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ON INEQUALITIES FOR A-NUMERICAL RADIUS OF OPERATORS∗

PINTU BHUNIA† , KALLOL PAUL† , AND RAJ KUMAR NAYAK†

Abstract. Let A be a positive operator on a complex Hilbert space H. Inequalities are presented concerning upper and

lower bounds for A-numerical radius of operators, which improve on and generalize the existing ones, studied recently in [A.

Zamani. A-Numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl., 578:159–183, 2019.]. Also,

some inequalities are obtained for B-numerical radius of 2× 2 operator matrices, where B is the 2× 2 diagonal operator matrix

whose diagonal entries are A. Further, upper bounds are obtained for A-numerical radius for product of operators, which

improve on the existing bounds.
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1. Introduction. Let H be a complex Hilbert space with usual inner product 〈·, ·〉 and ‖ · ‖ be the

norm induced from 〈·, ·〉. Let B(H) denote the C∗-algebra of all bounded linear operators on H. Throughout

this article, we assume I and O are the identity operator and the zero operator on H, respectively. A

selfadjoint operator A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H, and is called strictly positive

if 〈Ax, x〉 > 0 for all (0 6=)x ∈ H. For a positive (strictly positive) operator A, we write A ≥ 0 (A > 0).

Let B =

(
A O

O A

)
. Then B ∈ B(H⊕H) is positive or strictly positive if A is positive or strictly positive,

respectively. Let us fix the alphabets A and B for positive operator on H and H⊕H, respectively. Clearly, A

induces a positive semidefinite sesquilinear form 〈·, ·〉A : H×H → C defined as 〈x, y〉A = 〈Ax, y〉 for x, y ∈ H.

Let ‖ · ‖A denote the seminorm on H induced from the sesquilinear form 〈·, ·〉A, that is, ‖x‖A =
√
〈x, x〉A

for all x ∈ H. It is easy to verify that ‖ · ‖A is a norm if and only if A is a strictly positive operator. Also,

(H, ‖ · ‖A) is complete if and only if the range R(A) of A is closed in H. By R(T ) we denote the norm

closure of R(T ) in H. For T ∈ B(H), A-operator seminorm of T , denoted as ‖T‖A, is defined as

‖T‖A = sup
x∈R(A),x 6=0

‖Tx‖A
‖x‖A

.

Here, we note that for a given T ∈ B(H), if there exists c > 0 such that ‖Tx‖A ≤ c‖x‖A for all x ∈ R(A)

then ‖T‖A < +∞. Again A-minimum modulus of T , denoted as mA(T ) (see [26]), is defined as

mA(T ) = inf
x∈R(A),x 6=0

‖Tx‖A
‖x‖A

.

We set BA(H) = {T ∈ B(H) : ‖T‖A < +∞}. It is easy to verify that BA(H) is not generally a subalgebra of

B(H) and ‖T‖A = 0 if and only if ATA = 0. For T ∈ B(H), an operator R ∈ B(H) is called an A-adjoint of

T if for every x, y ∈ H such that 〈Tx, y〉A = 〈x,Ry〉A, that is, AR = T ∗A, where T ∗ is the adjoint of T .
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For any operator T ∈ B(H), A-adjoint of T may or may not exist. In fact, an operator T ∈ B(H) may

have one or more than one A-adjoint operators, also it may have none. By Douglas Theorem [12], we have

that an operator T ∈ B(H) admits A-adjoint if and only if

R(T ∗A) ⊆ R(A).

Now we consider an example that A =

(
0 0

0 1

)
and T =

(
0 1

1 0

)
on C2. Then we see that R(T ∗A) =

{(x, 0) : x ∈ C} and R(A) = {(0, x) : x ∈ C}. So, by Douglas Theorem [12], we conclude that T have no

A-adjoint.

Let BA(H) be the collection of all operators in BA(H) which admits A-adjoint. Note that BA(H) is a

subalgebra of B(H) which is neither closed nor dense in B(H). For T ∈ B(H), A-adjoint operator of T is

written as T ]A . It is well known that T ]A = A†T ∗A where A† is the Moore-Penrose inverse of A, (see [20]). It

is useful that if T ∈ BA(H) then AT ]A = T ∗A. An operator T ∈ BA(H) is said to be A-selfadjoint operator

if AT is selfadjoint, that is, AT = T ∗A and it is called A-positive if AT ≥ 0. For A-positive operator T we

have

‖T‖A = sup{〈Tx, x〉A : x ∈ H, ‖x‖A = 1}.

An operator U ∈ BA(H) is said to be A-unitary if U ]AU = (U ]A)]AU ]A = PA, PA is the orthogonal projection

onto R(A). Here we note that if T ∈ BA(H) then T ]A ∈ BA(H), (T ]A)]A = PATPA. Also T ]AT , TT ]A are

A-selfadjoint and A-positive operators and so

‖T ]AT‖A = ‖TT ]A‖A = ‖T‖2A = ‖T ]A‖2A.

