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STRUCTURE-PRESERVING DIAGONALIZATION OF MATRICES

IN INDEFINITE INNER PRODUCT SPACES∗

PHILIP SALTENBERGER†

Abstract. In this work, some results on the structure-preserving diagonalization of selfadjoint and skewadjoint matrices in 
indefinite inner product spaces are presented. In particular, necessary and sufficient conditions on the symplectic diago-

nalizability of (skew)-Hamiltonian matrices and the perplectic diagonalizability of per(skew)-Hermitian matrices are provided. 
Assuming the structured matrix at hand is additionally normal, it is shown that any symplectic or perplectic diagonalization can 
always be constructed to be unitary. As a consequence of this fact, the existence of a unitary, structure-preserving diago-nalization 
is equivalent to the existence of a specially structured additive decomposition of such matrices. The implications of this 
decomposition are illustrated by several examples.
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1. Introduction. Structured matrices are omnipresent in many areas of mathematics. For instance,

structured eigenvalue problems arise in engineering, physics and statistics [17, 22] in the form of optimal

control problems, the analysis of mechanical and electrical vibrations [14], the computational analysis and

theory of matrix function [10, Chapter 14] or of matrix equations [13]. Thereby, special structures arising

from the consideration of selfadjoint and skewadjoint matrices with respect to certain inner products play a

crucial role. Often, these inner products are indefinite, so that the underlying bilinear or sesquilinear form

does not define a scalar product. Hence, results from Hilbert-space-theory are not available in this case and

an independent mathematical analysis is required. Over the last decades, a great amount of research has

been done on these structured matrices, especially with regard to structure-preserving decompositions and

algorithms (see, e.g. [19, 5, 18] or [14, Section 8] and the references therein). In this work, some results in

this direction are presented.

Considering the (definite) standard Euclidean inner product 〈x, y〉 = xHy, x, y ∈ Cm, on Cm × Cm,

it is well-known that selfadjoint and skewadjoint matrices (i.e., Hermitian and skew-Hermitian matrices)

have very special properties. For example, (skew)-Hermitian matrices are always diagonalizable by a unitary

matrix. The unitary matrices constitute the automorphism group of the scalar product 〈·, ·〉 which means that

〈Gx,Gy〉 = 〈x, y〉 always holds for any unitary matrix G and all vectors x, y ∈ Cm. The automorphism group

is sometimes called the Lie-group with respect to 〈·, ·〉 whereas the selfadjoint and skewadjoint matrices are

referred to as the Jordan and Lie algebras [16]. The Euclidean scalar product is a special case of a sesquilinear

form [x, y] = xHBy on Cm × Cm with B = Im being the m×m identity matrix. Often, sesquilinear forms

[x, y] = xHBy appear in mathematics where B 6= Im. In particular, cases that have been intensively studied

are those where B is some (positive/negative definite or indefinite) Hermitian matrix [8] or a skew-Hermitian
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matrix [4]. The Lie-group, the Lie algebra and the Jordan algebra are defined analogously to the Euclidean

scalar product for such forms as the group of automorphisms, selfadjoint and skewadjoint matrices with

respect to [x, y] = xHBy.

In this work, selfadjoint and skewadjoint matrices with respect to indefinite Hermitian or skew-Hermitian

sesquilinear forms are considered from the viewpoint of diagonalizability. In particular, since Hermitian and

skew-Hermitian matrices are always diagonalizable by a unitary matrix (i.e., an automorphism with respect

to 〈·, ·〉), we will consider the question under what conditions a similar statement holds for the automorphic

diagonalization of selfadjoint and skewadjoint matrices with respect to other (indefinite) sesquilinear forms.

For two particular sesquilinear forms (the symplectic and the perplectic sesquilinear form) this question

will be fully analyzed and answered in Sections 3 and 4. For the symplectic bilinear form, this question

was already addressed in [5]. In Section 5, we consider these results in the context of normal matrices

for which there always exists a unitary diagonalization. In particular, the results presented in this section

apply to selfadjoint and skewadjoint matrices for which a unitary diagonalization exists. We will show that

this subclass of matrices has very nice properties with respect to unitary and automorphic diagonalization

and how both types of diagonalizations interact. In Section 2, the notation used throughout this work is

introduced, whereas in Section 6, some concluding remarks are given.

2. Notation and definitions. For any m ∈ N and K = R,C, we denote by Km the m-dimensional

vector space over K and by Mm×m(K) the vector space of all m×m matrices over K. The vector subspace

X of Km which is obtained from all possible linear combinations of some vectors x1, . . . , xk ∈ Km is called

the span of x1, . . . , xk and is denoted by span(x1, . . . , xk). A basis of some subspace X ⊆ Km is a linearly

independent set of vectors x1, . . . , xk ∈ X such that X = span(x1, . . . , xk). In this case we say that the

dimension of X equals k, that is, dim(X ) = k. The symbol Km × Km is used to denote the direct product

of Km with itself, i.e., Km × Km = {(x, y) | x, y ∈ Km}. For any matrix A ∈ Mm×m(K), the notions

im(A) and null(A) refer to the image and the nullspace (kernel) of A, i.e., im(A) = {Ax |x ∈ Km} and

null(A) = {x ∈ Km |Ax = 0}. The rank of A ∈ Mm×m(K) is defined as the dimension of its image. For any

matrix A ∈ Mm×m(K) the superscripts T and H denote the transpose AT of A and the Hermitian transpose

AH = A
T

. The overbar denotes the conjugation of a complex number and applies entrywise to matrices.

The m×m identity matrix is throughout denoted by Im whereas the m×m zero matrix, the zero vector in

Km or the number zero are simply denoted by 0 (to specify dimensions 0m×m is used in some places to refer

to the m ×m zero matrix). A Hermitian matrix A ∈ Mm×m(K) satisfies AH = A and a skew-Hermitian

matrix AH = −A. Moreover, a matrix A ∈ Mm×m(K) is called unitary if AHA = AAH = Im holds and

normal in case AHA = AAH holds. For two matrices A,B ∈ Mm×m(K) the notation A⊕B is used to denote

their direct sum, i.e., the matrix C ∈ M2m×2m(K) given by

C =

[
A 0m×m

0m×m B

]
.

For a given matrix A ∈ Mm×m(K) any scalar λ ∈ C which satisfies Ax = λx for some nonzero vector x ∈ Cm

is called an eigenvalue of A. The set of all eigenvalues of A is denoted by σ(A) and equals the zero set of

the degree-m polynomial det(A − zIm). The algebraic multiplicity of λ as an eigenvalue of A equals the

multiplicity of λ as a zero of det(A − zIm). Whenever λ ∈ C is some eigenvalue of A any vector x ∈ Cm

satisfying Ax = λx is called an eigenvector of A (for λ). The set of all eigenvectors of A for λ ∈ σ(A) is a

vector subspace of Cm and is called the corresponding eigenspace (of A for λ). Its dimension is referred to as

the geometric multiplicity of λ. The matrix A is called diagonalizable if there exist m linearly independent
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eigenvectors of A. These vectors consequently form a basis of Cm. A matrix A ∈ Mm×m(K) is diagonalizable

if and only if the geometric and algebraic multiplicities of all eigenvalues of A coincide.

3. Sesquilinear forms. In this section, we introduce the notion of a sesquilinear form on Cm×Cm and

some related basic concepts. Notice that Definition 3.1 slightly deviates from the definition of a sesquilinear

form given in [12, Section 5.1].

