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THE LEAST LAPLACIAN EIGENVALUE OF THE UNBALANCED UNICYCLIC

SIGNED GRAPHS WITH K PENDANT VERTICES∗

QIAO GUO† , YAOPING HOU‡ , AND DEQIONG LI§

Abstract. Let Γ = (G, σ) be a signed graph and L(Γ) = D(G) − A(Γ) be the Laplacian matrix of Γ, where D(G) is the

diagonal matrix of vertex degrees of the underlying graph G and A(Γ) is the adjacency matrix of Γ. It is well-known that

the least Laplacian eigenvalue λn is positive if and only if Γ is unbalanced. In this paper, the unique signed graph (up to

switching equivalence) which minimizes the least Laplacian eigenvalue among unbalanced connected signed unicyclic graphs

with n vertices and k pendant vertices is characterized.
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1. Introduction. All graphs in this paper are simple and connected. A signed graph Γ is a pair (G, σ),

where G = (V (G), E(G)) is a graph and σ : E(G) → {+1,−1} is a sign function on the edges of G. The

graph G is called the underlying graph of Γ. The sign of a cycle C is given by sign(C) =
∏
e∈C σ(e). A cycle

whose sign is +1 (resp., −1) is called positive (resp., negative). A signed graph Γ is balanced if all cycles of

Γ are positive. Otherwise Γ is unbalanced. If all edges in Γ are positive (resp., negative), then Γ is denoted

by (G,+) (resp., (G,−)), and we say that such a signature is all-positive (resp., all-negative).

Most of the concepts defined for (unsigned) graphs can be directly extended to signed graphs. For

example, the degree dv of a vertex v in a signed graph Γ is the number of edges incident with vertex v. A

pendant vertex is a vertex of degree one. Furthermore, a subgraph of Γ is a subgraph of G with the signature

induced by σ, which is of course a signed graph. Thus, if v ∈ V (G), then Γ− v denotes the signed subgraph

having G − v as the underlying graph, while its signature is the restriction from E(G) to E(G − v). The

order of Γ is the order of G and it is denoted by |Γ|. A signed graph is called k-cyclic if its underlying graph

is k-cyclic, which means that |E| = |G|+ k − 1. The girth g(Γ) of Γ is the length of the shortest cycle in Γ.

For a signed graph Γ = (G, σ) and a subset U ⊂ V (G), Γ[U ] denotes the induced subgraph by U and

Γ− U = Γ[V (G) \ U ]. We also write Γ− Γ[U ] instead of Γ− U . Let ΓU be the signed graph obtained from

Γ by reversing the signature of the edges in the cut [U, V (G) \ U ]. That is, σΓU (e) = −σΓ(e) for each edge

e between U and V (G) \ U , and σΓU (e) = σΓ(e) otherwise. The signed graph ΓU is said to be switching

equivalent to Γ. For a comprehensive bibliography on signed graphs, see [14].

The adjacency matrix of Γ is A(Γ) = (aσij), where aσij = σ(ij) if vi is adjacent to vj , and aσij = 0 otherwise,

where σ(ij) is the signature of the edge vivj . The Laplacian matrix of Γ is L(Γ) = D(G)−A(Γ), whereD(G) is

the diagonal matrix of vertex degrees. The adjacency (resp., Laplacian) matrices of two switching equivalent

signed graphs are similar. In fact, any switching arising from vertex subset U can be described by a diagonal
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matrix SU = diag(si) having si = 1 for each i ∈ U and si = −1 otherwise. Hence, A(Γ) = SUA(ΓU )SU
and L(Γ) = SUL(ΓU )SU . Thus, by studying the spectrum of a signed graph, we are really studying all the

signed graphs in a switching isomorphism class. The eigenvalues λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ) of L(Γ) are

called the Laplacian eigenvalues of a signed graph Γ. There have been many investigations of the area of

the Laplacian eigenvalues of signed graphs, one can see [2, 3, 8, 9, 10, 15, 16].

