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A PROJECTIVE APPROACH TO NONNEGATIVE MATRIX FACTORIZATION∗

PATRICK GROETZNER†

Abstract. In data science and machine learning, the method of nonnegative matrix factorization (NMF) is a powerful

tool that enjoys great popularity. Depending on the concrete application, there exist several subclasses each of which performs

a NMF under certain constraints. Consider a given square matrix A. The symmetric NMF aims for a nonnegative low-rank

approximation A ≈ XXT to A, where X is entrywise nonnegative and of given order. Considering a rectangular input matrix

A, the general NMF again aims for a nonnegative low-rank approximation to A which is now of the type A ≈ XY for entrywise

nonnegative matrices X,Y of given order. In this paper, we introduce a new heuristic method to tackle the exact nonnegative

matrix factorization problem (of type A = XY ), based on projection approaches to solve a certain feasibility problem.
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1. Introduction. Throughout the article, let Rn
+, resp. Rn×m

+ denote the sets of entrywise nonnegative

vectors and matrices, respectively. We write Sn for the set of symmetric matrices of order n and let ‖ · ‖F
denote the Frobenius norm.

Nonnegative matrix factorization (NMF) aims for a nonnegative approximation to a given matrix that

can be at the same time a low-rank-approximation of given rank. To be more precise, the NMF considers

the following setting, cf. [14, Equation 3] or [15, Equation 1.1].

Definition 1.1. Let A ∈ Rn×m
+ and k � min{n,m}, then the solution matrices X ∈ Rn×k

+ and Y ∈
Rk×m

+ of the problem

min
X∈Rn×k

+ , Y ∈Rk×m
+

‖A−XY ‖2F ,

yield a NMF XY of A.

Note that a NMF is not unique in general, since for any NMF XY of A and for any nonnegative matrix Z

with Z−1 being entrywise nonengative as well, X̃ := XZ and Ỹ := Z−1Y also provide a NMF of A. Adding

further constraints to the problem in Definition 1.1 or slight changes in the objective function lead to various

specially structured NMF problems. If we allow A and one of the matrices X,Y to have negative entries,

this defines the Semi NMF, cf. [33, Section 2.2]. This problem is motivated by data clustering. For the

Sparse NMF, cf. [33, Sections 2.7-2.9], we add the (possibly weighted) penalty term
∑

i,j Yij to the objective

function to ensure sparsity of the matrix Y . In case rank(A) ≤ k ≤ min{m,n}, considering the problem

(1.1) find{X ∈ Rn×k
+ , Y ∈ Rk×m

+ | A = XY },

defines the so-called exact NMF, cf. [31]. In the context of machine learning and data mining, the exact NMF

can be used as a tool in mining and image processing, cf. [23]. Moreover, the exact NMF is of theoretical
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importance: In [32] it forms the basis for the NP-hardness proof of the NMF. As a key result of this article,

we will see a new heuristic method to obtain an exact NMF. The minimal integer k such that there exists

X ∈ Rn×k
+ , Y ∈ Rk×m

+ such that A = XY is called the nonnegative-rank of A denoted by rank+(A). It is

easy to see that rank+(A) ≤ min{m,n}.

In addition, the following symmetric case can be seen as a special case of the problem in Definition 1.1.

Let A ∈ Rn×n
+ be symmetric. To introduce the symmetric nonnegative matrix factorization (SymNMF)

of A, consider the following setting, cf. [5], [18].

Definition 1.2. Given A ∈ Sn and k � n, the solution matrix X ∈ Rn×k
+ of

min
X∈Rn×k

+

‖A−XXT ‖2F ,

yields a symmetric nonnegative matrix factorization XXT of A.

The SymNMF is related to data clustering, particularly Kernel K-means clustering and Laplacian-based

spectral clustering, as discussed in [10]. As a concrete example, it can be used to analyze the structure of a

given data set, like facial poses as shown in [17] or heterogeneous microbiome data, as introduced in [25].