Definition 3.1. A sesquilinear form [·, ·] on Cm ×Cm is a mapping [·, ·] : Cm ×Cm → C so that for all

u, v, w ∈ Cm and all α, β ∈ C the following relations (i) and (ii) hold:

(i) [αu+ βv,w] = α[u,w] + β[v, w] (ii) [u, αv + βw] = α[u, v] + β[u,w].

If [·, ·] is some sesquilinear form and x := αej , y := βek ∈ Cm with α, β ∈ C are two vectors that are

multiples of the jth and kth unit vectors ej and ek, then [x, y] = αβ[ej , ek]. Thus, any sesquilinear form is

uniquely determined by the images of the standard unit vectors [ej , ek], j, k = 1, . . . ,m. In particular, [·, ·]
on Cm × Cm can be expressed as

(3.1) [x, y] = xHBy

for the particular matrix B = [bjk]jk ∈ Mm×m(C) with bjk = [ej , ek], j, k = 1, . . . ,m. A form [·, ·] as in (3.1)

is called Hermitian if [x, y] = [y, x] holds for all x, y ∈ Cm. It is easy to see that [·, ·] is Hermitian if and

only if B ∈ Mm×m(C) is Hermitian, i.e., B = BH [8, Section 2.1]. The form [·, ·] is called skew-Hermitian if

[x, y] = −[y, x] holds for all x, y ∈ Cm. This is the case if and only if B = −BH .

The following Definition 3.2 introduces two classes of subspaces S ⊆ Cm related in a particular fashion

to a sesquilinear form [·, ·] (see, e.g., [8, Section 2.3]).

Definition 3.2. Let [x, y] = xHBy be some sesquilinear form on Cm × Cm.

1. A subspace S ⊆ Cm of dimension dim(S) = k ≥ 1 is called neutral (with respect to [·, ·]) if

rank(V HBV ) = 0 for any basis v1, . . . , vk of S and V = [ v1 · · · vk ].

2. A subspace S ⊆ Cm of dimension dim(S) = k ≥ 1 is called nondegenerate (with respect to [·, ·]) if

V HBV is nonsingular, i.e., rank(V HBV ) = k, for any basis v1, . . . , vk of S and V = [ v1 · · · vk ].

Otherwise, S is called degenerate.

In case m = 2n is even, any neutral subspace S ⊆ Cm with dim(S) = n is called Lagrangian (subspace)

(see, e.g., [6, Definition 1.2]). Some analysis on this kind of subspaces is presented in Section 5.1. A

sesquilinear form as in (3.1) is called nondegenerate, if S = Cm is nondegenerate with respect to [·, ·]. In

the sequel, nondegenerate sesquilinear forms are called indefinite inner products. Note that the sesquilinear

form in (3.1) is nondegenerate, i.e., an indefinite inner product, if and only if B ∈ Mm×m(C) is nonsingular

[15, Section 2.1].

Proposition 3.3. For any indefinite inner product [x, y] = xHBy on Cm×Cm and any A ∈ Mm×m(C)

there exists a unique matrix A? ∈ Mm×m(C) such that

[Ax, y] = [x,A?y] holds for all x, y ∈ Cm.

The matrix A? ∈ Mm×m(C) corresponding to A ∈ Mm×m(C) in Proposition 3.3 is called the adjoint of A. It

can be expressed as A? = B−1AHB and also satisfies [x,Ay] = [A?x, y] for all x, y ∈ Cm [15, Section 2.2]. A
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Table 1

Structures with respect to the indefinite inner products [x, y] = xHJ2ny and [x, y] = xHR2ny on C2n × C2n.

Structure [x, y] = xHJ2ny [x, y] = xHR2ny

selfadjoint skew-Hamiltonian JT
2nA

HJ2n = A per-Hermitian R2nA
HR2n = A

skewadjoint Hamiltonian JT
2nA

HJ2n = −A perskew-Hermitian R2nA
HR2n = −A

automorph symplectic JT
2nA

HJ2n = A−1 perplectic R2nA
HR2n = A−1

matrix A that commutes with its adjoint A?, i.e., AA? = A?A, is called normal with respect to [x, y] = xHBy

or simply B-normal. For any indefinite inner product [x, y] = xHBy on Cm × Cm there are three classes of

B-normal matrices that deserve special attention (see also [15, Section 2.2]).

Definition 3.4. Let [x, y] = xHBy be some indefinite inner product on Cm × Cm.

1. A matrix G ∈ Mm×m(C) with the property G−1 = G? is called an automorphism for [·, ·].
2. A matrix J ∈ Mm×m(C) satisfying J? = B−1JHB = J is called selfadjoint (with respect to [·, ·])

whereas a matrix L ∈ Mm×m(C) satisfying L? = B−1LHB = −L is called skewadjoint.

Notice that, if G ∈ Mm×m(C) is an automorphism, [Gx,Gy] = [x, y] holds for all x, y ∈ Cm since

[Gx,Gy] = [x,G?Gy] and G?G = G−1G = Im. In particular, any automorphism is nonsingular. For the

standard Euclidean scalar product (x, y) = [x, y] = xHImy, automorphisms, selfadjoint and skewadjoint

matrices are those which are unitary, Hermitian or skew-Hermitian, respectively. Beside these, special

names have also been given to matrices which are automorph, selfadjoint or skewadjoint with respect to the

indefinite inner products [x, y] = xHBy on C2n × C2n induced by the matrices B = J2n ∈ M2n×2n(R) and

B = R2n ∈ M2n×2n(R) given by

J2n =

[
In

−In

]
, R2n =

[
Rn

Rn

]
with Rn =

 1

. .
.

1

 .
These names are listed in the table from Figure 11. For instance, a skew-Hamiltonian matrix A ∈ M2n×2n(C)

and a per-Hermitian matrix C ∈ M2n×2n(C) have expressions of the form

(3.2) A =

[
A1 A2

A3 AH
1

]
and C =

[
C1 C2

C3 RnC
H
1 Rn

]
, Aj , Cj ∈ Mn×n(C),

where it holds that A2 = −AH
2 , A3 = −AH

3 and that C2, C3 ∈ Mn×n(C) are themselves per-Hermitian with

respect to [x, y] = xHRny on Cn × Cn. Notice that for any indefinite inner product [x, y] = xHBy on

Cm × Cm the selfadjoint and skewadjoint structures are preserved under similarity transformations with

automorphisms. This fact is well known and easily confirmed for unitary similarity transformations of

Hermitian and skew-Hermitian matrices. In our setting this means that, whenever A ∈ M2n×2n(C) is

(skew)-Hamiltonian (per(skew)-Hermitian) and G ∈ M2n×2n(C) is symplectic (perplectic), then G−1AG is

again (skew)-Hamiltonian (per(skew)-Hermitian). We will only be considering the indefinite inner products

induced by J2n and R2n on C2n × C2n from now on.

1Notice that these names are not consistently used in the literature. For instance, a Hamiltonian matrix here and in [6] is

called J-Hermitian in [15].
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The result from Proposition 3.5 below is central for the upcoming discussion and can be found in, e.g.,

[11, Section 4.5] (for the case A = AH). The statement for A = −AH is easily verified by noting that

A = AH is Hermitian if and only if iA is skew-Hermitian.

Proposition 3.5 (Sylvesters Law of Inertia). Let A ∈ Mm×m(C) and assume that either A = AH or

A = −AH holds. Then there exists a nonsingular matrix U ∈ Mm×m(C) so that

UHAU =

 −αIp αIq
0r×r

 ,
where α = 1 if A is Hermitian and α = i otherwise. Hereby, p coincides with the number of negative

real/purely imaginary eigenvalues of A, q coincides with the number of positive real/purely imaginary eigen-

values of A and r is the algebraic multiplicity of zero as an eigenvalue of A.