Let U(n, g, k, σ̄) (3 ≤ g ≤ n− k) denote the set of unbalanced unicyclic signed graphs of order n having

girth g and k pendant vertices such that there is a unique negative edge and that edge belongs to the

cycle. We denote λ(Γ) as the least Laplacian eigenvalue of a sign graph Γ. In this paper, we investigate the

signed graph Γ ∈ U(n, g, k, σ̄) which has the smallest least Laplacian eigenvalue. For the analogous results

for signless Laplacian eigenvalues of non-bipartite unicyclic graphs with k pendant vertices see [11]. The

remainder of the paper is organized as follows: In Section 2, we introduce some basic facts, and in Section 3,

we identify the structure of unbalanced unicyclic singed graph with n vertices and k pendant vertices which

arrives the smallest least Laplacian eigenvalue.

2. Preliminaries. For a signed graph Γ with n vertices, let x = (x1, x2, . . . , xn)T be an eigenvector

with respect to a Laplacian eigenvalue λ, we also call xi the value on the vertex i. The following expression

is known as the eigenvector equation λx = Lx of x at vertex v:

(2.1) λxv = dvxv −
∑
u∼v

σ(uv)xu,

where u ∼ v means that vertex u is adjacent to vertex v.

The matrix L(Γ) = D(G) − A(Γ) is symmetric and positive semi-definite. Furthermore, the following

expression is well known:

(2.2) xTL(Γ)x =
∑

vw∈E(G)

(xv − σ(vw)xw)2.

The interlacing theorem, applied to signed graphs, gives the following.

Lemma 2.1. ([2]) Let Γ be an unbalanced unicyclic signed graph, Γ−e denotes the signed graph obtained

from Γ by deleting the edge e. Then we have

λn(Γ− e) ≤ λn(Γ) ≤ λn−1(Γ− e) ≤ λn−1(Γ) ≤ · · · ≤ λ1(Γ− e) ≤ λ1(Γ).

If a signed graph Γ is balanced, then the spectrum of Γ is exactly that of G, and the least nonzero eigen-

value of Γ is equal to λn−1(Γ) = α(G), which is the algebraic connectivity of G. The algebraic connectivity

of a graph has received much attention. The eigenvectors corresponding to the algebraic connectivity, called

Fiedler vectors, are also of interest and are investigated. See [6, 7] for more details.

Let Γ = (G, σ) ∈ U(n, g, k, σ̄), and the vertices of Γ be labelled as v1, v2, . . . , vn, with all edges positive

except a negative edge e = vi1vi2 on the cycle. Let Γ′ be a copy of Γ, in which we replace the label of vertex

vi by ui for each i = 1, . . . , n. Let W be a (unsigned) unicyclic graph on 2n vertices which is obtained from

the union (Γ− e)∪ (Γ′ − e′) by adding two edges vi1ui2 and vi2ui1 , where the edge e′ = ui1ui2 (see Figure 1

on the right). Ordering the vertices of W as v1, v2, . . . , vn, u1, u2, . . . , un. Then we can obtain the following

lemma by methods similar to [4].
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Figure 1. Γ and W = (Γ− e) ∪ (Γ̂− ê) + vi1ui2 + vi2ui1 .

Lemma 2.2. λ(Γ) = α(W ). Moreover, if x ∈ Rn is an eigenvector of Γ corresponding to λ(Γ), then

(xT ,−xT )T ∈ R2n is an eigenvector of W corresponding to α(W ).

Proof. Let x ∈ Rn be an eigenvector of Γ corresponding to λ(Γ). Then it is easy to verify that

(xT ,−xT )T ∈ R2n is an eigenvector of W corresponding to eigenvalue λ(Γ). Noting that W is unsigned

and connected, so λ(Γ) ≥ α(W ) > 0.

Next we will show that λ(Γ) = α(W ). Let (yT , zT )T ∈ R2n be an eigenvector of W corresponding to

α(W ), where y, z ∈ Rn. We can check that (zT , yT )T is also an eigenvector of W corresponding to α(W ).

Thus, if y 6= z, then (yT − zT , zT − yT )T is also an eigenvector of W respect to α(W ). Hence, y − z is an

eigenvector of Γ corresponding to the eigenvalue α(W ) by (2.1), and hence, α(W ) ≥ λ(Γ). If y = z, then y is

an eigenvector of G corresponding to the eigenvalue α(W ). Note that the edge vi1vi2 in G is positive and now

is denoted it by ẽ, and G− ẽ = Γ− e. By Lemma 2.1, we have α(W ) ≥ α(G) ≥ α(G− ẽ) = α(Γ− e) ≥ λ(Γ).