There exist several approaches to compute a SymNMF of a given matrix A and given order k. For

an algorithm based on certain update rules, the reader is referred to the approach in [10]. Newton-like

methods for SymNMF can be found in [20, Section 3]. Borhani et al. [5] introduce an accelerated proximal

gradient method and an alternating direction approach. All of these approaches are heuristic in the sense

that convergence is not guaranteed.

Coming back to the more general framework of NMF in Definition 1.1, a broad field of applications is

connected to this problem. For instance, some aspects in environmental [28] and meteorological sciences [30]

demand an NMF. Moreover, the NMF appears in the analysis of financial data [11] and biomedical applica-

tions [6], where it helps to classify cancer cells.

NMF itself can be seen as a special subclass of so called constrained low-rank matrix approximation

problems as introduced in [14]. Therefore, various applications of the NMF approach are related to this topic.

One very illustrative application is hyperspectral imaging, cf. [14], where every pixel of a hyperspectral image

is represented via more than 100 channels which correspond to deeper information of several wavelengths of

the image, some of them invisible to the human eye. This approach boils down to the NMF framework. See

also [13].

Moreover, in the context of data science, NMF can be used for so called intelligent data analysis, as

shown in [8]. Especially when the quantities are known to be nonnegative, for example, due to physical laws,

NMF can be used to determine part-based representations of given data. Here a concrete example, again

given in [8], is educational data mining. For a survey on this topic, the reader is referred to [26]. Here the

goal is to collect, store, and analyze data obtained from learning and evaluation processes of students.

Other possible applications are multi-document summarization, cf. [7] and analysis of magnetic resonance

spectroscopy data, cf. [21]. As already mentioned for the symmetric case, NMF is closely related to data

clustering, cf. [22].

The most popular approach in the context of NMF is to use certain multiplicative update rules as first

introduced in [24], see also [10]. Here we should note that we can not modify zero entries and the method
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is not guaranteed to converge to a stationary point. The authors in [4] provide a summary of the common

NMF methods, like gradient descent methods, where only little can be said about the convergence of these

methods, see also [18, Section 3.3]. Here the idea is to rewrite the NMF problem as a convex problem

over a nonconvex set. Further, adding the nonnegativity projection makes the analysis even more difficult.

Alternating least squares methods, as in [28], are dealing with the decompostition matrices X and Y in an

alternating manner. Here no general convergence result is known.

In the context of exact NMF as in (1.1), the authors in [31] provide several heursitics to solve this

problem. One motivated by simulated annealing, another one based on the greedy randomized adaptive

search procedure and a hybridization of the two heuristics. In contrast to the existing literature, this

paper introduces a new view on the NMF setting in a different alternating manner and, for the symmetric

case, shows the connection to the so-called completely positive matrices in Section 2. In Section 3, we will

formulate the NMF and the SymNMF problem as feasibility problems which pave the way to new approaches

working with so called alternating projection frameworks. For the general rectangular case in Section 4, we

extend the results for the symmetric case introduced in [16] and under the assumption that the best low-rank

approximation is nonnegative, we will show that this extension may additionally return NMFs. Especially,

we will see a new heuristic method to derive exact NMF. In addition, numerical experiments will be shown

in Section 5 to illustrate the performance of the method in concrete settings and we will see a comparison

of the heuristic method introduced in this paper to the exact NMF heuristics in [31].

2. Completely positive matrices and their relation to symmetric nonnegative matrix factor-

ization. A symmetric matrix A ∈ Rn×n is called completely positive if there exists an entrywise nonnegative

matrix X ∈ Rn×r such that A = XXT . We call such a factorization a cp-factorization of A. The set of all

completely positive matrices,

CPn := {A ∈ Rn×n | A = XXT where X ∈ Rn×r, X ≥ 0} = conv{xxT | x ∈ Rn
+},

is a proper cone whose extreme rays are the rank-one matrices xxT with x ∈ Rn
+, cf. [1]. The minimal

possible number of columns r in the factorization matrix X is called the cp-rank cpr(A) and in general we

have cpr(A)� rank(A). Note that it may well happen (and often does) that cpr(A) > n. Thus, completely

positive matrix factorization is a special case of the SymNMF, albeit without the low rank constraint. In a

cp-factorization, we have k ≥ cpr(A) and for the SymNMF, k ≤ n is assumed.