The triple (p, q, r) from Proposition 3.5 is usually referred to as the inertia of A [11, Section 4.5].

Two Hermitian or skew-Hermitian matrices A,C ∈ Mm×m(C) with the same inertia are called congruent.

Following directly from Proposition 3.5 we obtain the following proposition (see also [11, Theorem 4.5.8]).

Proposition 3.6. Let A,C ∈ Mm×m(C) be two matrices which are either both Hermitian or skew-

Hermitian. Then there exists a nonsingular matrix S ∈ Mn×n(C) so that SHAS = C if and only if A and

C have the same inertia.

4. Symplectic and perplectic diagonalizability. In this section, the symplectic and perplectic

diagonalization of (skew)-Hamiltonian and per(skew)-Hermitian matrices is analyzed. As those matrices need

not be diagonalizable per se, cf. [8, Example 4.2.1], their diagonalizability has to be assumed throughout the

whole section. At first, we consider arbitrary (skew)-Hermitian indefinite inner products and provide two

auxiliary results related to their selfadjoint matrices. These results will turn out to be useful in Sections 4.1

and 4.2, where we derive necessary and sufficient conditions for (skew)-Hamiltonian or per(skew)-Hermitian

matrices to be diagonalizable by a symplectic (respectively, perplectic) similarity transformation. This

section is based on [20, Chapter 9].

Let [x, y] = xHBy be some (skew)-Hermitian indefinite inner product on Cm×Cm and let A ∈ Mm×m(C)

be selfadjoint with respect to [·, ·]. Then, as A? = B−1AHB = A, we have σ(A) = σ(A). In particular, for

each λ ∈ σ(A), λ /∈ R, λ is an eigenvalue of A, too, with the same multiplicity. Proposition 4.1 shows that,

among the eigenvectors of A, those x, y ∈ Cm corresponding to λ and λ, respectively, are the only candidates

for having a nonzero inner product [x, y]. This result can also be found in, e.g., [15, Theorem 7.8].

Proposition 4.1. Let [x, y] = xHBy be some (skew)-Hermitian indefinite inner product and A = A? ∈
M2n×2n(C) be selfadjoint. Moreover, assume x, y ∈ C2n are eigenvectors of A corresponding to some eigen-

values λ, µ ∈ σ(A), respectively. Then µ 6= λ implies that [x, y] = [y, x] = 0. Consequently, each eigenspace

of A for an eigenvalue λ /∈ R of A is neutral.

Proof. Under the given assumptions, we have

λ[x, y] = [λx, y] = [Ax, y] = [x,A?y] = [x,Ay] = [x, µy] = µ[x, y],

so, whenever [x, y] 6= 0, then µ = λ has to hold. This proves the statement by contraposition noting that

[x, y] = 0 if and only if [y, x] = 0.
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Now assume that A = A? ∈ Mm×m(C) is diagonalizable. Let λ ∈ σ(A), λ 6= λ, and suppose v1, . . . , v`
and v`+1, . . . , v2` are eigenbases corresponding to λ and λ, respectively. Additionally, let v2`+1, . . . , vm be

eigenvectors of A completing v1, . . . , v2` to a basis of Cm and set V = [ v1 · · · vm ] ∈ Mm×m(C). According

to Proposition 4.1 we have

(4.3) V HBV =

 0 S`

±SH
` 0

0

0 X

 ∈ Mm×m(C)

for some matrices S` ∈ M`×`(C) and X ∈ M(m−2`)×(m−2`)(C). In case B = −BH we have −SH
` in (4.3)

and X = −XH whereas we have +S` and X = XH in case B = BH . As V and B are nonsingular, so is

V HBV . This implies S` and X in (4.3) to be nonsingular, too. As span(v1, . . . , v2`) equals the direct sum

of the eigenspaces of A corresponding to λ and λ, the nonsingularity of S` gives the following Corollary 4.2

taking Definition 3.2 (1) into account.

Corollary 4.2. Let [x, y] = xHBy be some (skew)-Hermitian indefinite inner product and let A =

A? ∈ Mm×m(C) be selfadjoint and diagonalizable. Then, for any λ ∈ σ(A), λ 6= λ, the direct sum of the

eigenspaces of A corresponding to λ and λ is always nondegenerate.

Similarly to the derivation preceding Corollary 4.2, one shows that the eigenspace of a selfadjoint matrix

A = A? ∈ Mm×m(C) corresponding to some real eigenvalue µ ∈ σ(A) is always nondegenerate, too. We

are now in the position to derive statements on the symplectic and perplectic diagonalizability of (skew)-

Hamiltonian and per(skew)-Hermitian matrices.

4.1. Symplectic diagonalization of (skew)-Hamiltonian matrices. The following Theorem 4.3

states the main result of this section characterizing those (diagonalizable) (skew)-Hamiltonian matrices which

can be brought to diagonal form by a symplectic similarity transformation. Recall that, according to (3.2),

a diagonal skew-Hamiltonian matrix D̃ ∈ M2n×2n(C) has the form

(4.4) D̃ =

[
D 0

0 DH

]
with D = diag(λ1, . . . , λn ) ∈ Mn×n(C).

Theorem 4.3. Let A ∈ M2n×2n(C) be diagonalizable.

1. Assume that A is skew-Hamiltonian. Then A is symplectic diagonalizable if and only if for any real

eigenvalue λ ∈ σ(A) and some basis v1, . . . , vm of the corresponding eigenspace, the matrix V HJ2nV

for V = [ v1 · · · vm ] has equally many positive and negative imaginary eigenvalues.

2. Assume that A is Hamiltonian. Then A is symplectic diagonalizable if and only if for any purely

imaginary eigenvalue λ ∈ σ(A) and some basis v1, . . . , vm of the corresponding eigenspace, the matrix

V HJ2nV for V = [ v1 · · · vm ] has equally many positive and negative imaginary eigenvalues.

Proof. 1. (⇒) Let A ∈ M2n×2n(C) be skew-Hamiltonian, that is A = A?, and S = [ s1 · · · s2n ] ∈
M2n×2n(C) symplectic such that

(4.5) S−1AS =

[
D

DH

]
= S−1A?S, SHJ2nS = J2n,

with D = diag(λ1, . . . , λn) ∈ Mn×n(C) is a (symplectic) diagonalization of A. If λj ∈ σ(A) is real, it follows

from (4.5) that λj has even multiplicity, 2k say, with k instances of λj appearing in D and DH , respectively



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 21-37, January 2020.
http://repository.uwyo.edu/ela

27 Structure-preserving Diagonalization of Matrices in Indefinite Inner Product Spaces

(w. l. o. g. on the diagonal positions j1, . . . , jk). Let sj1 , . . . , sjk , sn+j1 , . . . , sn+jk be the corresponding 2k

eigenvectors (appearing as columns in the corresponding positions in S) which span the eigenspace of A and

A? for λj . Now set Sj := [ sj1 · · · sjk sn+j1 · · · sn+jk ] ∈ M2n×2k(C). Then we have

SH
j J2nSj =

[
Ik

−Ik

]
∈ M2k×2k(C)

which follows directly from SHJ2nS = J2n. The eigenvalues of SH
j J2nSj are +i and −i both with the same

multiplicity k. As λj was arbitrary, this holds for any real eigenvalue of A.