Also, for T, S ∈ BA(H), (TS)]A = S]AT ]A , ‖TS‖A ≤ ‖T‖A‖S‖A and ‖Tx‖A ≤ ‖T‖A‖x‖A for all x ∈ H. For

further details we refer the reader to [1, 2, 3]. For an operator T ∈ BA(H), we write ReA(T ) = 1
2 (T + T ]A)

and ImA(T ) = 1
2i (T − T

]A).

For T ∈ BA(H), A-numerical radius of T , denoted as wA(T ), is defined as (see [4])

wA(T ) = sup{|〈Tx, x〉A| : x ∈ H, ‖x‖A = 1}.

Also, for T ∈ BA(H), A-Crawford number of T , denoted as cA(T ) (see [26]), is defined as

cA(T ) = inf{|〈Tx, x〉A| : x ∈ H, ‖x‖A = 1}.

For T ∈ BA(H), it is well-known that A-numerical radius of T is equivalent to A-operator seminorm of T ,

(see [25]), satisfying the following inequality:

1

2
‖T‖A ≤ wA(T ) ≤ ‖T‖A.

Over the years many mathematicians have studied numerical radius inequalities in [5, 7, 8, 9, 13, 14,

15, 16, 17, 18, 21, 22, 23, 24]. Recently, Zamani [25] have studied A-numerical radius and computed some

inequalities for A-numerical radius. In this paper, we compute some inequalities for B-numerical radius of

2 × 2 operator matrices which generalize and improve on the existing inequalities. Also, we obtain some

inequalities for A-numerical radius of operators in BA(H) which improve on the existing inequalities in [25].

Further, we obtain A-numerical radius bounds for sum of product of operators in BA(H) which improve on

the existing bounds.
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2. A-numerical radius inequalities for operators in BA(H). We begin this section with the fol-

lowing three results proved by Zamani [25].

Lemma 2.1. Let T ∈ BA(H) be an A-selfadjoint operator. Then

wA(T ) = ‖T‖A.

Lemma 2.2. Let T ∈ BA(H). For every θ ∈ R,

wA
(
ReA(eiθT )

)
=
∥∥ReA(eiθT )

∥∥
A
.

Lemma 2.3. Let T ∈ BA(H). Then

wA(T ) = sup
θ∈R

∥∥ReA(eiθT )
∥∥
A

and wA(T ) = sup
θ∈R

∥∥ImA(eiθT )
∥∥
A
.

Next we compute B-numerical radius for some 2× 2 operator matrices. First we note that the operator

T = (Tij)2×2 is in BB(H ⊕ H) if the operator Tij (for i, j = 1, 2) are in BA(H), and in this case (see [10,

Lemma 3.1]), T ]B = (T ]Aji )2×2. We now prove the following lemma.

Lemma 2.4. Let X,Y ∈ BA(H). Then the following results hold:

(i) wB

(
X O

O Y

)
= max {wA(X), wA(Y )} .

(ii) If A > 0, then wB

(
O X

Y O

)
= wB

(
O Y

X O

)
.

(iii) If A > 0, then for any θ ∈ R, wB
(

O X

eiθY O

)
= wB

(
O X

Y O

)
.

(iv) If A > 0, then wB

(
X Y

Y X

)
= max {wA(X + Y ), wA(X − Y )} .

In particular, wB

(
O Y

Y O

)
= wA(Y ).

Proof. (i) Let T =

(
X O

O Y

)
and u = (x, y) ∈ H ⊕H with ‖u‖B = 1, i.e., ‖x‖2A + ‖y‖2A = 1. Now,

|〈Tu, u〉B | ≤ |〈Xx, x〉A|+ |〈Y y, y〉A|
≤ wA(X)‖x‖2A + wA(Y )‖y‖2A
≤ max {wA(X), wA(Y )} .

Taking supremum over ‖u‖B = 1, we get

wB(T ) ≤ max {wA(X), wA(Y )} .

Suppose u = (x, 0) ∈ H ⊕H where ‖x‖A = 1. Then

|〈Tu, u〉B | = |〈AXx, x〉| = |〈Xx, x〉A|.

Taking supremum over ‖x‖A = 1, we get

sup
‖x‖A=1

|〈Tu, u〉B | = wA(X),
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and so, we have wB(T ) ≥ wA(X). Similarly, if we take v = (0, y) ∈ H ⊕ H with ‖y‖A = 1, then we can

show that wB(T ) ≥ wA(Y ). Therefore, wB(T ) ≥ max {wA(X), wA(Y )} . This completes the proof of Lemma

2.4 (i).

(ii) The proof follows from the observation that wB(U ]BTU) = wB(T ) (see [10, Lemma 3.8]) if U is an

B-unitary operator on H⊕H, here we take U =

(
O I

I O

)
.

(iii) As in (ii), we now take U =

(
I O

O e
iθ
2 I

)
.

(iv) Let U = 1√
2

(
I I

−I I

)
and T =

(
X Y

Y X

)
. Then an easy calculation we have

U ]BTU =

(
X − Y O

O X + Y

)
.

Using Lemma 2.4 (i) and wB(U ]BTU) = wB(T ), we get

wB(T ) = max {wA(X + Y ), wA(X − Y )} .