So we have α(W ) ≥ λ(Γ) in both cases. Hence, λ(Γ) = α(W ), and (xT ,−xT )T is an eigenvector of W

corresponding to α(W ) by (2.1), namely, (xT ,−xT )T is a Fiedler vector of W .

A path in G is pure provided it does not contain more than two cut vertices in any block of G. The

following important lemma is from [7]:

Lemma 2.3. ([7]) Let G be a graph and y be a Fiedler vector of G. Then exactly one of the following

two cases occurs:

Case A: There is a single block E0 in G which contains both positively and negatively valued vertices.

Each other block has either vertices with positive valuation only, or vertices with negative valuation only, or

vertices with zero valuation only. Every pure path P starting in E0 and containing just one vertex k in E0

has the property that the values at the cut vertices contained in P form either an increasing, or decreasing,

or a zero sequence along this path according to whether yk > 0, yk < 0 or yk = 0; in the last case all vertices

in P have value zero.

Case B: No block of G contains both positively and negatively valuated vertices. There exists a single

vertex z which has value zero and has a neighbour with a non-zero valuation. This vertex is a cut vertex.

Each block contains (with the exception of z) either vertices with positive valuation only, or vertices with

negative valuation only, or vertices with zero valuation only. Every pure path P starting in z has the property

that the values at its cut vertices either increase, and then all values in vertices of P are (with the exception

of z) positive, or decrease, and then all values (up to that of z) are negative, or all values in vertices of P
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are equal to zero. Every path containing both positively and negatively valuated vertices passes through z.

The following lemma gives a property of the eigenvector respect to the least Laplacian eigenvalue λ(Γ)

of the signed graph Γ.

Lemma 2.4. Let Γ ∈ U(n, g, k, σ̄). Let x = (xv1
, xv2

, . . . , xvn)T ∈ Rn be an eigenvector of Γ correspond-

ing to the least Laplacian eigenvalue λ(Γ). Then there exists a vertex w on the cycle in Γ with xw 6= 0, and

for each vertex v on the cycle with dv ≥ 3, every path P which starts from v and contains no vertices of the

cycle except v has the property that the values at the vertices of P form either an increasing, or decreasing,

or a zero sequence along this path according to whether xv > 0, xv < 0, or xv = 0; in the last case all vertices

in P have value zero.

Proof. Suppose that the vertices of Γ are labelled as v1, v2, . . . , vn and the cycle in Γ is C. Let W

be an all positive unicyclic graph which is obtained from Γ as defined in Lemma 2.2. By Lemma 2.2,

ξ = (xT ,−xT )T ∈ R2n is an eigenvector of W corresponding to α(W ).

Assume that the values of the vertices on the cycle C are all zero. Then the values on the cycle in W

given by ξ are also zero. If W is the first case of Lemma 2.3, then the single block of W with both positively

and negatively valuated vertices is an edge not on the cycle. Without loss of generality, let this edge be

vk1
vk2

. Observing the structures of W and ξ, the edge uk1
uk2

has the same property as that of vk1
vk2

, which

is a contradiction. If W is the second case of Lemma 2.3, there is a unique vertex which has value zero and

is adjacent to a non-zero valuated vertex. Without loss of generality, let the unique zero valuated vertex be

vk1 and let vk2 be the non-zero valued vertex adjacent to vk1 . Consequently, uk1 is a zero valued vertex and

is adjacent to non-zero valued vertex uk2
, which is also a contradiction.

By the above discussion, there exists a vertex w on the cycle C with xw 6= 0. By (2.1) and from the

structures of W and ξ, the cycle of W has both positive and negative valued vertices. Hence, W is the first

case of Lemma 2.3 and the result follows from Case A of Lemma 2.3.

Let Un(σ̄) denote the class of unbalanced unicyclic signed graphs of order n (note, σ̄ denotes an unbal-

anced signature). The following lemmas will be used in the next section.