(⇐) Now let A ∈ M2n×2n(C) be skew-Hamiltonian and diagonalizable. Moreover assume that the

condition stated above holds for all real eigenvalues of A. We now generate bases for the different eigenspaces

of A according to the following rules:

(a) For each pair of eigenvalues λj , λj ∈ σ(A), λj 6= λj , both with multiplicity mj , let s1, . . . smj be

corresponding eigenvectors of A for λj and t1, . . . , tmj
corresponding eigenvectors of A for λj . Set

Sj = [ s1 · · · smj
t1 · · · tmj

] ∈ M2n×2mj
(C). Then, according to Proposition 4.1 and Corollary 4.2

span(s1, . . . , smj
) and span(t1, . . . , tmj

) are both neutral and SH
j J2nSj is nonsingular. Therefore,

the form of SH
j J2nSj is

SH
j J2nSj =

[
0 Ŝj

−ŜH
j 0

]
∈ M2mj×2mj

(C)

for some nonsingular matrix Ŝj ∈ Mmj×mj
(C). Now, multiplying SH

j J2nSj by Ŝ−Hj ⊕ Imj
and

(Ŝ−Hj ⊕ Imj
)H (from the right and the left) we observe that

(
Ŝ−Hj ⊕ Imj

)H
SH
j J2nSj

(
Ŝ−Hj ⊕ Imj

)
=

[
Ŝ−1j

Imj

][
0 Ŝj

−ŜH
j 0

][
Ŝ−Hj

Imj

]
=

[
Imj

−Imj

]
.

Let w1, . . . , w2mj
denote the columns of Sj(Ŝ

−H
j ⊕Imj

) and notice that, due to the form of Ŝ−Hj ⊕Imj
,

w1, . . . , wmj and wmj+1 = t1, . . . , w2mj = tmj are still bases for the eigenspaces of A for λj and λj ,

respectively. According to Proposition 4.1, the inner products [w`, x] for any ` = 1, . . . , 2mj and

any eigenvector x of A corresponding to some eigenvalue µ ∈ σ(A) \ {λj , λj} are zero.

(b) For each λk ∈ σ(A), λk ∈ R, let s1, . . . , s2mk
be a basis of the corresponding eigenspace (assuming the

even multiplicity of λk is 2mk). For Sk := [ s1 · · · s2mk
] ∈ M2n×2mk

(C) the skew-Hermitian matrix

SH
k J2nSk ∈ M2mk×2mk

(C) is nonsingular and has, according to our assumptions, exactly mk positive

and mk negative purely imaginary eigenvalues. Thus, it has the same inertia as J2mk
and there

exists some nonsingular matrix Tk ∈ M2mk×2mk
(C) such that TH

k (SH
k J2nSk)Tk = J2mk

according

to Proposition 3.5. Let w1, . . . , w2mk
denote the columns of SkTk and note that w1, . . . , w2mk

is

still a basis for the eigenspace of A corresponding to λk. According to Proposition 4.1, the inner

products [w`, x] for any ` = 1, . . . , 2mk and any eigenvector x of A corresponding to some eigenvalue

µ ∈ σ(A) \ {λk} are zero.

If bases of the eigenspaces for all eigenvalues of A have been constructed according to (a) if λj /∈ R and (b)

if λk ∈ R, the new eigenvectors w1, . . . , w2n obtained this way are collected in a matrix W ∈ M2n×2n(C), i.e.,

W = [w1 · · · w2n ]. Note that W is nonsingular and that W−1AW = D is diagonal. Due to the construction

of w1, . . . , w2n, the skew-Hermitian matrix WHJ2nW has only +1 and −1 as nonzero entries. Hence, it is

permutation-similar to J2n. In other words, there exists a (real) permutation matrix P ∈ M2n×2n(R) with
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PHWHJ2nWP = J2n. Now PHWHJ2nWP = J2n so V := WP is symplectic. Moreover, V −1AV = PTDP

remains to be diagonal as P is a permutation matrix and the statement 1. is proven.

2. If A ∈ M2n×2n(C) is Hamiltonian notice that Â := iA is skew-Hamiltonian. Thus, whenever S ∈
M2n×2n(C) is symplectic and S−1AS = D ⊕ (−DH) is a symplectic diagonalization of A for some diagonal

matrix D ∈ Mn×n(C) we have that

S−1ÂS = S−1(iA)S = iS−1AS =

[
iD

−iDH

]
=

[
D̂

D̂H

]

for D̂ = iD is a symplectic diagonalization of Â. From 1. it is known that the diagonalization S−1ÂS =

D̂ ⊕ D̂H exists if and only if for each real eigenvalue λ ∈ σ(Â) has even multiplicity m and, given any basis

v1, . . . , vm of the corresponding eigenspace, the matrix V HJ2nV for V = [ v1 · · · vm ] has equally many pos-

itive and negative purely imaginary eigenvalues. Vice versa this implies that the symplectic diagonalization

S−1AS = D ⊕ (−DH) exists if and only if each purely imaginary eigenvalue µ ∈ σ(A) has even multiplicity

m and, given any basis v1, . . . , vm of the corresponding eigenspace, the matrix V HJ2nV for V = [ v1 · · · vm ]

has equally many positive and negative purely imaginary eigenvalues.

The following Corollary 4.4 is a direct consequence of Theorem 4.3 which guarantees the existence of

a symplectic diagonalization whenever no real or purely imaginary eigenvalues are present. To understand

Corollary 4.4 correctly, zero should be regarded as both, real and purely imaginary.

Corollary 4.4.

1. A diagonalizable skew-Hamiltonian matrix A ∈ M2n×2n(C) is always symplectic diagonalizable if A

has no purely real eigenvalues.

2. A diagonalizable Hamiltonian matrix A ∈ M2n×2n(C) is always symplectic diagonalizable if A has

no purely imaginary eigenvalues.

4.2. Perplectic diagonalization of per(skew)-Hermitian matrices. The main result on the per-

plectic diagonalization of per-Hermitian and perskew-Hermitian matrices A ∈ M2n×2n(C) is similar to the

statement from Theorem 4.3. In particular, the proof of Theorem 4.5 below is analogous to the proof of The-

orem 4.3 with the only significant change being the replacement of the skew-Hermitian structures appearing

in the proof of Theorem 4.3 (due to the skew-Hermitian matrix J2n) by Hermitian structures caused by R2n.

Therefore, statements on purely imaginary eigenvalues turn into statements on real eigenvalues. The proof

is consequently omitted.

Theorem 4.5. Let A ∈ M2n×2n(C) be diagonalizable.

1. Assume that A is per-Hermitian. Then A is perplectic diagonalizable if and only if for any real

eigenvalue λ ∈ σ(A) and some basis v1, . . . , vm of the corresponding eigenspace, the matrix V HR2nV

for V = [ v1 · · · vm ] has equally many positive and negative real eigenvalues.

2. Assume that A is perskew-Hermitian. Then A is perplectic diagonalizable if and only if for any

purely imaginary eigenvalue λ ∈ σ(A) and some basis v1, . . . , vm of the corresponding eigenspace,

the matrix V HR2nV for V = [ v1 · · · vm ] has equally many positive and negative real eigenvalues.

The following Corollary 4.6 is an immediate consequence of Theorem 4.5 and is the analogous result to

Corollary 4.4 for per(skew)-Hermitian matrices.
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Corollary 4.6.

1. A diagonalizable per-Hermitian matrix A ∈ M2n×2n(C) is always perplectic diagonalizable if A has

no purely real eigenvalues.

2. A diagonalizable perskew-Hermitian matrix A ∈ M2n×2n(C) is always perplectic diagonalizable if A

has no purely imaginary eigenvalues.