Taking X = O, we get

wB

(
O Y

Y O

)
= wA(Y ).

This completes the proof of Lemma 2.4 (iv).

Next we prove the following important lemma for A-positive operators.

Lemma 2.5. Let X,Y ∈ BA(H) be A-positive. If X − Y is A-positive, then

‖X‖A ≥ ‖Y ‖A.

Proof. From the definition of A-positive operator we have , for all x ∈ H

〈(X − Y )x, x〉A ≥ 0

⇒ 〈Xx, x〉A ≥ 〈Y x, x〉A
⇒ wA(X) ≥ 〈Y x, x〉A.

Taking supremum over ‖x‖A = 1, we get

wA(X) ≥ wA(Y ).

Since X,Y are A-selfadjoint operators, so ‖X‖A ≥ ‖Y ‖A.

We are now in a position to prove the following theorem.

Theorem 2.6. Let X,Y ∈ BA(H). Then

w2
B

(
O X

Y O

)
≥ 1

4
max

{
‖XX]A + Y ]AY ‖A, ‖X]AX + Y Y ]A‖A

}
,

w2
B

(
O X

Y O

)
≤ 1

2
max

{
‖XX]A + Y ]AY ‖A, ‖X]AX + Y Y ]A‖A

}
.
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Proof. Let T =

(
O X

Y O

)
, Hθ = ReA(eiθT ) and Kθ = ImA(eiθT ). Then, from an easy calculation, we

have

H2
θ +K2

θ =
1

2

(
M O

O N

)
,

where M = XX]A + Y ]AY , N = X]AX + Y Y ]A .

Taking norm on both sides and then using Lemma 2.3, we get

1

2

∥∥∥∥( M O

O N

)∥∥∥∥
B

= ‖H2
θ +K2

θ‖B ≤ ‖Hθ‖2B + ‖Kθ‖2B ≤ 2w2
B(T ).

Therefore, we get
1

2
max

{
‖M‖A, ‖N‖A

}
≤ 2w2

B(T ).

This completes the proof of the first inequality.

Again, from H2
θ + K2

θ = 1
2

(
M O

O N

)
, we have H2

θ − 1
2

(
M O

O N

)
= −K2

θ ≤ 0. Therefore, H2
θ ≤

1
2

(
M O

O N

)
. Using Lemma 2.5, we get

‖Hθ‖2B ≤
1

2

∥∥∥∥( M O

O N

)∥∥∥∥
B

=
1

2
max

{
‖M‖A, ‖N‖A

}
.

Taking supremum over θ ∈ R, we get

w2
B(T ) ≤ 1

2
max

{
‖M‖A, ‖N‖A

}
.

This completes the proof of the second inequality of the theorem.

Next we state the corollary, the proof of which follows easily by considering X = Y = T and A > 0 in

Theorem 2.6.

Corollary 2.7. Let T ∈ BA(H) and A > 0. Then

1

4
‖TT ]A + T ]AT‖A ≤ w2

A(T ) ≤ 1

2
‖TT ]A + T ]AT‖A.

Remark 2.8. (i) Kittaneh [18, Theorem 1] proved that if T ∈ B(H), then

1

4
‖TT ∗ + T ∗T‖ ≤ w2(T ) ≤ 1

2
‖TT ∗ + T ∗T‖,

which follows easily from Corollary 2.7 by taking A = I.

(ii) Zamani [25, Theorem 2.10] proved that

w2
A(T ) ≤ 1

2
‖TT ]A + T ]AT‖A,

which clearly follows from the inequality obtained in Corollary 2.7.
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Next we prove the following theorem.

Theorem 2.9. Let X,Y ∈ BA(H). Then w4
B

(
O X

Y O

)
≥ 1

16 max
{
‖P‖A, ‖Q‖A

}
and

w4
B

(
O X

Y O

)
≤ 1

8
max

{
‖XX]A + Y ]AY ‖2A + 4w2

A(XY ), ‖X]AX + Y Y ]A‖2A + 4w2
A(Y X)

}
,

where P = (XX]A + Y ]AY )2 + 4(ReA(XY ))2, Q = (X]AX + Y Y ]A)2 + 4(ReA(Y X))2.

Proof. Let T =

(
O X

Y O

)
, Hθ = ReA(eiθT ) and Kθ = ImA(eiθT ). Then, we get

H4
θ +K4

θ =
1

8

(
P0 O

O Q0

)
,

where P0 = (XX]A +Y ]AY )2 +4(ReA(e2iθXY ))2, Q0 = (X]AX+Y Y ]A)2 +4(ReA(e2iθY X))2. Taking norm

on both sides and using Lemma 2.3, we get

1

8

∥∥∥∥( P0 O

O Q0

)∥∥∥∥
B

= ‖H4
θ +K4

θ‖B ≤ ‖Hθ‖4B + ‖Kθ‖4B ≤ 2w4
B(T ).

Therefore, we get
1

8
max

{
‖P0‖A, ‖Q0‖A

}
≤ 2w4

B(T ).