Nevertheless, the problem in Definition 1.2 can be rewritten as

min
B∈CPn

cpr(B)=k

‖A−B‖2F .

Thus, the SymNMF seeks for the best completely positive approximation of cp-rank k to A. Since it is not

possible to compute the cp-rank of a given completely positive matrix in general, cf. [2], we will use the rank

of the matrix as a lower bound for the cp-rank. Hence, in case k ≤ rank(A), we will try to factorize a rank-k

approximation of A instead of A itself.

3. Nonnegative matrix factorization as a feasibility problem. To introduce our method to

determine a NMF or a SymNMF of a given matrix A, a first step is to compute the best rank-k-approximation

of A. Here we use the well-known theorem by Eckart and Young in [12] which was proven to hold for any

unitarily invariant norm by Mirsky in [27]. Let Ok denote the set of orthogonal matrices of order k and for

a given matrix A, let Ai∗ resp. A∗j denote the i-th row resp. the j-th column of A.
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Theorem 3.1. Let A ∈ Rn×m with rank(A) = l and consider its singular value decomposition A =

UΣV T , where U ∈ On, V ∈ Om,

Σ =



σ1
...

. . . · · · 0 · · ·

σl
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...


∈ Rn×m,

σ1 ≥ σ2 ≥ · · · ≥ σl > 0 are the singular values of A. So A can be written as

A =

l∑
j=1

σjU∗jV
T
∗j .

Let k ≤ l = rank(A), then

Ak :=

k∑
j=1

σjU∗jV
T
∗j ,

is the best rank-k approximation (in the Frobenius norm) of A, i.e.

Ak ∈ Argmin
{
‖A−X‖2F

∣∣ X ∈ Rn×m with rank(X) ≤ k
}
,

with corresponding minimal value

‖A−Ak‖2F =

m∑
j=k+1

σ2
j .

Moreover, if σk > σk+1, then Ak is the unique global minimizer.

In the following Ak will denote the best rank-k-approximation to A. The subsequent lemmas now indicate

that it is sufficient to determine a nonnegative factorization of Ak to obtain an (exact) NMF or a SymNMF

in the symmetric case.

Lemma 3.2. Let A ∈ Rn×m
+ . Further let Ak be as in Theorem 3.1. Then any factorization Ak = XY

with X ∈ Rn×k
+ and Y ∈ Rk×m

+ gives a NMF of A. In case k ≥ rank(A), the factorization XY is an exact

nonnegative matrix factorization of A.

Proof. Due to Theorem 3.1, Ak = XY ∈ Argmin
{
‖A− Z‖2F

∣∣ Z ∈ Rn×m with rank(Z) ≤ k
}

and since

X ∈ Rn×k
+ and Y ∈ Rk×m

+ , we get XY as a nonnegative factorization of A. Note that in case k ≥ rank(A),

we have Ak = A, completing the proof.

Thus, to obtain an (exact) NMF of A, it is sufficient to factorize Ak = XY , where X ∈ Rn×k
+ and

Y ∈ Rk×m
+ .

Lemma 3.3. Let A ∈ Sn, k ≤ n, and let Ak as in Theorem 3.1. Further assume that Ak ∈ CPn with

cpr(Ak) ≤ k. Then any cp-factorization Ak = XXT with X ∈ Rn×k of Ak is a solution to the problem in

Definition 1.2 and hence a SymNMF of A of rank k.
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Proof. Let Ak = XXT be a cp-factorization of Ak with X ∈ Rn×k. Then, due to Theorem 3.1,

XXT ∈ Argmin
{
‖A− Z‖2F

∣∣ Z ∈ Rn×m with rank(Z) ≤ k
}

and since X ∈ Rn×k
+ , we get that XXT is a

SymNMF of A.