Example 4.7. According to Corollary 4.6 a skew-Hermitian and per-Hermitian matrix A ∈ M2n×2n(C)

is always perplectic diagonalizable, since it is diagonalizable and has only purely imaginary eigenvalues.

Moreover, according to the discussion preceding Proposition 4.1, any eigenvalue µ ∈ iR of A comes with its

complex conjugate µ with µ and µ having the same multiplicity. Therefore, if iλ1, . . . , iλn,−iλ1, . . . ,−iλn
are the eigenvalues of A (λ1, . . . , λn ∈ R), a similar analysis as in the proof of Theorem 4.3 shows that there

exists a perplectic matrix P ∈ M2n×2n(C) such

D = P−1AP =

[
−iD̃

iRnD̃Rn

]
, with D̃ =

λ1 . . .

λn

 ∈ Mn×n(R).

Now let Q = 1√
2

[
In −iRn

−iRn In

]
∈ M2n×2n(C). It follows from a direct calculation, that Q is perplectic. In

consequence, the product P1 = PQ is perplectic, too, and we obtain

(4.6) P−11 AP1 = Q−1
(
P−1AP

)
Q = Q−1DQ =

[
−D̂

RnD̂Rn

]
, D̂ =

 λ1

. .
.

λn

 ∈ Mn×n(R).

This shows that a skew-Hermitian and per-Hermitian matrix A ∈ M2n×2n(C) can always be perplectic

diagonalized as well as perplectic “anti”-diagonalized. Notice that, in the form (4.6), the elements on the

anti-diagonal of P−11 AP1 are real. In the context of real matrices and the bilinear form [x, y] = xTR2ny

(for x, y ∈ R2n), the existence of the form (4.6) with A,P1 ∈ M2n×2n(R), has already been proven in [14,

Theorem 7.1]. In particular, it is shown in [14] that P1 can be constructed to be orthogonal, too. The

perplectic matrix P1 in (4.6) can be constructed to be unitary as a consequence of the results from [20,

Section 10.2].

5. Normal structured matrices. In this section, we analyze the matrix structures from Section 4

assuming the matrix at hand is additionally normal. Recall that a matrix A is called normal if AHA = AAH

holds. It is well-known that for any normal matrix A ∈ M2n×2n(C) there exists a unitary matrix Q ∈
M2n×2n(C), so that QHAQ = D = diag(λ1, . . . , λ2n) is diagonal (where λ1, . . . , λ2n ∈ C are the eigenvalues

of A) [9]. Now partition Q and D as Q = [Q1 Q2 ] with Q1, Q2 ∈ M2n×n(C) and D = D1 ⊕ D2 with

D1 = diag(λ1, . . . , λn), D2 = diag(λn+1, . . . , λ2n) ∈ Mn×n(C). We now obtain from QHAQ = D that

(5.7) A =
[
Q1 Q2

] [D1

D2

] [
QH

1

QH
2

]
= Q1D1Q

H
1 +Q2D2Q

H
2 =: E + F

holds, where E = Q1D1Q
H
1 , F = Q2D2Q

H
2 ∈ M2n×2n(C). Notice that E and F are normal for themselves.

Moreover, since Q is unitary, i.e., QHQ = QQH = In, we have QH
1 Q2 = QH

2 Q1 = 0. It is now seen directly

that EF = FE = 0 holds. Beside this property there are no more obvious relations between E and F .
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This situation changes whenever the normal matrix A is (skew)-Hamiltonian or per(skew)-Hermitian. In

case of symplectic or perplectic diagonalizability, the matrices E and F are related in a particular way. This

relation between E and F is investigated in this section giving some new insights on the symplectic and

perplectic diagonalization of those matrices. To this end, the following subsection provides some facts about

Lagrangian and neutral subspaces which will be of advantage for our discussion in the sequel. This section

is based on [20, Chapter 10].

5.1. Lagrangian subspaces. Let [x, y] = xHBy be either the perplectic form with B = R2n or the

symplectic form with B = J2n on C2n × C2n. In this section, we briefly collect some information about

neutral subspaces2 with respect to the indefinite inner product [x, y] = xHBy. At first, it is obvious that

the set of all neutral subspaces in C2n constitutes a partial order under the relation of set-inclusion. That

is, for any neutral subspaces F,G,H ⊆ C2n we have reflexivity (F ⊆ F ), transitivity (F ⊆ G,G ⊆ H yields

F ⊆ H) and anti-symmetry (F ⊆ G,G ⊆ F yields F = G). Moreover, for any chain of neutral subspaces

F1 ⊆ F2 ⊆ · · · ⊆ Fk the space Fk contains all other spaces from this chain [7, Definition O-1.6]. In other

words, each chain of subspaces has an neutral subspace as an upper bound. According to the lemma of Zorn

[23], these facts lead to the observation that the (partially ordered) set of neutral subspaces has maximal

elements. The next proposition presents an upper bound for the dimensions of neutral subspaces.

Proposition 5.1. For the symplectic inner product [x, y] = xHJ2ny and the perplectic inner product

[x, y] = xHR2ny on C2n × C2n the maximal possible dimension of an neutral subspace is n.

Proof. For the Hermitian form [x, y] = xHR2ny on C2n×C2n the statement is proven in [8, Theorem 2.3.4]

noting that R2n has only the eigenvalues +1 and −1 with multiplicity n. The statement for the symplectic

form follows from the same theorem taking into account that the skew-Hermitian form [x, y] = xHJ2ny and

the Hermitian form [x, y] = xH(iJ2n)y have the same neutral subspaces and iJ2n has eigenvalues +1 and −1

again with multiplicities n.

Notice that im(S1) and im(S2) for any symplectic matrix [S1 S2 ] ∈ M2n×2n(C), Sj ∈ M2n×n(C), are

neutral of dimension n, i.e., Lagrangian (the same holds analogously for perplectic matrices). Thus, the

bound given in Proposition 5.1 is in both cases sharp. Now it is clear that im(S1) has to be a maximal

neutral subspace. The following proposition makes a statement on the dimensions of all other maximal

neutral subspaces.

Proposition 5.2. For the symplectic inner product [x, y] = xHJ2ny and the perplectic inner product

[x, y] = xHR2ny on C2n × C2n all maximal neutral subspaces have the same dimension. In particular, an

neutral subspace is maximal if and only if it is Lagrangian.

Proof. The statement for the Hermitian form [x, y] = xHR2ny is proven in [2, § 4.2]. The statement on

the symplectic form [x, y] = xHJ2ny follows again from the fact that the Hermitian form [x, y] = xH(iJ2n)y

has the same neutral subspaces as [x, y] = xHJ2ny.

The statement of the following corollary will be important in the upcoming sections.

Corollary 5.3. For the symplectic inner product [x, y] = xHJ2ny and the perplectic inner product

[x, y] = xHR2ny on C2n × C2n, each neutral subspace of C2n is contained in a Lagrangian subspace.

Proof. Let F ⊆ C2n be any neutral subspace. Then dim(F ) ≤ n holds according to Proposition 5.1.

2The results from this section (in particular, Corollary 5.3) are likely to be known although they are not readily found in

the literature. They have already been stated in [20, Section 10.1].
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As the set of all neutral subspaces of C2n is partially ordered and has maximal elements, there is always

a maximal neutral subspace G ⊆ C2n that contains S. As all maximal neutral subspaces are Lagrangian

according to Proposition 5.2, the statement follows.