Lemma 2.5. ([3]) For a signed graph Γ = (G, σ) ∈ Un(σ̄), let C̄ be the cycle in Γ, and λ(Γ) be the least

Laplacian eigenvalue of Γ with corresponding eigenvector x = (xv1
, xv2

, . . . , xvn)T . Assume that there is a

tree T attached to C̄ and a vertex u ∈ T such that xu = 0. Then xv = 0 for every vertex v ∈ T .

Lemma 2.6. ([3]) Let Γ = (G, σ) ∈ Un(σ̄) and x = (xv1
, xv2

, . . . , xvn)T be an eigenvector corresponding

to the least Laplacian eigenvalue λ(Γ) of Γ and let C̄ be the cycle in Γ. If σ is taken such that all edges are

positive with the exception of the edge pq which minimizes |xpxq|, then x can be chosen so that:

• xv ≥ 0 for all v ∈ Γ;

• if xpxq = 0 then either xq = 0 and xv > 0 for all v ∈ V (C̄ − q) or xp = 0 and xv > 0 for all v ∈ V (C̄ − p);
• if xpxq > 0 then xv > 0 for all v ∈ Γ.

For an unbalanced unicyclic signed graph Γ, by appropriate switching one can take the only negative

edge to be anywhere on the cycle. So, in view of Lemma 2.6, the least Laplacian eigenvalue λ(Γ) of Γ has a

nonnegative eigenvector.
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3. Main results. Now we discuss the minimal least Laplacian eigenvalue among signed graphs among

∈ U(n, g, k, σ̄). Let Γ̂ ∈ U(n, g, k, σ̄) be a signed graph minimizing the least Laplacian eigenvalue, and λ̂

denote the least Laplacian eigenvalue of Γ̂. In this section, we will identify the structure of Γ̂.

Lemma 2.1 can be used to prove the following simple observation which proof is analogous in [5].

Lemma 3.1. Let Γ ∈ U(n, g, k, σ̄) and C̄ denote the unbalanced signed cycle with g vertices. Then

λ(Γ) ≤ λ(C̄), with equality if and only if Γ is an unbalanced cycle on g vertices.

Lemma 3.2. Let Γ ∈ U(n, g, k, σ̄) with the cycle C̄g and T be the unique tree attaching on C̄g with root

vi. Suppose that x is a nonnegative eigenvector of Γ corresponding to λ(Γ). Then xvi > 0.

Proof. If xvi = 0, then xv = 0 for all v ∈ V (T ) by Lemma 2.4. Without loss of generality, the vertices of

C̄g are written as v1, v2, . . . , vg. So x̄ = (xv1 , xv2 , . . . , xvg )> is an eigenvector of the cycle C̄g corresponding

to the eigenvalue λ(Γ). Thus, λ(Γ) ≥ λ(C̄g). This contradicts Lemma 3.1.

The coalescence of G1 and G2 denoted by G1(v1) � G2(v2), is obtained from G1 and G2 by identifying

v1 ∈ V (G1) with v2 ∈ V (G2), see [13]. For convenience, we use G1(v1) � G2(v2, v3) � G3(v4) to denote the

coalescence of G1(v1) �G2(v2) and G3 by identifying v3 ∈ V (G2) and v4 ∈ V (G3). We use S(k,v) to denote a

star with k vertices and center vertex v. and P(v1,vn) is a path of length n−1 from vertex v1 to vertex vn with

consecutive vertices v1, v2, . . . , vn. In particular, the path P(v1,vn) is just the vertex v1 in the case of v1 = vn.

Additionally, dG(v) denotes the degree of vertex v in the graph G and NG(v) denotes the neighborhood of

vertex v in the graph G.

Lemma 3.3. Let Γ = Γ1(v2) � Γ2(u) and Γ∗ = Γ1(v1) � Γ2(u) be signed graphs, where Γ1 is a connected

signed graph containing distinct vertices v1, v2, and Γ2 is a connected graph containing a vertex u. If x

is a nonnegative eigenvector of Γ corresponding the least Laplacian eigenvalue λ(Γ) and xv1
≥ xv2

, then

λ(Γ∗) ≤ λ(Γ) with equality only if xv1
= xv2

and dΓ2
(u)xu =

∑
v∈NΓ2

(u) xv.

Proof. Without loss of generality, assume that x is a unit vector. Let x̃ be a vector defined on the

vertices of Γ∗ such that

x̃v =

{
xv, if v ∈ V (Γ1);

xv + xv1
− xv2

, otherwise.

