F)). Recently, in [6], J. Bounds extended some of these results
to the case N,.(F) — the ring of strictly upper triangular matrices over a field F of characteristic zero. He
proved that if f: N.(F) — N,.(F) is a commuting linear map, then there exists A € F and an additive map
w: N (F) — Qsuch that f(z) = Az +p(x) for all x € N,.(F), where Q = {aeq ,_1 +be1,+cear : a,b,c € F}
and e; ; denotes the standard matrix unit.

Following these results, we would like to examine m-commuting additive maps defined on two rings of
N x N matrices. The first of them is the ring of all upper triangular matrices; the second one is its subring
consisting of all matrices with zero main diagonal. We will assume that these rings are defined over an
infinite field. Our rings will be denoted by T (F'), Noo(F'). First, we will prove the theorem that describes
commuting maps on N (F).
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THEOREM 1.1. Let F be an infinite field. If f: Noo(F) = Noo(F') is an additive, commuting map, then
there exists A € F' such that f(X) = AX for all X € Noo(F).

For some classes of rings R (see for instance [2, 4]), all m-commuting maps are commuting. For instance,
in [9], Bresar and Hvala studied 2-power commuting additive maps and showed that if R is a prime ring of
characteristic 2 with the extended centroid, then every such map is commuting. Later, Beidar, Fong, Lee
and Wong [4] (see also [2, 14]) extended this result to m-power commuting additive maps and proved that
if a ring R of characteristic either equal to 0 or greater than m, also with extended centroid, then each such
map is also commuting. However, it should be mentioned that this property does not hold for arbitrary R.
A nice example of a ring without this property is Ma(GF(2)) (see [14]). In this paper, we will show that if
F is a field of appropriate characteristic, then the m-commuting maps on T, (F') and the commuting maps
on N (F) coincide.

THEOREM 1.2. Let m be a natural number and let F be an infinite field whose characteristic is not a
divisor of m. If f: Too(F) — T (F) is an additive m-commuting map, then there exists A € F and an
additive map p: Too(F) = F such that f(X) = AX + u(X) I for all X € T (F).

2. Notation and basic information. Before we start, let us introduce the notation used in the paper.

For every ¢,j € N, we will use E;; for the matrix unit — the matrix with 1 in the position (¢, j) and 0 in
every other position. It is known that E;; - Ey = 0,1 Ey, where 0 is the Kronecker delta.

If A= lai;] € Too(F), then we will write
A= Z A4 Ez]
1<J
Note that this is not a sum, but only a notation.
The symbol I, will stand for the N x N identity matrix, whereas J,, will be equal to Zfil Eiit1.
By Doo(F), we will mean the subring of To,(F) consisting of all diagonal matrices.

Now let us present some auxiliary results that hold for UT, (F) and UT(F) — the rings of n x n, and
infinite, respectively, unitriangular matrices.

LEMMA 2.1 (Lemma 2.1, [18]). Suppose that K is an arbitrary field and n € N.

1. If g,h € UT,(K) are such that g; j+1 = h; 41 # 0 for all1 <i <n—1, then g and h are conjugates
in UT,(K).

2. If g,h € UToo(K) are such that g;iy1 = hiir1 7 0 for all 1 < 4, then g and h are conjugates in
UTw(K).

Here, UToo (F) (UT,,(F), respectively) is the group of all infinite (n X n) upper triangular matrices with
only 1’s in the main diagonal.

From the above lemma, we obtain the corollary.

COROLLARY 2.2. Let F' be a field. For every A =5
exists B € Too(F) such that B"YAB = J.

i<j ai;j By, where a; ;41 # 0 for all i € N, there
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Proof. Let A satisfy the assumption given in the lemma. First, let us notice that there exists By € D (F')
such that (By'AB)); 11 = 1 for all i € N. Namely, one can define By € Do (F) inductively:

(Bi)i1 =1, (B1)it1,i41 = (B1)ii - (Ajig1)" " fori>1.
The obtained matrix B L AB; fulfills the assumption of Lemma 2.1. Hence, there exists By € Too(F) such

that B;l(BflABl)BQ = Jo. Therefore, the desired matrix B equals B Bs. 0

3. Proof of Theorem 1.1. We start with characterizing centralizers of matrices of some simple form.

LEMMA 3.1. For any field F', we have C(Jx) = {221 «; (Joo)i Do € F}

Note that Y= @;(Joo)® is an abbreviation for Y oo Y72 | @; By k4. (For more information about writing
the matrices in the form of series, we recommend article [1].)

Proof. Suppose that BJo = JooB, where B = >
equations:

i< bijEij. From this equality, we obtain a system of

bnm—1—bnti,m =0 for all n,m € N.