This holds for all θ ∈ R, so taking θ = 0, we get

1

8
max

{
‖P‖A, ‖Q‖A

}
≤ 2w4

B(T ).

This completes the proof of the first inequality of the theorem.

Again, from H4
θ + K4

θ = 1
8

(
P0 O

O Q0

)
, we have H4

θ − 1
8

(
P0 O

O Q0

)
= −K4

θ ≤ 0. Therefore, H4
θ ≤

1
8

(
P0 O

O Q0

)
. Using Lemma 2.5, we get

‖Hθ‖4B ≤
1

8

∥∥∥∥( P0 O

O Q0

)∥∥∥∥
B

=
1

8
max

{
‖P0‖A, ‖Q0‖A

}
.

Therefore, using Lemma 2.3, we get

‖Hθ‖4B ≤
1

8
max

{
‖XX]A + Y ]AY ‖2A + 4w2

A(XY ), ‖X]AX + Y Y ]A‖2A + 4w2
A(Y X)

}
.

Taking supremum over θ ∈ R and using Lemma 2.3, we get

w4
B(T ) ≤ 1

8
max

{
‖XX]A + Y ]AY ‖2A + 4w2

A(XY ), ‖X]AX + Y Y ]A‖2A + 4w2
A(Y X)

}
.

This completes the proof of the second inequality of the theorem.

Now, taking X = Y = T (say) and A > 0 in the above Theorem 2.9, we get the following inequality.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 143-157, March 2020.

149 On Inequalities for A-numerical Radius of Operators

Corollary 2.10. Let T ∈ BA(H) where A > 0. Then

1

16
‖(TT ]A + T ]AT )2 + 4(ReA(T 2))2‖A ≤ w4

A(T )

≤ 1

8
‖TT ]A + T ]AT‖2A +

1

2
w2
A(T 2).

Remark 2.11. (i) In [5, Theorem 2.11] we proved that if T ∈ B(H) then

1

16
‖TT ∗ + T ∗T‖2 +

1

4
m
(
(Re(T 2))2

)
≤ w4(T )

≤ 1

8
‖TT ∗ + T ∗T‖2 +

1

2
w2(T 2),

which follows easily from Corollary 2.10 by taking A = I.

(ii) Zamani [25, Theorem 2.10] proved that

w2
A(T ) ≤ 1

2
‖TT ]A + T ]AT‖A.

Since wA(T 2) ≤ w2
A(T ) (see [19, Proposition 3.10]), so wA(T 2) ≤ 1

2‖TT
]A + T ]AT‖A. Therefore, the right

hand inequality obtained in Corollary 2.10 improves on the inequality obtained by Zamani [25, Theorem

2.10].

We next prove the following theorem.

Theorem 2.12. Let T ∈ BA(H) where A > 0. Then

w4
A(T ) ≤ 1

4
w2
A(T 2) +

1

8
wA(T 2P + PT 2) +

1

16
‖P‖2A,

where P = T ]AT + TT ]A .

Proof. From Lemma 2.3, we have wA(T ) = supθ∈R ‖Hθ‖A where Hθ = ReA(eiθT ). Then

Hθ =
1

2
(eiθT + e−iθT ]A)

⇒ 4Hθ
2 = e2iθT 2 + e−2iθT ]A

2
+ P

⇒ 16Hθ
4 =

(
e2iθT 2 + e−2iθT ]A

2
+ P

)(
e2iθT 2 + e−2iθT ]A

2
+ P

)
=
(
e2iθT 2 + e−2iθT ]A

2)2
+
(
e2iθT 2 + e−2iθT ]A

2)
P

+P
(
e2iθT 2 + e−2iθT ]A

2)
+ P 2

= 4
(
ReA(e2iθT 2)

)2
+ 2ReA(e2iθ(T 2P + PT 2)) + P 2

⇒ ‖Hθ
4‖A ≤

1

4

∥∥ReA(e2iθT 2)
∥∥2
A

+
1

8

∥∥ReA(e2iθ(T 2P + PT 2))
∥∥
A

+
1

16
‖P‖2A

≤ 1

4
w2
A(T 2) +

1

8
wA(T 2P + PT 2) +

1

16
‖P‖2A.

Taking supremum over θ ∈ R, we get

w4
A(T ) ≤ 1

4
w2
A(T 2) +

1

8
wA(T 2P + PT 2) +

1

16
‖P‖2A.
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Remark 2.13. Using the inequality in Corollary 3.3, it is easy to see that ifA > 0 then wA(T 2P+PT 2) ≤
2wA(T 2)‖P‖A. In case A > 0, we would like to remark that the inequality obtained in Theorem 2.12

improves on the inequality [25, Theorem 2.11] obtained by Zamani. As for numerical example, if we consider

T =

 0 1 0

0 0 2

0 0 0

 and A =

 1 0 0

0 1 0

0 0 1

 on C3, then by simple computation we have

1

4
w2
A(T 2) +

1

8
wA(T 2P + PT 2) +

1

16
‖P‖2A =

39

16
<

1

16

(
‖P‖A + 2wA(T 2)

)2
=

49

16
.