5.2. Normal (skew)-Hamiltonian matrices and symplectic diagonalizability. In this section,

we consider normal (skew)-Hamiltonian matrices and analyze their properties with respect to (simultaneous)

symplectic and unitary diagonalization. A key fact used in the subsequent analysis is that matrices which

are unitary and symplectic (for which we use the abbreviation unitary-symplectic) have a very special form,

cf. Proposition 5.4 (see also [19]). Theorem 5.5 shows that unitary and symplectic diagonalizations of any

normal (skew)-Hamiltonian matrix are always compatible and simultaneously achievable. This is the basic

insight underlying the decompositions presented in Theorem 5.6.

Proposition 5.4. A matrix Q ∈ M2n×2n(C) is unitary-symplectic if and only if Q = [V JT
2nV ] for

some matrix V ∈ M2n×n(C) with V HV = In and V HJ2nV = 0.

Proof. Let Q = [Q1 Q2 ] be unitary-symplectic with Q1, Q2 ∈ M2n×n(C). As Q is unitary we have

QHQ = I2n and as it is symplectic QHJ2nQ = J2n holds. Multiplying the latter with Q from the left gives

J2nQ = QJ2n, so Q commutes with J2n. From this relation it follows that J2nQ1 = −Q2, i.e., Q2 = JT
2nQ1.

Moreover, from QHJ2nQ = J2n it follows that QH
1 J2nQ1 = 0. Now let Q = [V JT

2nV ] with V HV = In
and V HJ2nV = 0 be given. We have

[
V JT

2nV
]H

J2n
[
V JT

2nV
]

=

[
V H

V HJ2n

]
J2n

[
V JT

2nV
]

=

[
V HJ2nV V HV

−V HV −V HJT
2nV

]
=

[
In

−In

]
.

which yields QHJ2nQ = J2n. This completes the proof.

In other words, Proposition 5.4 states that Q = [V JT
2nV ] ∈ M2n×2n(C) is unitary-symplectic if and

only if the columns of V ∈ M2n×n(C) are orthonormal and span a Lagrangian subspace. Recall that a

diagonal Hamiltonian matrix D̃ ∈ M2n×2n(C) has the form

(5.8) D̃ =

[
D 0

0 −DH

]
with D = diag(λ1, . . . , λn ) ∈ Mn×n(C).

The following Theorem 5.5 gives a condition for the existence of a unitary-symplectic diagonalization of

a normal (skew)-Hamiltonian matrix. In particular, it turns out that the symplectic diagonalizability is

always sufficient. We prove the statement only for Hamiltonian matrices as the proof works analogously in

the skew-Hamiltonian case.

Theorem 5.5. A normal (skew)-Hamiltonian matrix A ∈ M2n×2n(C) is symplectic diagonalizable if and

only if it is unitary-symplectic diagonalizable.

Proof. (⇒) LetA ∈ M2n×2n(C) be normal Hamiltonian and symplectic diagonalizable viaT ∈ M2n×2n(C),

i.e.,

T−1AT =

[
D

−DH

]
, THJ2nT = J2n, D = diag(λ1, . . . , λn).

Let T = [T1 T2 ] with T1 = [ t1 · · · tn ], T2 ∈ M2n×n(C). The fact that THJ2nT = J2n holds reveals

that span(t1, . . . , tn) is a Lagrangian subspaces (as is span(T2)). Due to the normality of A, eigenspaces

for different eigenvalues of A are orthogonal to each other. Whenever any λj appears r times in D (in

positions j1, . . . , jr, say), we orthogonalize and normalize the corresponding eigenvectors tj1 , . . . , tjr from
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T1 obtaining sj1 , . . . , sjr . In particular, whenever λk appears only once in D (in position k), the sole

eigenvector tk is replaced by its normalized version sk = tk/‖tk‖2. The n vectors obtained from this

orthogonalization procedure are collected in a matrix S ∈ M2n×n(C), that is, S = [ s1 · · · sn ], and we set

Ŝ = [S JT
2nS ] ∈ M2n×2n(C). Now s1, . . . , sn are n orthonormal eigenvectors of A with span(T1) = span(S),

i.e., span(S) is still Lagrangian. According to Proposition 5.4 Ŝ is unitary-symplectic. Moreover,

(5.9) Â := ŜHAŜ =

[
SH

SHJ2n

]
A
[
S JT

2nS
]

=

[
SHAS SHAJT

2nS

SHJ2nAS SHJ2nAJ2nS

]
.

As AS = SD holds (following from AT1 = T1D and the construction of S), we have SHAS = D in (5.9)

using the fact that SHS = In. Moreover, SHJ2nAS = SHJ2nSD = 0 holds since im(S) is a Lagrangian

subspace, i.e., SHJ2nS = 0. As Ŝ is symplectic, Â remains to be Hamiltonian. This implies SHJ2nAJ2nS

in (5.9) to be equal to −DH . Therefore, we showed that Â is actually upper-triangular. However, since Ŝ

is unitary, the normality of A is preserved in Â. As a normal upper-triangular matrix must be diagonal,

ŜHAŜ is a unitary-symplectic diagonalization of A.

(⇐) This is clear.

The next Theorem 5.6 states a special property of normal Hamiltonian matrices A ∈ M2n×2n(C) which

are symplectic diagonalizable. In this case, the unitary-symplectic diagonalizability according to Theorem 5.5

reveals the existence of a specially structured additive decomposition of A similar to the one from (5.7). As

will be shown next, this decomposition is actually equivalent to A being symplectic diagonalizable. Theorem

5.6 is the main result of this section.

Theorem 5.6. A matrix A ∈ M2n×2n(C) is normal Hamiltonian and symplectic diagonalizable if and

only if A = N −N? for some normal matrix N ∈ M2n×2n(C) satisfying NN? = N?N = 0.

Proof. (⇒) Let A ∈ M2n×2n(C) be normal Hamiltonian and assume that A is symplectic diagonalizable.

According to Theorem 5.5, there exists a unitary-syplectic diagonalization UHAU = D̃ of A and, by Propo-

sition 5.4, U = [V JH
2nV ] for some matrix V ∈ M2n×n(C) with V HV = In and V HJ2nV = 0. Moreover, D̃

has the form given in (5.8) for some matrix D = diag(λ1, . . . , λn ) ∈ Mn×n(C). Then

A = UD̃UH =
[
V JH

2nV
] [D 0

0 −DH

] [
V H

V HJ2n

]
(5.10)

= V DV H − JH
2nV D

HV HJ2n = N −N?

for N := V DV H . Moreover, N is normal as NNH = V DV HV DHV H = V DDHV H coincides with NHN =

V DHDV H since D is diagonal. Furthermore, we have

NN? = V DV H
(
JH
2nV D

HV HJ2n
)

= −V D
(
V HJ2nV

)
DHV HJ2n = 0

as V HJ2nV = 0. Similarly, it can be seen that N?N = 0 holds.

(⇐) Now assume that A = N−N? holds for some normal matrix N ∈ M2n×2n(C) with NN? = N?N =

02n×2n. Then A is Hamiltonian since A? = (N − N?)? = N? − N = −(N − N?) = −A. Furthermore, we

have

(5.11)
AHA = (N −N?)H(N −N?) = NHN − (N?)HN −NHN? + (N?)HN?,

AAH = (N −N?)(N −N?)H = NNH −N?NH −N(N?)H +N?(N?)H .
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Recall that the normality of N? follows directly from the normality of N . With this observation, the

assumption NN? = N?N and the normality of N? imply N(N?)H = (N?)HN according to [9, Section 2(6)].

Similarly, we obtain N?NH = NHN? and both expressions in (5.11) coincide. Thus, A is normal.