From this system, it follows that for every ¢ € N, there exists o; € F such that for all & € N we have
bi ki = a;. Thus, B=3""72 a; (Js0)" 0

Lemma 3.1 can be extended to the following.

LEMMA 3.2. Let A = 3%, a; i+1FE; 11, where a; 41 # 0 for all i > 1. Then, C'(A) = {> 2, ;A" :
oy € F}

Proof. From Corollary 2.2, we know that there exists S € Do (F) such that A = SJ.S™!. Substituting
this relation to BA = AB, we get BSJ,,S™! = S5JsS7IB, and hence (S7!BS)Js = Jx(ST1BS). From
Lemma 3.1, we then get S™'BS = 377, a; (Jo)". Therefore, B = S [>°; @i(Jso)?] S~ Since S is diagonal,
for every n,m € N, we have

Bnm = Snn

Zai(t]oo)i] Spm = Snn * Om—n[(Joo)™ " Jnm * S
i=1 nm
= am—n[S(Joo)minsil]nma

so we can write that
B=> a;8(Jx)' S7' =D ai(S7wS) =D i (A)
i=1 i=1 i=1

This completes the proof. 0

PROPOSITION 3.3. Let F be an infinite field and let f: Noo(F) — Noo(F) be a commuting map. For
every x € F'\ {0}, there exists Ay € F such that f(zJs) = ApJoo-

Proof. Since F is infinite, there exists a set A = {«; : i € N} such that «; are pairwise different and
a; # x for all i € N.

Let Wy =Y .2, &;E; ;+1. Then, by Lemma 3.2

FOV) = b (Wh)', where W = asaiqs - cigh1Biih
i=1

=1
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Define W5 as Y .o, (z — ;) E; ;1. Using Lemma 3.2 again, we get
FWo) =Y e (Wa)',
i=1

where
oo

WE =Y (v —ai) (@ =) (@ = @ir1)Eippre
i=1

Since f is additive, we have f(W7) + f(Ws) = f(2Jx). We use Lemma 3.2 one more time, and we see
that

Z spak (Joo)k = Zbk (W1)k + Z Cr (Wz)k )

k=1 k=1 k=1
for some by, ci, s € F.

Expanding the above expressions, we obtain

o0 o o0 oo

k
S skt [ Bk | =D bk Y oicir - aipko1 Bk
k=1 =1 k=1 i=1

o0 oo
+ ch Z (x—a;) (. — (aip1)) - (& = Qigr—1) Eiitk,
k=1 =1
oo oo o0 o0
Z Z skt B v = Z Z braiiqr -+ Cipk—1 By gk
k=1 i=1 k=1 i=1
o0 o0
+ Z ch (x —a;) (z —aig1) (¢ — 1) Eiigr

k=1 1i=1

Comparing the coefficients from the positions (7,7 + k), we conclude that for i,k € N, the following
equations hold:

Skl’k = bkaiai+1 C Q-1 1 Ck (IE - ai) (117 - ai+1) te (IE - ai+k—1) .

In particular, for i = 1,2, 3, we get

sprk = brajag - o +cep(r —ay)(z —ag) - (7 — o)
(3.1) spa® = bpooas -+ g1 + Fep(@ — a2) (@ — ag) - (2 — apyr)

ska® = bragas - gy + cp(r — az)(r — ) - (T — apya).

For k =1, system (3.1) takes the form:

s1x=biag +e1(x — aq)
S1T = b1a2 + Cl(SC — 042)

s1x =bias + a1 (z — ag),

so we can conclude that b; = ¢;.
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Consider now k£ > 2. From equating the first two and the last two equations of (3.1), we get

(3.2) {bk(ak+1 —aj)ag = cp(aprr —ar)(@ —ag) - (2 — ag)

b2 — a2)as -+ app1 = cp(pqo — a2)(z — az) - (@ — qgy1)-

Suppose that by # 0. Then, according to (3.2) and the assumptions, ¢y is also nonzero. Thus, we should

have o v
E+1 — Q1
o = (g1 — a2)z = 0.
(65 r — Q2
However, as all the elements «; are pairwise different, this would imply that £ = 0 - contrary to the

assumption. Thus, we must have by = 0 = ¢, for k£ > 2. This yields

f({EJOO) = Z sixi (JOO)Z = Zbl (I/Vl)Z + ZCi (WQ)Z = b1W1 + 61W2
i=1 i=1 i=1
by (W1 +Wa) = bixd. a

Using the lemmas about conjugacy, we can now prove the following.

LEMMA 3.4. Assume that F is an infinite field and that f: Noo(F) = Noo(F) is a commuting map. If
A= ZKJ- a;;Eij, where a; 11 # 0 for all i € N, then there exists Ay € F' such that f(A) = A4 A.