Now we prove the following theorem.

Theorem 2.14. Let T ∈ BA(H) where A > 0. Then

w3
A(T ) ≤ 1

4
wA(T 3) +

1

4
wA(T 2T ]A + T ]AT 2 + TT ]AT ).

Moreover, if T 2 = 0, then wA(T ) = 1
2

√
‖TT ]A + T ]AT‖A, and if T 3 = 0, then w3

A(T ) = 1
4wA(T 2T ]A +

T ]AT 2 + TT ]AT ).

Proof. From Lemma 2.3, we have wA(T ) = supθ∈R ‖Hθ‖A where Hθ = ReA(eiθT ). Then,

Hθ =
1

2
(eiθT + e−iθT ]A)

⇒ 4Hθ
2 = e2iθT 2 + e−2iθT ]A

2
+ T ]AT + TT ]A

⇒ 8H3
θ =

(
e2iθT 2 + e−2iθT ]A

2
+ T ]AT + TT ]A

)
(eiθT + e−iθT ]A)

⇒ H3
θ =

1

4
ReA(e3iθT 3) +

1

4
ReA(eiθ(T 2T ]A + T ]AT 2 + TT ]AT )

⇒ ‖H3
θ‖A ≤

1

4
‖ReA(e3iθT 3)‖A +

1

4
‖ReA(eiθ(T 2T ]A + T ]AT 2 + TT ]AT ))‖A

≤ 1

4
wA(T 3) +

1

4
wA(T 2T ]A + T ]AT 2 + TT ]AT ).

Taking supremum over θ ∈ R, we get the desired inequality.

If T 2 = 0, then 4Hθ
2 = T ]AT + TT ]A , and so, wA(T ) = 1

2

√
‖TT ]A + T ]AT‖A.

If T 3 = 0, then H3
θ = 1

4ReA(eiθ(T 2T ]A + T ]AT 2 + TT ]AT )), and so, w3
A(T ) = 1

4wA(T 2T ]A + T ]AT 2 +

TT ]AT ).

Remark 2.15. Here we would like to remark that the bound obtained in Theorem 2.14 improves on

the existing upper bound in [25, Corollary 2.8] when A > 0. Note that if T 2 = 0 then wA(T ) =
1
2

√
‖TT ]A + T ]AT‖A. But the converse is not true, that is, wA(T ) = 1

2

√
‖TT ]A + T ]AT‖A does not al-

ways imply T 2 = O. As for example, we consider T =

 0 2 0

0 0 0

0 0 1

 and A =

 1 0 0

0 1 0

0 0 1

 on C3. Then

we see that wA(T ) = 1
2

√
‖TT ]A + T ]AT‖A = 1 but T 2 =

 0 0 0

0 0 0

0 0 1

 6= O.

Next we prove the following inequality.
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Theorem 2.16. Let T ∈ BA(H). Then for each r ≥ 1,

w2r
A (T ) ≤ 1

2
wrA(T 2) +

1

4

∥∥(T ]AT )r + (TT ]A)r
∥∥
A
.

Proof. From Lemma 2.3, we get wA(T ) = supθ∈R ‖Hθ‖A, where Hθ = ReA(eiθT ). Now,

Hθ =
1

2
(eiθT + e−iθT ]A)

⇒ 4Hθ
2 = e2iθT 2 + e−2iθT ]A

2
+ T ]AT + TT ]A

⇒ Hθ
2 =

1

2
ReA(e2iθT 2) +

1

4
(T ]AT + TT ]A)

⇒ ‖Hθ
2‖A ≤

1

2

∥∥ReA(e2iθT 2)
∥∥
A

+
1

4

∥∥T ]AT + TT ]A
∥∥
A

For r ≥ 1, tr and t
1
r are convex and concave functions, respectively, and using that, we get

‖Hθ
2‖rA ≤

{
1

2

∥∥ReA(e2iθT 2)
∥∥
A

+
1

2

∥∥∥∥T ]AT + TT ]A

2

∥∥∥∥
A

}r
≤ 1

2

∥∥ReA(e2iθT 2)
∥∥r
A

+
1

2

∥∥∥∥T ]AT + TT ]A

2

∥∥∥∥r
A

≤ 1

2

∥∥ReA(e2iθT 2)
∥∥r
A

+
1

2

∥∥∥∥∥
(

(T ]AT )r + (TT ]A)r

2

) 1
r

∥∥∥∥∥
r

A

=
1

2

∥∥ReA(e2iθT 2)
∥∥r
A

+
1

2

∥∥∥∥ (T ]AT )r + (TT ]A)r

2

∥∥∥∥
A

≤ 1

2
wrA(T 2) +

1

4

∥∥(T ]AT )r + (TT ]A)r
∥∥
A
.

Taking supremum over θ ∈ R, we get

w2r
A (T ) ≤ 1

2
wrA(T 2) +

1

4

∥∥(T ]AT )r + (TT ]A)r
∥∥
A
.

Remark 2.17. Here, we would like to remark that if we take r = 1 in the above Theorem 2.16, we get

the inequality [25, Theorem 2.11] proved by Zamani.