To compute a SymNMF, it is therefore sufficient to find a cp-factorization of Ak of order n× k. To obtain a

nonnegative factorization of Ak as in Lemmas 3.2 or 3.3, we will start with an arbitrary initial factorization

of Ak. Let A = UΣV T be the SVD of A. In the rectangular case and if k ≤ rank(A), we use the SVD

Ak = UkΣkV
T
k , where the matrices Uk, Σk, Vk are the truncated versions of U,Σ and V .

(3.2) Xk := Uk

√
Σk ∈ Rn×k and Yk :=

√
ΣkV

T
k ∈ Rk×m,

now defines an initial factorization Ak = XkYk which is not necessarily entrywise nonnegative. In case

rank(A) ≤ k ≤ min{m,n}, we consider

(3.3) Xk := U
√

Σ ∈ Rn×k and Yk :=
√

ΣV T ∈ Rk×m,

as our initial factorization where again negative entries may occur.

For the symmetric case, one can for instance use the Cholesky decomposition Ak = XkX
T
k where Xk is

a lower triangular matrix, or the spectral decomposition Ak = V ΣV T by setting

(3.4) Xk := V Σ
1
2 ,

to obtain an initial factorization. Again, if k ≥ rank(A), we take Ak = A.

In both settings, we assume the the matrices Xk and Yk to have negative entries. If this is not the

case, we already generated a NMF or a SymNMF, respectively. Our goal now is to transform the initial

factorizations into nonnegative ones.

First, we focus on the symmetric case, where we use the following tool to compute a completely positive

factorization of Ak, cf. [16, Lemma 2.5].

Lemma 3.4. Let Xk, Zk ∈ Rn×k. Then XkX
T
k = ZkZ

T
k if and only if there exists Q ∈ Ok with XkQ =

Zk.

So to transform the factorization Ak = XkX
T
k into a nonnegative factorization Ak = ZkZ

T
k , we have to

we solve the following feasibility problem:

(3.5)

find Q

s. t. XkQ ≥ 0

Q ∈ Ok.

This problem is feasible if and only if Ak ∈ CPn with cpr(Ak) ≤ k. Introducing the polyhedral cone

P := {Q ∈ Rk×k | XkQ ≥ 0}, we rewrite (3.5) as

(3.6) find Q ∈ Ok ∩ P.

Hence, we reduced the task to compute a SymNMF to solving Problem (3.6).

In the general nonsymmetric case, Lemma 3.4 does not apply, as the following example substantiates.

As it turns out, we need to replace orthogonal matrices by a more general tool.
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Example 3.5. Let

X =

(
6 0

0 6

)
, Y =

(
2 0

0 2

)
, G =

(
3 0

0 3

)
and H =

(
4 0

0 4

)
.

Then we have XY = GH. Moreover, observe that the equations XQ = G resp. Q̂Y = H have the unique

solutions

Q =

(
1
2 0

0 1
2

)
resp. Q̂ =

(
2 0

0 2

)
= Q−1.

This is the unique Q for which XQ = G and Q−1Y = H. This Q is nonsingular, but not in O2.

This now motivates the following result. In the following, for a given matrix A, let R(A) resp. S(A)

denote the subspaces spanned by the rows resp. columns of A and let A+ denote the Moore-Penrose-inverse

of A.

Lemma 3.6. Let X,G ∈ Rn×k and Y,H ∈ Rk×m all be of rank k. Then we have XY = GH if and only

if there exists a nonsingular matrix Q ∈ Rk×k such that XQ = G and Q−1Y = H.

Proof. The if part is obvious. For the reverse part, observe that X and G are of the same rank. It is

easy to see that there exists a linear map f : R(X)→ R(G), xT 7→ xTAf such that f(Xi∗) = Xi∗Af = Gi∗
for all i ∈ {1, . . . , n}. Similarly, there exists a linear map g : S(Y ) → S(H), y 7→ Agy such that g(Y∗j) =

AgY∗j = H∗j for all j ∈ {1, . . . ,m}. Due to the equality XY = GH, we have

(3.7) Xi∗Y∗j = Gi∗H∗j for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

Furthermore, since rank(X) = rank(G) = k, the matrix Af is nonsingular and f is bijective, so we have that

for every i, j

Xi∗Y∗j = f−1(Gi∗)Y∗j = Gi∗A
−1
f Y∗j and Gi∗H∗j = Gi∗AgY∗j .