Proof. From Corollary 2.2, we know that A = T~ '2J, T for some T € T, (F) and some z € F \ {0}.
We define h : Noo (F) — Noo(F) by h(X) =T f(T1XT)T~1.

Applying the commutativity of f, we see that

0 TIf(T'XT), T ' XT|T~*
T(f(T'XT)T'XT — T 'XTf(T-*XT))T~*

= TFT'XT)T-'X — XTF(T'XT)T~" = [h(X), X].

Hence, h is commuting and h(xJw) = AzJo by Proposition 3.3. Then,

TAT ' =TfT HTAT DT " = h(zJs) = Mag Joo = Ay TAT .

Multiplying the left and right sides by T~! and T, respectively, yields f(A) = As A. |

Now, we wish to extend Lemma 3.4 to all elements of N, (F'). In order to do so, let us introduce the set
that we will denote by S:
S = {B = (b”) S NOO(F) : bi,i+1 7& 0} .

This set has a very nice property that is established below.

LEMMA 3.5. Let F be a field. Every element of Noo(F) can be written as a sum of at most two elements
of S.

Proof. If a; ;41 # 0 for all i € N, then A is in S, so there is nothing to prove. If A is not in S, then we
can define B and Bs as follows:

(Bl)ij = o . (B2)ij = .
ai; ifj>i+1, 0 otherwise,
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where b; is a nonzero element of F' distinct from a; ;41. Obviously, since |F| > 2, for every a; 41, such b;
exists. One can see that By, By are in S, and A = By + B>, so we are done. 0

Now, we can present the proof of the main theorem.

Proof of Theorem 1.1. First take noncommuting A, B € S. Then, by Lemma 3.4, f(A) = A A4, f(B) =
ApB for some Ay, Ap € F. Since f is commuting and additive, the following holds:

0 [f(A+ B), A+ B] = [AaA+ ApB, A+ B] = [\u4, B] + \pB, A]

= (Aa—Ap)[A B

As A, B do not commute, we must have A4 = Ag. Consider now A and B from S that do commute. Then,
there exists C' € S such that the pairs A, C' and A, B are not commuting, so we have Ay = A¢ and Ap = A¢.
Thus, there exists A € F' such that f(4) = AA for all A € S. Now, we use Lemma 3.5 and additivity, and
we get f(X) =AX for all X € Noo(F). 0

4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. First, we will make some observation
about triangular matrices. After that, we will make use of the results from previous section.

LEMMA 4.1. Let m € N and let F be a field whose characteristic is not a divisor of m. If f: Too(F) —
T (F) is an m-commuting additive map, then f(Z(To(F))) C Z(Ts(F)).

Proof. Clearly, since f is additive, f(0) = 0.

Let o, 8 € F\ {0}. Moreover, let i < j. From
J(Bloo + aEij)(Bloc + aEij)™ = (Bloo + aEij)™ f(Bloc + alyj),
it follows
[f (Bl + 0Eij)|(B" Ioo + maf™ ' Ejj) = (B 1o + ma™ " Eyj)[f (Bl + )],

and further
[(Bloo + alij)Eij = Eij f(Bloo + alyj).

Obviously, for every nonzero 6 € F', we also have
f((B+0)I + aEij)Eij = Eij f((B+0)Ix + aEjj).
The difference of the two above equations yields

(4'3) f(BIoo)Eij = Eijf(/BIoo)'

As (4.3) holds for any 4, j, we have f(81x) C Z(Tw(F)). O
LEMMA 4.2. Let m € N, m > 2, and let F be a field such that char(F) { m and F' contain at least m+ 1
elements. If f: Too (F) = Too(F) is an additive m-commuting map with f(Z(To(F))) C Z(Too(F)), then f
1§ commuting.
Proof. Let a1 = 1, ag, ..., a,, be distinct nonzero elements of F'. For every ¢, 1 < ¢ < m, and every
X € T (F), we have
[f(X 4+ ails), (X + a;ls)™] = 0.
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As f is additive and f(Z(Too(F))) € Z(Two(F)), the latter implies
[f(X), (X +a;il)™ =0  forall<i<m.

Expansion of (X + a;1)™ yields

Z(Z)ark[f(X),Xk]zo forall 1 <i<m.
k=1

Using the matrix notation, we can rewrite the above system as follows:

1 1 1 1 (T)[f(X),X] 0
ap™ ay T oy e ao| | (DIFCO.X| |0
agn—l OégL_Q gl_‘?’ a3 (T?:L) [f(X)7 X3] = 0
R i s |V

Since the coefficient matrix of the above system is the Vandermonde matrix, and o; # «;, its determinant
is nonzero. Thus,

(Tweox (3)ueoxr - (Mueo.xm] =oo o
Since char(F) f m, we get now [f(X), X] = 0. O

Note that analogously as in the previous section, the following is true.