There is a one-to-one correspondence between the edges set E(Γ) and E(Γ∗), that is, the edge vv2 ∈
E(Γ2) of Γ corresponds to the edge vv1 ∈ E(Γ2) of Γ∗ for each v ∈ NΓ2

(u), and every common edge of

E(Γ) and E(Γ∗) corresponds to itself. Note that σ(vv2) = 1 for each edge vv2 ∈ E(Γ) with v ∈ V (Γ2), then

(xv−σ(vv2)xv2)2 = (x̃v−σ(vv1)x̃v1)2. On the other hand, it follows that (xv−σ(vv′)xv′)
2 = (x̃v−σ(vv′)x̃v′)

2

for each edge vv′ ∈ E(Γ2 − u) ∪ E(Γ1). Hence, we have

x̃TL(Γ∗)x̃ =
∑

vv′∈E(Γ∗)

(x̃v − σ(vv′)x̃v′)
2 =

∑
vv′∈E(Γ)

(xv − σ(vv′)xv′)
2 = xTL(Γ)x = λ(Γ).

Furthermore, as x is nonnegative and xv1 ≥ xv2 ,

‖x̃‖2 =
∑

v∈V (Γ∗)

x̃2
v =

∑
v∈V (Γ1)

x2
v +

∑
v∈V (Γ2)\u

(xv + xv1 − xv2)2 ≥
∑

v∈V (Γ)

x2
v = 1.

By the above discussion, we have

λ(Γ∗) ≤ ‖x̃‖−2x̃TL(Γ∗)x̃ ≤ x̃TL(Γ∗)x̃ = λ(Γ).
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The equality λ(Γ∗) = λ(Γ) holds if and only if x̃T x̃ = 1 and x̃ is an eigenvector corresponding to λ(Γ∗).

The later means that xv1
= xv2

and dΓ2
(u)xu =

∑
v∈NΓ2

(u) xv by the eigenvector equations of x and x̃ at

vertex v2

λ(Γ)xv2 = dΓ1(v2)xv2 + dΓ2(u)xu −
∑

v∈NΓ1
(v2)

σ(vv2)xv −
∑

v∈NΓ2
(u)

xv

and

λ(Γ∗)x̃v2 = dΓ1(v2)x̃v2 −
∑

v∈NΓ1
(v2)

σ(vv2)x̃v.

Let C̄g be the cycle with length g in the unbalanced unicyclic signed graph Γ and Ti be the attaching

tree with root vi ∈ V (C̄g). We call a subgraph of Ti a main path if it is a path from the root vi to vertex

vit , where vit ∈ V (Ti) is at the largest distance from vi. Note that the main path of Ti is not unique.

Lemma 3.4. Let Γ̂ ∈ U(n, g, k, σ̄) be a signed graph minimizing the least Laplacian eigenvalue and let

C̄g be the cycle in Γ̂, and the vertices of C̄g be written as v1, v2, . . . , vg (3 ≤ g ≤ n− k). Then there is just

one tree attaching on the cycle C̄g in Γ̂, with root vi on the cycle. Moreover, dvi = 3 if 3 ≤ g < n− k.

Figure 2. Γ̂ and Γ̃ = Γ̂− vivi1 + vi1vjt−1 .

Proof. For the sake of contradiction, suppose that there exist trees Ti and Tj attaching on the cycle C̄g
of Γ̂ with roots vi and vj , respectively such that vi ∼ vi1 and vj ∼ vj1(see the left graph of Figure 2). Let

x = (xv1 , xv2 , . . . , xvn)> be a nonnegative unit eigenvector corresponding to the least Laplacian eigenvalue

λ̂ of Γ̂. By Lemma 2.6, there is at most one vertex v ∈ V (C̄g) such that xv = 0. Thus, without loss of

generality, we can assume that xvj ≥ xvi > 0 or xvj > xvi = 0. Let PTj
denote a main path between vertices

vj and vjt , and vjt−1
∼ vjt , where vjt−1

∈ V (PTj
). Note that it is possible that vj = vjt−1

. We construct a

new signed graph Γ̃ as follows: Γ̃ = Γ̂− vivi1 + vi1vjt−1
, and the edge vi1vjt−1

is positive (see the right graph

of Figure 2). The number of pendant vertices in Γ̃ is also k, and hence, Γ̃ ∈ U(n, g, k, σ̄).