With the help of equation (3.7), we therefore get

(3.8) Gi∗A
−1
f Y∗j = Gi∗AgY∗j ,

for every i = 1, . . . , n and j = 1, . . . ,m. Moreover, Y is of full row-rank such that Y Y + = Im×m and G is of

full column-rank such that G+G = In×n.

Thus, equation (3.8) can be rewritten as

GA−1f Y = GAgY ⇔ G+GA−1f Y Y + = G+GAgY Y
+ ⇔ A−1f = Ag,

which completes the proof.

This lemma therefore shows that instead of using orthogonal matrices to transform one factorization of

type A = XY into another one, we will apply the generalized result of Lemma 3.6, and we will therefore

work with nonsingular matrices. For possible regularizations, we use the following approach, for which the

proof follows by construction.

Lemma 3.7. Consider A ∈ Rn×n with rank(A) = k < n and its singular value decomposition A =

UΣV T . Furthermore, let j ≤ k and define a diagonal matrix Σ̃ ∈ Rn×n via

Σ̃ii :=

{
Σii, if i ≤ k
Σjj , if i > k

,

and therewith Ã := U Σ̃V T . Then Ã is nonsingular and A is a best rank-k-approximation of Ã.
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To again obtain a feasibility problem, we introduce the sets

PXk
:= {Q ∈ Rk×k | XkQ ≥ 0} and

PYk
:= {Q ∈ Rk×k | Q is nonsingular and Q−1Yk ≥ 0}

,(3.9)

and note the following result.

Theorem 3.8. Let A ∈ Rn×m and k ≤ min{m,n}. Consider Ak as in Theorem 3.1 and its initial

factorization Ak = XkYk as in (3.2) or (3.3). Then, to obtain a NMF of A of rank k, it is sufficient to find

a matrix Q ∈ PXk
∩ PYk

.

Proof. If Q ∈ PXk
∩ PYk

, then Q is nonsingular by definition of PYk
. Moreover, we have

Ak = XkYk = (XkQ)︸ ︷︷ ︸
≥0

(Q−1Yk)︸ ︷︷ ︸
≥0

,

as a NMF of A due to Lemma 3.2, completing the proof.

We can therefore reduce the problem of finding an NMF to solving the problem

(3.10) find Q ∈ PXk
∩ PYk

.

In summary, to compute a SymNMF resp. a NMF, it is sufficient to solve Problem (3.6) resp. (3.10).

Remark 3.9. The methods introduced in [16] can be used to to derive completely positive factorizations

of Ak and therefore to obtain a symmetric nonnegative matrix factorization of A, as Lemma 3.3 substantiates.

There the method of alternating projections, cf. [9] is used in order to solve Problem (3.6). Here the idea is

to project a starting point orthogonally onto the first set and the resulting element onto the second set and

to repeat this procedure in order to obtain an intersection point in the limit.

4. Solving the feasibility problem (3.10). A first idea would be to use a similar alternating projec-

tion approach as in [16]. Here the question arises how to project onto the sets PXk
and PYk

. As mentioned

in [16], the projection onto PXk
is unique and amounts solving a certain SOCP. However, since PYk

is not

closed, we can not project onto this set. Nevertheless, in the following, we will show that we can develop a

modified version motivated by the heuristic extension in [16].

Let Xk and Yk be as defined in (3.2). We start with some initial nonsingular matrix Q0 and project

XkQ0 onto the nonnegative orthant Rn×k
+ . We obtain

(4.11) Gij := max {(XkQ0)ij , 0} for all i = 1, . . . , n and j = 1, . . . , k.

Moreover, we also project Q0Yk onto the nonnegative orthant Rk×m
+ and obtain

(4.12) Hij := max {(Q0Yk)ij , 0} for all i = 1, . . . , k and j = 1, . . . ,m.