Now we obtain a lower bound for A-numerical radius.

Theorem 2.18. Let T ∈ BA(H) where A > 0. Then

w4
A(T ) ≥ 1

4
C2
A(T 2) +

1

8
cA(T 2P + PT 2) +

1

16
‖P‖2A,

where P = T ]AT + TT ]A , CA(T ) = inf‖x‖A=1 infφ∈R ‖ReA(eiφT )x‖A.

Proof. We know that wA(T ) = supφ∈R ‖Hφ‖A, where Hφ = ReA(eiφT ). Let x be a unit vector in H and

θ be a real number such that

e2iθ〈(T 2P + PT 2)x, x〉A = |〈(T 2P + PT 2)x, x〉A|.
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Then,

Hθ =
1

2
(eiθT + e−iθT ]A)

⇒ 4Hθ
2 = e2iθT 2 + e−2iθT ]A

2
+ P

⇒ 16Hθ
4 =

(
e2iθT 2 + e−2iθT ]A

2
+ P

)(
e2iθT 2 + e−2iθT ]A

2
+ P

)
=
(
e2iθT 2 + e−2iθT ]A

2)2
+
(
e2iθT 2 + e−2iθT ]A

2)
P

+P
(
e2iθT 2 + e−2iθT ]A

2)
+ P 2

= 4
(
ReA(e2iθT 2)

)2
+ 2ReA(e2iθ(T 2P + PT 2)) + P 2

⇒ 16w4
A(T ) ≥ ‖4

(
ReA(e2iθT 2)

)2
+ 2ReA(e2iθ(T 2P + PT 2)) + P 2‖A

≥ |〈
(
4
(
ReA(e2iθT 2)

)2
+ 2ReA(e2iθ(T 2P + PT 2)) + P 2

)
x, x〉A|

= |4〈
(
ReA(e2iθT 2)

)2
x, x〉A + 2ReA(e2iθ〈(T 2P + PT 2)x, x〉A) + 〈P 2x, x〉A|

= 4‖
(
ReA(e2iθT 2)

)
x‖2A + 2|〈(T 2P + PT 2)x, x〉A|+ ‖Px‖2A

≥ 4‖
(
ReA(e2iθT 2)

)
x‖2A + 2cA(T 2P + PT 2) + ‖Px‖2A

⇒ 16w4
A(T ) ≥ 4C2

A(T 2) + 2cA(T 2P + PT 2) + sup
‖x‖A=1

‖Px‖2A

= 4C2
A(T 2) + 2cA(T 2P + PT 2) + ‖P‖2A

⇒ w4
A(T ) ≥ 1

4
C2
A(T 2) +

1

8
cA(T 2P + PT 2) +

1

16
‖P‖2A.

This completes the proof.

Remark 2.19. It is clear that 1
4C

2
A(T 2)+ 1

8cA(T 2P +PT 2)+ 1
16‖P‖

2
A ≥ 1

16‖T
]AT +TT ]A‖2A ≥ 1

16‖T‖
4
A.

So, if A > 0, then the inequality obtained in Theorem 2.18 is better than the first inequality in [25, Corollary

2.8], obtained by Zamani.

3. A-numerical radius inequalities for product of operators in BA(H). We begin this section

with the following A-numerical radius inequality for sum of product of operators.

Theorem 3.1. Let P,Q,X, Y ∈ BA(H) where A > 0. Then

wA(PXQ]A ±QY P ]A) ≤ 2‖P‖A‖Q‖AwB
(
O X

Y O

)
.

In particular,

wA(PXQ]A ±QXP ]A) ≤ 2‖P‖A‖Q‖AwA(X).

Proof. Let C =

(
P Q

O O

)
and Z =

(
O X

Y O

)
. Then, from an easy calculation, we get

CZC]B =

(
PXQ]A +QY P ]A O

O O

)
.
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Therefore,

wA(PXQ]A +QY P ]A) = wB

(
PXQ]A +QY P ]A O

O O

)
= wB(CZC]B ), using Lemma 2.4 (i)

≤ ‖C‖2BwB(Z), using [25, Lemma 4.4]

= ‖PP ]A +QQ]A‖AwB(Z)

≤ (‖P‖2A + ‖Q‖2A)wB(Z).

Replacing P and Q by tP and 1
tQ, respectively, with t > 0 in the above inequality, we get

wA(PXQ]A +QY P ]A) ≤
(
t4‖P‖2A + ‖Q‖2A

t2

)
wB(Z).

Note that

min
t>0

t4‖P‖2A + ‖Q‖2A
t2

= 2‖P‖A‖Q‖A,

and so,

wA(PXQ]A +QY P ]A) ≤ 2‖P‖A‖Q‖AwB
(
O X

Y O

)
.

Replacing Y by −Y in the above inequality and using Lemma 2.4 (iii), we get

wA(PXQ]A −QY P ]A) ≤ 2‖P‖A‖Q‖AwB
(
O X

Y O

)
.