Moreover, as N?N = JT
2nN

HJ2nN = 0, multiplication from the left with J2n yields NHJ2nN = 0, so

the columns of N span an neutral subspace. Furthermore, N?N = 0 implies im(N) ⊆ null(N?) which yields

rank(N) ≤ n since3

rank(N) = dim(im(N)) ≤ dim(null(N?)) = 2n− rank(N?) = 2n− rank(N).

Now, the normality of N and rank(N) ≤ n imply that there exists a diagonal matrix D ∈ Mn×n(C),

rank(D) = rank(N), and a matrix V ∈ M2n×n(C) with orthonormal columns (i.e., V HV = In) so that

N = V DV H . If rank(N) = k < n, then D has n − k eigenvalues equal to zero. Without loss of generality,

we assume that these zeros appear in the trailing n−k diagonal positions in D. The expression of N implies

N? = JT
2nN

HJ2n = JT
2nV D

HV HJ2n. Therefore, A can be expressed as

(5.12) A = N −N? = V DV H − JT
2nV D

HV HJ2n.

With D̃ :=
[
D
−DH

]
and U := [V JT

2nV ], we observe in accordance with (5.12) that

(5.13) UD̃UH =
[
V JT

2nV
] [D

−DH

] [
V H

V HJ2n

]
= V DV H − JT

2nV D
HV HJ2n = A.

Then, obviously, UHAU = D̃ is diagonal. Unfortunately, as long as V HJ2nV = 0 does not holds, U will

neither be unitary nor symplectic. This will only hold if im(V ) is a Lagrangian subspace. Then, in fact,

Proposition 5.4 applies and the theorem is proven. We have to distinguish between the two cases rank(N) = n

and rank(N) = k < n.

Case 1: rank(N) = n. Obviously rank(N) = n is equivalent to dim(im(N)) = n. Then we have rank(D) =

n, and therefore, im(N) = im(V ) is a Lagrangian subspace. As V HV = In holds, Proposition 5.4

yields that U is unitary-symplectic and UHAU = D̃ is a unitary-symplectic diagonalization of A.

Case 2: rank(N) = k < n. Recall that we assumed the n − k eigenvalues of D which are equal to zero to

appear in its trailing n− k diagonal positions. Then, if V = [ v1 · · · vn ] it is immediate that im(N)

coincides with the span(v1, . . . , vk). In other words, the last n−k columns vk+1, . . . , vn of V have no

contribution to the matrices N , N? or A at all. Therefore, as long as the orthogonality constraint

is met, vk+1, . . . , vn can be replaced by any other columns without changing the expression of A

in (5.13). Now we take Corollary 5.3 into account. As span(v1, . . . , vk) = im(N) is an neutral

subspace (of dimension k), it is properly contained in a Lagrangian subspace. Therefore, there exist

n− k vectors ṽk+1, . . . , ṽn ∈ C2n such that span(v1, . . . , vk, ṽk+1, . . . , ṽn) is a Lagrangian subspace.

If ṽk+1, . . . , ṽn are chosen so that

Ṽ :=
[
v1 · · · vk ṽk+1 · · · ṽn

]
∈ M2n×n(C)

has orthonormal columns, i.e., Ṽ H Ṽ = In, we obtain

(5.14)
[
Ṽ JT

2nṼ
] [D

−DH

][
Ṽ H

Ṽ HJ2n

]
= Ṽ DṼ H − JT

2nṼ D
H Ṽ HJ2n = A.

3Alternatively, rank(N) ≤ n follows from the isotropy of im(N) using the result from Proposition 5.1.
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Now the matrix Ũ := [ Ṽ JT
2nṼ ] ∈ M2n×2n(C) is unitary-symplectic according to Proposition 5.4

and ŨHAŨ = D̃ is a unitary-symplectic diagonalization of A.

Remark 5.7. Consider once again the proof of Theorem 5.6 and a decomposition A = N −N? for some

normal Hamiltonian matrix A ∈ M2n×2n(C) with NN? = N?N = 0 and normal N ∈ M2n×2n(C).

1. For the matrix N ∈ M2n×2n(C) it always holds that rank(N) = rank(N?) ≤ n and im(N), im(N?)

are neutral subspaces. Moreover, as AN = (N −N?)N = N2 and AN? = (N?)2, both im(N) and

im(N?) are invariant for A. In conclusion, im(N) and im(N?) are invariant Lagrangian subspaces

for A if rank(N) = rank(N?) = n.

2. If (λ, v) is an eigenpair of N , i.e., Nv = λv, and λ 6= 0, then

Av =
1

λ
(N −N?)(λv) =

1

λ
(N −N?)Nv =

1

λ
N2v = λv,

so λ is an eigenvalue of A with eigenvector v. In particular, we have σ(N) \ {0} ⊆ σ(A). Similarly,

it can be shown that σ(N?) \ {0} ⊆ σ(A). In conclusion, whenever rank(N) = rank(N?) = n, the

matrix A is nonsingular (i.e., 0 /∈ σ(A)) and it holds that (σ(N) ∪ σ(N?)) \ {0} = σ(A).

The additive decomposition A = N − N? ∈ M2n×2n(C) (for N being normal with NN? = N?N = 0)

proven in Theorem 5.6 can be used to easily derive some nice consequences whenever not A itself but some

expression in A is considered. One such situation is given by considering the exponential of A [10, Section 10].

Recall that the exponential of a Hamiltonian matrix yields a symplectic matrix [21, Section 7.2].

Example 5.8. Let A = N−N? ∈ M2n×2n(C) be normal Hamiltonian with some normal N ∈ M2n×2n(C)

satisfying NN? = N?N = 0. Considering the exponential exp(A) of A we obtain

exp(A) = exp(N −N?) = exp(N) exp(−N?) = exp(N) exp(N?)−1 = exp(N) exp(JT
2nN

HJ2n)−1

= exp(N)
(
JT
2n exp(NH)J2n

)−1
= exp(N)

(
JT
2n exp(N)HJ2n

)−1
= exp(N)

(
exp(N)?

)−1
,

where we have used the facts that exp(−N?) = exp(N?)−1 and exp(J−12n N
HJ2n) = J−12n exp(N)HJ2n, cf.

[10]. Notice that the exponential of a normal matrix remains to be normal. Therefore, the symplectic and

normal matrix exp(A) can be decomposed as S(S?)−1 = SS−? for some normal matrix S ∈ M2n×2n(C). If

A = N + N? is skew-Hamiltonian with N normal and NN? = N?N = 0, the same derivation shows that

exp(A) = SS? (for S = exp(N)) revealing nicely the maintained skew-Hamiltonian structure. Certainly,

exp(A) is again normal.

Theorem 5.6 directly extends to normal skew-Hamiltonian matrices which are unitary-symplectic diago-

nalizable. To this end, notice that a diagonal skew-Hamiltonian matrix D̃ ∈ M2n×2n(C) has the form given

in (4.4). Thus, the only significant difference comparing the proofs of Theorem 5.9 and Theorem 5.6 above

is a change of sign. Consequently, the proof of Theorem 5.9 is omitted.

Theorem 5.9. A matrix A ∈ M2n×2n(C) is normal skew-Hamiltonian and symplectic diagonalizable if

and only if A = N +N? for some normal matrix N ∈ M2n×2n(C) satisfying NN? = N?N = 0.