Let y be a vector defined on the vertices of Γ̃ such that

{
yv = xv + xvjt−1

− xvi , for v ∈ V (Ti);

yv = xv, for v ∈ V (Γ̂)\V (Ti).
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By (2.2), we have yTL(Γ̃)y = xTL(Γ̂)x, and

yT y =
∑

v∈V (Γ̂)

y2
v

=
∑

v∈V (Γ̂−Ti)

x2
v +

∑
v∈V (Ti)

(xv + xvjt−1
− xvi)2

=
∑

v∈V (Γ̂−Ti)

x2
v +

∑
v∈V (Ti)

x2
v + 2(xvjt−1

− xvi)
∑

v∈V (Ti)

xvit +
∑

v∈V (Ti)

(xvjt−1
− xvi)2

= 1 + 2(xvjt−1
− xvi)

∑
v∈V (Ti)

xv + |Ti|(xvjt−1
− xvi)2.

By Lemma 2.4, we have 0 < xvj < · · · < xvjt−1
< xvjt as xvj > 0. So whether xvj ≥ xvi > 0, or

xvj > xvi = 0, we have xvjt−1
> xvi . Thus, y>y > 1, and

λ̂ = xTL(Γ̂)x = yTL(Γ̃)y ≥ yT yλ(Γ̃) > λ(Γ̃).

This contradicts with the minimality of λ̂.

Next, we will show that dvi = 3 if g < n − k. Suppose to the contrary that there are trees T1, T2

attaching at vertex vi ∈ V (C̄g). Let vi ∼ vi11 and vi21 ∼ vi, where vi11 ∈ V (T1) and vi21 ∈ V (T2).

Moreover, without loss of generality, assume that vi11
is not a pendant vertex since g < n − k. By Lemma

3.2 we have xvi > 0. Then by Lemma 2.4, it follows xvi11
> xvi . So, we can see the signed graph

C̄g(vi) � T1(vi, vi11
) � T2(vi) ∈ U(n, g, k, σ̄) has smaller least Laplacian eigenvalue than Γ̂ by using Lemma

3.3.

Lemma 3.5. Let Γ̂ ∈ U(n, g, k, σ̄) be a signed graph minimizing the least Laplacian eigenvalue and 3 ≤
g ≤ n− k. Then Γ̂ = C̄g(vg) � P(vg,vn−k)(vg, vn−k) � S(k+1,vn−k)(vn−k) (see Figure 3).

Figure 3. The signed graph Γ̂(g) = Cg(vg) � P(vg,vn−k)
(vg , vn−k) � S(k+1,vn−k)

(vn−k).

Proof. From Lemma 3.4, the result is obvious if g = n − k. Now, we will prove the result in the case

of g < n − k. If Γ̂ = C̄g(vg) � P(vg,vn−k)(vg, vn−k) � S(k+1,vn−k)(vn−k), the result is obvious. Otherwise,

let x be a nonnegative eigenvector of Γ̂ corresponding λ(Γ̂) and T be the attaching tree on the cycle in

Γ̂, with root vg. Suppose that Ti is a main path with consecutive vertices vi, vi+1, . . . vj and Tvk is the

subtree of T on Ti, with root vk for some i < k < j − 1. By Lemma 2.4, it follows xvj−1 > xvk . So,

(Γ̂ − Tvk)(vj−1) � Tvk(vk) has a smaller least Laplacian eigenvalue than Γ̂ by using Lemma 3.4. Repeating

this process until Γ̂ = C̄g(vg) � P(vg,vn−k)(vg, vn−k) � S(k+1,vn−k)(vn−k).
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For fixed integers n and k, let Γ̂(g) = C̄g(vg)�P(vg,vn−k)(vg, vn−k)�S(k+1,vn−k)(vn−k) for g = 3, 4, . . . , n−
k.

Lemma 3.6. The least Laplacian eigenvalue of Γ̂(g) has multiplicity 1.