Taking X = Y and using Lemma 2.4 (iv), we get

wA(PXQ]A ±QXP ]A) ≤ 2‖P‖A‖Q‖AwA(X).

This completes the proof of the theorem.

Remark 3.2. Here, we note that the inequality

wA(PXQ]A +QY P ]A) ≤ 2‖P‖A‖Q‖AwB
(
O X

Y O

)
in Theorem 3.1 holds also when A ≥ 0.

Considering X = Y = T (say), P = I in Theorem 3.1, we get the following inequality.

Corollary 3.3. Let T,Q ∈ BA(H), where A > 0. Then

wA(TQ]A ±QT ) ≤ 2wA(T )‖Q‖A.

Next we prove the following lemma, the idea of which is based on the result [6, Lemma 3] proved by

Bernau and Smithes.

Lemma 3.4. Let X,T, Y ∈ BA(H) where A > 0. Then, for all x ∈ H,

|〈X]ATY x, x〉A|+ |〈Y ]ATXx, x〉A| ≤ 2wA(T )‖Xx‖A‖Y x‖A.
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Proof. Let x ∈ H and θ, φ be real numbers such that eiφ〈Y ]ATXx, x〉A = |〈Y ]ATXx, x〉A|,
e2iθ〈e−iφX]ATY x, x〉A = |〈e−iφX]ATY x, x〉A| = |〈X]ATY x, x〉A|. Then, for a non-zero real number λ, we

have

2e2iθ〈TY x, eiφXx〉A + 2eiφ〈TXx, Y x〉A = 〈eiθT
(
λeiθY x+

1

λ
eiφXx

)
, λeiθY x+

1

λ
eiφXx〉A

−〈eiθT
(
λeiθY x− 1

λ
eiφXx

)
, λeiθY x− 1

λ
eiφXx〉A

⇒2e2iθ〈e−iφX]ATY x, x〉A + 2eiφ〈Y ]ATXx, x〉A = 〈eiθT
(
λeiθY x+

1

λ
eiφXx

)
, λeiθY x+

1

λ
eiφXx〉A

−〈eiθT
(
λeiθY x− 1

λ
eiφXx

)
, λeiθY x− 1

λ
eiφXx〉A

⇒2
∣∣〈X]ATY x, x〉A

∣∣+ 2
∣∣〈Y ]ATXx, x〉A∣∣ = 〈eiθT

(
λeiθY x+

1

λ
eiφXx

)
, λeiθY x+

1

λ
eiφXx〉A

−〈eiθT
(
λeiθY x− 1

λ
eiφXx

)
, λeiθY x− 1

λ
eiφXx〉A

⇒2
∣∣〈X]ATY x, x〉A

∣∣+ 2
∣∣〈Y ]ATXx, x〉A∣∣ ≤ ∣∣∣∣〈eiθT (λeiθY x+

1

λ
eiφXx

)
, λeiθY x+

1

λ
eiφXx〉A

∣∣∣∣
+

∣∣∣∣〈eiθT (λeiθY x− 1

λ
eiφXx

)
, λeiθY x− 1

λ
eiφXx〉A

∣∣∣∣
⇒2

∣∣〈X]ATY x, x〉A
∣∣+ 2

∣∣〈Y ]ATXx, x〉A∣∣ ≤ wA(T )

(∥∥∥∥λeiθY x+
1

λ
eiφXx

∥∥∥∥2
A

+

∥∥∥∥λeiθY x− 1

λ
eiφXx

∥∥∥∥2
A

)

⇒
∣∣〈X]ATY x, x〉A

∣∣+
∣∣〈Y ]ATXx, x〉A∣∣ ≤ wA(T )

(
λ2‖Y x‖2A +

1

λ2
‖Xx‖2A

)
.

This holds for all non-zero real λ. If ‖Y x‖A 6= 0, then we choose λ2 = ‖Xx‖A
‖Y x‖A . So, we get

|〈X]ATY x, x〉A|+ |〈Y ]ATXx, x〉A| ≤ 2wA(T )‖Xx‖A‖Y x‖A.

Clearly, this inequality also holds when ‖Y x‖A = 0, i.e., Y x = 0. This completes the proof of the lemma.

Remark 3.5. In [11], we have already generalized the result obtained by Bernau and Smithes [6, Lemma

3], and proved some important numerical radius inequalities.

Now using Lemma 3.4, we obtain the following inequalities involving A-numerical radius, A-Crawford

number and A-operator norm.

Theorem 3.6. Let X,T, Y ∈ BA(H), where A > 0. Then

cA(X]ATY ) + wA(Y ]ATX) ≤ 2wA(T )‖X‖A‖Y ‖A,

wA(X]ATY ) + cA(Y ]ATX) ≤ 2wA(T )‖X‖A‖Y ‖A.

Proof. Taking ‖x‖A = 1 in Lemma 3.4, we have

|〈X]ATY x, x〉A|+ |〈Y ]ATXx, x〉A| ≤ 2wA(T )‖X‖A‖Y ‖A
⇒cA(X]ATY ) + |〈Y ]ATXx, x〉A| ≤ 2wA(T )‖X‖A‖Y ‖A.
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Taking supremum over ‖x‖A = 1, we get

cA(X]ATY ) + wA(Y ]ATX) ≤ 2wA(T )‖X‖A‖Y ‖A.