LEMMA 4.3. For an arbitrary field F', we have
Cro(r)(Jo) = {Zaiﬂ;@ Doy € F} .
i=0

Lemma 4.3 can be used to prove the following proposition.

PROPOSITION 4.4. Let F be an infinite field. If f : Too(F) — Too(F) is an additive commuting map,
then there exists 6 € F' such that for every X € Noo(F) f(X) =6X + pxIe for some ux € F.

Proof. From Lemma 4.3, we know that f(Js) =Y + Ajls, where Y = 3" aqJi, € Noo(F).

By Corollary 2.2 for any A € Ny (F) satisfying condition a;;4+1 # 0, there exists T such that A =
T~ 1JoT. Consider the map h: Too(F) = Too(F), h(X) = Tf(T~*XT)T~L. For this h, we have

[hW(X),X]=TfT'XT)T~'- X — X -Tf(T-'XT)T~*
= T[f(T~'XT), T-*XT|T,

i.e. h is commuting. This means that
FAA) =T hI )T =T Y + psl )T =T YT + pjls.

Since T € Noo(F), the matrix T='YT is in Noo(F) as well. Thus, f(A) = B + pjls for some B € Noo(F).
Now notice that, by Lemma 3.5, for every A € Noo(F), we have f(A) = B+ uals for some B € N (F).
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Consider now the map f|y_(r). From the above result, it follows that this map can be written as a
sum f|n_(r) = g1 + g2, where if f(A) = B + pals, then g1(A) = B and g2(A) = pals. Thus, g; is a
commuting map defined on Ny, (F'). From Theorem 1.1, we know that each such map is given by the formula
g1(X) = 6X for some fixed § € F'. Hence, f|n_(r)(A) =04+ pals. d

Now, we will focus on the subset of Too(F), namely Do, (F).

PROPOSITION 4.5. Let F' be an infinite field. If f: Too(F) = Too(F) is an additive commuting map, then
there exists 6 € F such that for every X =% 22 x;E;; with x; # x; fori # j, andx; # 0, f(X) = 6x +puxIs
for some pux € F.

Proof. We use our result from Proposition 4.4, namely, the fact that f(Joo) = 0Joo + ptslso-

As f is commuting, we have
[f(X 4+ Jx), X + Jx] =0.

Since [f(X), X] = [f(Joo)s Joo] = [H710, X] = 0, the above equality simplifies to
(f(X) - 5X)Joo = Joo(f(X) - 5X)
Thus, for some a; € F (i € N), we have f(X) =6X + > .2, a;J. . Clearly, f(X) commutes with X, so

<5JX + i aiJéo> X=X <6JX + i aiJéo> ,

=0 =0

and therefore
o0 o0 o0 o0
ZaiJéo . szEu = inEii . ZaiJ;o.
i=0 i=1 i=1 i=0
From the above equality, we get that
ATl = TpQk_np for all n < k.

Since xj # x,, the latter forces o; = 0 for all 4. This way we obtain f(X) = 0X + apls. 0

To generalize Proposition 4.5 to all diagonal matrices, let us introduce the set, denoted by D, that is
the subset of D, (F') consisting of all matrices with diagonal entries that are distinct nonzero elements of
F. For this set, the following lemma holds.

LEMMA 4.6. Let F' be an infinite field. For every X € Dy (F), there exist A, B € D such that X = A+ B.
Proof. Assume that X = > 7, z;E; and

I
7
8
8
&

A= iaiEii, X
i=1

The elements a; can be found inductively as follows.

Element a; can be simply any element of F' that is not equal to 0 and a;. Suppose now that ay, as, ...,
a, are already chosen. Then, a, 41 can be any element of F' satisfying conditions

ant1 # 0,  Qpy1 # Ty,
Upi1 — Tpyl 7 Q1 — T1,02 — T2,03 — 23,...,0n — Tp.

Since F' is infinite, it is possible to find such a;,41. 0
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Now, we will prove our second main result.

Proof of Theorem 1.2. From Proposition 4.4, we know that for every X € N (F), we have f(X) =
AX + px oo, whereas from Propostition 4.5 and Lemma 4.6, it follows that f(Y) =Y + py I

Let X, Y be arbitrary noncommuting elements of N (F'), Do (F'), respectively. From [f(X +Y), X +
Y] = 0, additivity of f, and the form of f, one gets (A — 6)[X,Y]. Since X, ¥ do not commute, this forces
A =0. Thus, f(X) = AX + px I for every X € Noo(F) U Do (F).

Now, it suffices to notice that as every element of T, (F') is a sum of one element from N (F) and
one from Do (F), for any Z € Too(F'), we have f(Z) = AZ 4 pzls. The latter can be written as f(Z) =
AZ + u(Z)I. Moreover, since f is additive, p is additive as well. d
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