As the next example shows, the special additive decomposability of a normal skew-Hamiltonian matrix

A = N + N? ∈ M2n×2n(C) (with N normal and NN? = N?N = 0) carries over to other matrix functions

as, e.g., matrix roots. In particular, a matrix root of A can be expressed by an analogous decomposition as

A replacing N by its matrix root.
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Example 5.10. Let A = N + N? ∈ M2n×2n(C) be nonsingular, normal and skew-Hamiltonian with

N = V DV H as in (5.10) and D = diag(λ1, . . . , λn) such that

A = UD̃UH =
[
V JH

2nV
] [D 0

0 DH

] [
V H

V HJ2n

]
= V DV H + JH

2nV D
HV HJ2n = N +N?.

Define D1/2 = diag(λ
1/2
1 , . . . , λ

1/2
n ) and N1/2 := V D1/2V H (where 1/2 denotes any square root). Then N1/2

is a square root of N , that is, (N1/2)2 = N . Moreover, ((N1/2)?)2 = N? can be verified by a direct calculation

and it still holds that N1/2(N1/2)? = (N1/2)?N1/2 = 0 due to the construction of N1/2. Therefore, we obtain(
N1/2 + (N1/2)?

)(
N1/2 + (N1/2)?

)
= (N1/2)2 +N1/2(N1/2)? + (N1/2)?N1/2 +

(
(N1/2)?

)2
= N +N? = A,

and N1/2+(N1/2)? is a normal skew-Hamiltonian square root of A which is, by Theorem 5.9, again symplectic

diagonalizable. Certainly, this result can be generalized to arbitrary matrix pth roots for any p ∈ N.

5.3. Normal per(skew)-Hermitian matrices and perplectic diagonalizability. Now we turn our

attention to normal matrices which are per-Hermitian or perskew-Hermitian and analyze their properties with

respect to unitary and perplectic diagonalization. The main statements are similar to the previous results

from Section 5.2 although the indefinite inner product [x, y] = xHR2ny on C2n×C2n under consideration is

now Hermitian instead of skew-Hermitian. We begin with the characterization of matrices which are both

unitary and perplectic in Proposition 5.11 (we use the abbreviation unitary-perplectic for these matrices).

The statement analogous to Theorem 5.5 on unitary-perplectic diagonalizability is presented in Theorem

5.12 whereas the analogous results to Theorem 5.6 and 5.9 are given in Theorem 5.13.

Proposition 5.11. A matrix Q ∈ M2n×2n(C) is unitary-perplectic if and only if Q = [V R2nV Rn ]

for some matrix V ∈ M2n×n(C) with V HV = In and V HR2nV = 0.

Proof. Let Q = [Q1 Q2 ] be unitary-perplectic with Q1, Q2 ∈ M2n×n(C). As Q is unitary we have

QHQ = I2n and as it is perplectic QHR2nQ = R2n holds. Multiplying the latter with Q from the left gives

R2nQ = QR2n, so Q commutes with R2n. Matrices satisfying this condition are known as centrosymmetric

[1, Definition 2.2]. It is easy to see that any centrosymmetric matrix C ∈ M2n×2n(C) is symmetric with

respect to the center of it and thus can be expressed as C = [W R2nWRn ] for some W ∈ M2n×n(C).

Moreover, any matrix of the form of C is centrosymmetric for any W . Now let Q = [V R2nV Rn ] with

V HV = In and V HR2nV = 0 be given. Then we have

[
V R2nV Rn

]H
R2n

[
V RT

2nV Rn

]
=

[
V H

RnV
HR2n

]
R2n

[
V R2nV Rn

]
=

[
V HR2nV V HV Rn

RnV
HV RnV

HR2nV Rn

]
=

[
Rn

Rn

]
,

which gives QHR2nQ = R2n. This completes the proof.

The analogous result to Theorem 5.5 is stated in the following proposition.

Theorem 5.12. A normal per(skew)-Hermitian matrix A ∈ M2n×2n(C) is perplectic diagonalizable if

and only if it is unitary-perplectic diagonalizable.
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The proof of Theorem 5.12 goes along the same lines as that of Theorem 5.5 noting that, for any per-

plectic matrix P = [P1 P2 ] ∈ M2n×2n(C) with P1, P2 ∈ M2n×n(C), span(P1) and span(P2) are Lagrangian

subspaces. The same orthogonalization procedure of the eigenvectors of A given by the columns of P1 as dis-

cussed in the proof of Theorem 5.5 then admits the construction of a unitary-perplectic matrix (characterized

by Proposition 5.11) which diagonalizes A.

Notice that a diagonal per(skew)-Hermitian matrix D̃ ∈ M2n×2n(C) has the form

(5.15) D̃ =

[
D

±RnD
HRn

]
with D = diag(λ1, . . . , λn) ∈ Mn×n(C).

The characterization of unitary-perplectic matrices in Proposition 5.11 together with (5.15) admit a proof

analogous to that of Theorem 5.6 for the following results.

Theorem 5.13.

1. A matrix A ∈ M2n×2n(C) is normal per-Hermitian and perplectic diagonalizable if and only if

A = N +N? for some normal matrix N ∈ M2n×2n(C) satisfying NN? = N?N = 0.

2. A matrix A ∈ M2n×2n(C) is normal perskew-Hermitian and perplectic diagonalizable if and only if

A = N −N? for some normal matrix N ∈ M2n×2n(C) satisfying NN? = N?N = 0.

Comparing Theorem 5.6 and Theorem 5.9 to Theorem 5.13 notice that the decomposition A = N ±N?

always carries a ‘–’ sign whenever A is skewadjoint and a ‘+’ sign if A is selfadjoint with respect to the

indefinite inner products [x, y] = xHJ2ny and [x, y] = xHR2ny, respectively. It can be shown analogously

to Example 5.8 that the exponential exp(A) of any normal per(skew)-Hermitian matrix A = N ±N? (with

normal N ∈ M2n×2n(C) satisfying NN? = N?N = 0) can be expressed as exp(A) = PP±? for the normal

matrix P = exp(N). In particular, whenever A is normal perskew-Hermitian, then exp(A) is normal and

perplectic with an expression of the form exp(A) = PP−? for a normal matrix P . Similarly, the result from

Example 5.10 extends by the same reasoning to per-Hermitian matrices.

6. Conclusions. In this work, we analyzed (skew)-Hamiltonian and per(skew)-Hermitian matrices

under the viewpoint of structure-preserving diagonalizability. We showed that the symplectic and perplectic

diagonalization of such matrices is possible if and only if certain conditions apply to their real or purely

imaginary eigenvalues and corresponding eigenspaces (cf. Theorems 4.3 and 4.5). This diagonalizability

condition turned out to be essentially the same for (skew)-Hamiltonian and per(skew)-Hermitian matrices

although their structures are determined by a skew-Hermitian indefinite inner product and a Hermitian

indefinite inner product, respectively. We conferred special attention to those structured matrices which are

additionally normal. In this case, it was shown that an existing symplectic or perplectic diagonalization is

a sufficient criterion to guarantee a diagonalization by a unitary-symplectic or unitary-perplectic similarity

transformation to exist (Theorems 5.12 and 5.5). For normal (skew)-Hamiltonian and per(skew)-Hermitian

matrices it was proven that a symplectic or perplectic transformation to diagonal form implies the existence

of a structured additive decomposition of such matrices. In turn, such an additive decomposition was shown

to imply the matrix at hand to be unitary-symplectic or unitary-perplectic diagonalizable and gave an

alternative characterization of such matrices (Theorems 5.6, 5.9 and 5.13). The proof of this fact essentially

required the knowledge that every neutral subspace is contained in a maximal neutral subspace (the latter

has been called Lagrangian subspace, cf. Corollary 5.3). Throughout this work, some examples have been

provided to illustrate the obtained results.
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