Again taking ‖x‖A = 1 in Lemma 3.4, we have

|〈X]ATY x, x〉A|+ |〈Y ]ATXx, x〉A| ≤ 2wA(T )‖X‖A‖Y ‖A
⇒|〈X]ATY x, x〉A|+ cA(Y ]ATX) ≤ 2wA(T )‖X‖A‖Y ‖A.

Taking supremum over ‖x‖A = 1, we get

wA(X]ATY ) + cA(Y ]ATX) ≤ 2wA(T )‖X‖A‖Y ‖A.

This completes the proof of the theorem.

Now taking Y = I, T = X and X = Y in the above Theorem 3.6, we get the following upper bounds

for the numerical radius of product of two operators, which improve on the existing bounds.

Corollary 3.7. Let X,Y ∈ BA(H) where A > 0. Then the following inequalities hold:

wA(XY ) ≤ 2wA(X)‖Y ‖A − cA(Y ]AX),

wA(XY ) ≤ 2wA(Y )‖X‖A − cA(Y X]A).

Remark 3.8. For A > 0, it is clear that the inequalities obtained in Corollary 3.7 improve on the

inequalities wA(XY ) ≤ 2wA(X)‖Y ‖A and wA(XY ) ≤ 2wA(Y )‖X‖A (see [25, Theorem 3.4]).

Finally, using Lemma 3.4, we obtain new inequalities for B-numerical radius of 2× 2 operator matrices

with zero operators as main diagonal entries.

Theorem 3.9. Let X,Y ∈ BA(H) where A > 0. Then the following inequalities hold:

(i) ‖X‖2A + cA(Y X) ≤ 2wB

(
O X

Y O

)
‖X‖A,

(ii) m2
A(X) + wA(Y X) ≤ 2wB

(
O X

Y O

)
‖X‖A,

(iii) ‖Y ‖2A + cA(XY ) ≤ 2wB

(
O X

Y O

)
‖Y ‖A,

(iv) m2
A(Y ) + wA(XY ) ≤ 2wB

(
O X

Y O

)
‖Y ‖A.

Proof. Taking X = T and Y = I in Lemma 3.4, we get

‖Tx‖2A + |〈T 2x, x〉A| ≤ 2wA(T )‖Tx‖A‖x‖A.

This also holds if we take T =

(
O X

Y O

)
and x = (x1, x2) ∈ H⊕H with ‖x‖B = 1, i.e., ‖x1‖2A+‖x2‖2A = 1.

Therefore, we get

‖Xx2‖2A + ‖Y x1‖2A + |〈XY x1, x1〉A + 〈Y Xx2, x2〉A| ≤ 2wB(T )
(
‖Xx2‖2A + ‖Y x1‖2A

) 1
2 .
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Taking x1 = 0, we get

‖Xx2‖2A + |〈Y Xx2, x2〉|A ≤ 2wB

(
O X

Y O

)
‖Xx2‖A

⇒‖Xx2‖2A + |〈Y Xx2, x2〉A| ≤ 2wB

(
O X

Y O

)
‖X‖A

⇒‖Xx2‖2A + cA(Y X) ≤ 2wB

(
O X

Y O

)
‖X‖A.

Taking supremum over ‖x2‖A = 1, we get the inequality (i), i.e.,

‖X‖2A + cA(Y X) ≤ 2wB

(
O X

Y O

)
‖X‖A.

Again from the inequality

‖Xx2‖2A + |〈Y Xx2, x2〉A| ≤ 2wB

(
O X

Y O

)
‖X‖A,

we get

m2
A(X) + |〈Y Xx2, x2〉A| ≤ 2wB

(
O X

Y O

)
‖X‖A.

Taking supremum over ‖x2‖A = 1, we get the inequality (ii), i.e.,

m2
A(X) + wA(Y X) ≤ 2wB

(
O X

Y O

)
‖X‖A.

Similarly, taking x2 = 0 and supremum over ‖x1‖A = 1, we can prove the remaining inequalities.

Next taking X = Y = T in Theorem 3.9 and using Lemma 2.4 (iv), we get the following lower bounds

for A-numerical radius.

Theorem 3.10. Let T ∈ BA(H) with ‖T‖A 6= 0 where A > 0. Then the following inequalities hold:

wA(T ) ≥ ‖T‖A
2

+
cA(T 2)

2‖T‖A
,

wA(T ) ≥ m2
A(T )

2‖T‖A
+
wA(T 2)

2‖T‖A
.

Remark 3.11. Here, we note that the two inequalities obtain in Theorem 3.10 are incomparable. So,

using these bounds we have a new lower bound

wA(T ) ≥ 1

2‖T‖A
max

{
‖T‖2A + cA(T 2),m2

A(T ) + wA(T 2)
}
,

where T ∈ BA(H) with ‖T‖A 6= 0. It is clear that this inequality improves on the first inequality in [25, Cor.

2.8].
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