Proof. Let v be the unique vertex lying on C̄g with degree 3. Assume, to the contrary, x and y are two

linear independent eigenvectors of Γ̂(g) corresponding to λ(Γ̂(g)). There exists a nonzero linear combination

of x and y such that its value at v equals zero, which contradict Lemma 3.2.

Lemma 3.7. Let 3 ≤ g ≤ n− k and Γ̂(g) ∈ U(n, g, k, σ̄) be defined as above (see Figure 3). Then

λ(Γ̂(n− k)) > λ(Γ̂(n− k − 1)) > · · · > λ(Γ̂(4)) > λ(Γ̂(3)).

Figure 4. The signed graph Γ̂(g − 1).

Proof. Let C̄g be the cycle of the signed graph Γ̂(g). Up to switching equivalence, suppose that v1vg is

the negative edge of Γ̂(g). Suppose 4 ≤ g ≤ n− k. Deleting v1vg of Γ̂(g) and adding a negative edge v1vg−1

in Γ̂(g), we obtain an unbalanced unicyclic signed graph Γ̂(g − 1), which belongs to U(n, g − 1, k, σ̄) (see

Figure 4).

Let x = (xv1 , xv2 , . . . , xvn)T be any unit eigenvector of Γ̂(g) corresponding to λ(Γ̂(g)).

Let y be a vector defined on the vertices of Γ̂(g) such that

{
yvj = −xvg−j

, j = 1, 2, . . . , g − 1;

yvj = xvj , j = g, g + 1, . . . , n.

It is easy to check that y>L(Γ̂(g−1))y = x>L(Γ̂(g))x = λ(Γ̂(g)). By the Rayleigh-Ritz theorem, this implies

that y is an eigenvector of L(Γ̂(g − 1)) corresponding to λ(Γ̂(g)). As the multiplicity of λ(Γ̂(g)) is one and

xvg 6= 0, without loss generality, we assume that xvg > 0. Thus, y = x, and hence,

(3.3) xvj = −xvg−j
, for j = 1, 2, . . . , g − 1.

By Lemma 2.4 and (3.3), xvg+1 > xvg and xvg−1 = −xv1 . We also find that xvg 6= xvg−1 . Otherwise,

3xvg > (3− λ(Γ̂(g)))xvg = −xv1 + xvg−1 + xvg+1 = 2xvg−1 + xvg+1 > 3xvg if g < n− k, and also if g = n− k



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 390-399, June 2020.

Q. Guo, Y. Hou, and D. Li 398

Figure 5. Γ̂(3) = C3(v3) � P(v3,vn−k)
(v3, vn−k) � Sk+1,vn−k

(vn−k).

then

(k + 2)xvg > [(k + 2)− λ(Γ̂(g))]xvg = −xv1 + xvg−1 +

n∑
k=g+1

xvk

= 2xvg−1
+

n∑
k=g+1

xvk

> (k + 2)xvg .

In either case, we reach a contradiction. Hence,

(3.4) (xv1
+ xvg )2 = (xvg − xvg−1

)2 > 0 = (xvg−1
+ xv1

)2.

By (2.2) and (3.4),

λ(Γ̂(g)) =
∑

vivj∈E(Γ̂(g))

(xvi − σ(vivj)xvj )2

=
∑

vivj∈E(Γ̂(g))−v1vg

(xvi − σ(vivj)xvj )2 + (xv1
+ xvg )2

>
∑

vivj∈E(Γ̂(g))−v1vg

(xvi − σ(vivj)xvj )2 + (xv1 + xvg−1)2

=
∑

vivj∈E(Γ̂(g−1))

(xvi − σ(vivj)xvj )2

≥ λ(Γ̂(g − 1)).

Therefore,

λ(Γ̂(n− k)) > λ(Γ̂(n− k − 1)) > · · · > λ(Γ̂(4)) > λ(Γ̂(3)).

The main result of this paper now follows readily from Lemma 3.7.

Theorem 3.8. The unique, up to switching equivalence, unbalanced unicyclic signed graph Γ ∈
U(n, g, k, σ̄) which minimizes the least Laplacian eigenvalue is Γ̂(3), namely, C̄3(v3) � P(v3,vn−k)(v3, vn−k) �
Sk+1,vn−k

(vn−k) (see Figure 5).
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