In order to approximate the projection ΠPXk
(Q) ∈ Rk×k and to obtain an element in PYk

⊆ Rk×k,

respectively, we modify G ∈ Rn×k, respectively, H ∈ Rk×m. This idea now leads to the following tool.

Lemma 4.1. Let Xk and Yk be as in (3.2). Furthermore, let G,H be as defined in (4.11) and (4.12).

Then X+
k G = ArgminZ∈Rk×k{‖XkZ −G‖F } and HYk

+ = ArgminZ∈Rk×k{‖ZYk −H‖F }.
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Proof. First, we focus on the equation XkZ = G and assume that there exists a solution Z. It is well

known, cf. [19, Theorem 2] and [29], that the complete set of solutions of this equation is given as

(4.13)
{
Z = Xk

+G+ (I −X+
k Xk)T

∣∣ T ∈ Rk×k} =
{
X+

k G
}
,

where the equation holds since Xk is of full column rank such that X+
k Xk = I. Thus, ‖XkZ − G‖F = 0 if

and only if Z = X+
k G. On the other hand, for the case where there does not exist a solution Z to XkZ = G,

again the residual ‖XkZ − G‖F is minimal if and only if Z = X+
k G. An analogous argument proves the

result for the equation ZYk = H.

With this we can now give an approximation to Q in PXk
respectively PYk

, which can be easily computed.

Lemma 4.2.

(a) Let G be the projection of XkQ onto Rn×k
+ . If G = XkQ, then Q ∈ PXk

. If G 6= XkQ and the

equation XkZ = G is solvable for Z, then X+
k G ∈ PXk

.

(b) Let H be the projection of QYk onto Rk×m
+ . If QYk = H and Q is nonsingular, then Q−1 ∈ PYk

.

On the other hand, let H 6= QYk and assume that the matrix HY +
k is nonsingular. Further assume

that the equation ZYk = H is solvable for Z. Then we have (HY +
k )−1 ∈ PYk

.

Proof.

(a) If G = XkQ, then XkQ ≥ 0, i.e., Q ∈ PXk
. Otherwise, let G 6= XkQ and assume that the equation

XkZ = G is solvable for Z. Then Lemma 4.1 yields Z = X+
k G. Therefore, X+

k G is the projection

of Q onto the set {Z ∈ Rk×k | XkZ = G}. Since G ≥ 0, we get X+
k G ∈ PXk

.

(b) If QYk = H and Q is nonsingular, then QYk ≥ 0 and Q−1 ∈ PYk
by definition. Otherwise, let

H 6= QYk and assume that ZYk = H has a solution Z. Hence, Z = HY +
k due to Lemma 4.1. Thus,

HY +
k is the projection of Q onto the set {Z ∈ Rk×k | ZYk = H}. Since HY +

k is nonsingular by

assumption and H ≥ 0 by definition, we get (HY +
k )−1 ∈ PYk

.

In addition, if the equation XkZ = G does not have a solution, then Z := X+
k G minimizes the residual

‖XkZ − G‖F . In this case, we get XkZ = XkX
+
k G. Here XkX

+
k 6= I in general since Xk is not of full

row-rank. Thus, it may happen that X+
k G /∈ PXk

; however, this does not seem to impair the good numerical

performance.

If on the other hand the equation ZYK = H does not have a solution, we get with Lemma 4.1 that

Z := HY +
k minimizes the residual ‖ZYK−H‖F . Thus, ZYk = HY +

k Yk. In this equation, we have Y +
k Yk 6= I

in general since Yk is not of full column rank. Hence, even if HY +
k is nonsingular, it may happen that

(HY +
k )−1 /∈ PYk

. However, this does not seem to impair the good numerical performance either.

If we combine the results in Lemmas 4.1 and 4.2, we derive matrices in PXk
or PYk

without solving an

SOCP. Moreover, in Lemma 4.2, we assumed that HY +
k is nonsingular. This is equivalent to a certain rank

assumption for H.

Lemma 4.3.

(a) In our setting, the matrix HY +
k ∈ Rk×k is nonsingular if and only if H ∈ Rk×m is of rank k.

(b) In addition, the matrix X+
k G ∈ Rk×k is nonsingular if and only if G ∈ Rn×k is of rank k.
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Proof. We only prove (a), part (b) follows analogously: First observe that by Sylvester’s inequality,

cf. [3, Corollary 2.5.10], we have

rank(H) + rank(Y +
k )− k ≤ rank(HY +

k ) ≤ min{rank(H), rank(Y +
k )}.

Since rank(Y +
k ) = rank(Yk) = k, this yields

(4.14) rank(H) ≤ rank(HY +
k ) ≤ min{rank(H), k}.

Now observe that HY +
k is nonsingular if and only if rank(HY +

k ) = k. Due to (4.14), this is true if and only

if rank(H) = k.

From now on, we will take X+
k G, respectively, (HY +

k )−1 as approximations of PPXk
(Q), respectively,

PPYk
(Q). This reasoning leads to Algorithm 1.

Algorithm 1 Nonnegative Matrix Factorization

Input: A ∈ Rn×m with its singular value decomposition A = UΣV T ; k ≤ min{m,n}; initial nonsingular

matrix Q ∈ Rk×k

1: Ak ←
k∑

j=1

σjU∗jV
T
∗j

2: Compute Xk and Yk as in (3.2) or as in (3.3)

3: while XkQ 6≥ 0 or Q−1Yk 6≥ 0 do

4: G← max{XkQ, 0} entrywise

5: QG ← Xk
+G

6: if rank(G) < k then

7: QG ← Q̃G according to Lemma 3.7

8: end if

9: H ← max{Q−1G Yk, 0} entrywise

10: QH ← HYk
+

11: if rank(H) < k then

12: QH ← Q̃H according to Lemma 3.7

13: end if

14: Q← Q−1H

15: end while

Output: Nonsingular matrix Q and a nonnegative matrix factorization (XkQ)(Q−1Yk) of A.

In step 3, the main while loop of the algorithm starts. As long as the matrices XkQ and Q−1Yk have

some negative entries, we at first define G as the entrywise maximum introduced in (4.11). In step 5, we

then look for a solution QG of min ‖XkQG − G‖F with the help of Lemma 4.2. Moreover, if the equation

XkQ = G is solvable for Q, we get that X+
k G ∈ PXk

. To obtain a matrix in PXk
∩PYk

, and since the set PYk

is based on the inverse of the considered matrices, we check in step 6 whether X+
k G is nonsingular, based

on the result in Lemma 4.3 and regularize X+
k G if necessary. Using its inverse matrix as the matrix Q0

in (4.12), we obtain the matrix H in step 9 as the introduced entrywise maximum. In step 10, we then look

for a solution QH of the problem min ‖QHYk −H‖F again with the help of Lemma 4.2 and check whether

QH is nonsingular using Lemma 4.3. According to Lemma 4.2, we know that if QH is nonsingular and the

equation QYk = H is solvable, we have Q−1H ∈ PYk
. If necessary, we regularize the matrix QH and take its

inverse as our next iterate in step 14.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 37, pp. 583-597, August 2021.

P. Groetzner 592

Remark 4.4. Consider Ak as in Theorem 3.1. A necessary assumption for Algorithm 1 to terminate

successfully is that there exists an exact factorization Ak = XkYk with Xk ∈ Rn×k
+ and Yk ∈ Rk×m

+ . Clearly,

this can only be true if Ak ∈ Rn×m
+ . To the best of my knowledge, no general conditions are known for this

to hold, but in the following numerical experiments and especially for the benchmark instances introduced

in [31], this assumption holds.

Remark 4.5. The main computational burden for each iteration within the while loop lies in the compu-

tation of the Moore–Penrose-inverses. We thus obtain O(k3) for the worst-case complexity of one iteration.

5. Numerical results for nonnegative matrix factorization. The following numerical results were

carried out on a computer with 88 Intel Xenon ES-2699 cores (2.2 Ghz each) and a total of 0.792 TB Ram.

The algorithms were implemented in MatlabR2017a. The algorithm terminates successfully if it returns

matrices (XkQ) and (Q−1Yk) which are entrywise greater than or equal to −10−12 and it terminates without

success if these conditions are not fulfilled and the maximum number of iterations is reached.

As a first example, consider the following randomly generated matrix

(5.15) A =


7 3 5 4 13 1 1 4

6 2 2 4 10 16 8 2

9 11 1 9 9 5 3 14

3 10 1 13 19 7 0 13

21 4 2 2 20 6 4 3

 ∈ R5×8,

of rank 5 and let k = 3. Then we compute the best rank-3 approximation A3 to A:

A3 =


8.9667 4.2210 1.5947 3.5945 11.1316 1.6312 0.8958 4.8216

6.0643 2.0481 1.4711 3.9834 10.0323 16.0878 7.8358 1.9519

5.5122 8.9454 1.4337 9.6742 13.5665 4.7817 1.0274 11.5364

5.1814 11.2683 1.5752 12.5851 15.9546 7.0005 1.5595 14.6929

20.5074 3.6837 3.3835 2.1058 20.3494 5.7566 4.2303 2.8895

 .

Based on the technique introduced in (3.2), we get the initial factorization A3 = X3Y3 with

A3 =

(−2.2164 0.3624 1.0742
−2.4818 1.1425 −3.2988
−3.1257 −1.7305 0.3226
−3.7949 −2.4724 −0.0604
−3.8469 2.8992 1.3067

)
︸ ︷︷ ︸

X3∈R5×3

(−3.0116 −1.9850 −0.6127 −2.0773 −4.6122 −2.1422 −0.9359 −2.3673
2.4952 −1.5193 0.3004 −1.8944 0.6106 0.5318 0.8395 −2.3186
1.2916 0.3463 0.1190 −0.3008 0.6402 −3.0811 −1.3805 0.3863

)
︸ ︷︷ ︸

Y3∈R3×8

,

where rank(X3) = rank(Y3) = 3 by definition. As an initial nonsingular matrix, we take

Q0 =

0.4397 0.0464 0.2059

0.3518 0.8796 0.0828

0.2594 0.3400 0.4412

 .

Algorithm 1 then takes 153 iterations and 0.0144 seconds to return the factorization

A3 =

(
0.7170 0.0226 0.0047
0.2196 1.3784 0.0020
0.4051 0.1073 0.0128
0.3506 0.2145 0.0165
1.5761 0.4598 0.0014

)
︸ ︷︷ ︸

X̃3∈R5×3
+

(
12.2890 1.6756 1.9019 0.1499 10.9775 0.1221 1.0755 1.0565
2.4108 0.2940 0.6981 1.8080 4.5600 11.2559 5.5133 0.0000
21.5553 644.1498 46.0188 736.7893 675.0740 275.6546 0.0000 868.9005

)
︸ ︷︷ ︸

Ỹ3∈R3×8
+

.
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Due to Theorem 3.1, we have

‖A−A3‖F = ‖A− X̃3Ỹ3‖F ≤ ‖A−B‖F ,

for every B ∈ Rn×m with rank(B) ≤ 3. Combined with the fact that X̃3 and Ỹ3 are entrywise nonnegative,

we get that X̃3Ỹ3 is the desired NMF of A of rank 3.

Moreover, in the following experiment, we will have a closer look at the influence of the parameter k for

a given matrix A ∈ Rm×n.

To this end, we consider the randomly generated matrix

A =


16 40 29 9 42 36 24 26

19 41 30 11 26 31 22 30

24 34 50 36 25 42 41 48

13 24 26 25 16 34 28 35

9 39 29 18 19 39 19 38

 ∈ R5×8.

For the experiment, we test the performance of 100 starting points Q0 with a maximum of 3000 iterations

per starting point in Algorithm 1 for different values of k. The results are collected in Figure 1.

Figure 1 indicates that the performance of Algorithm 1 depends on the choice of k. Whereas for k = 2

nearly every starting point returns a NMF, the success rate decreases for higher values of k. Taking k = 4

still returns a success rate of more than 90%. For k = 5 = rank(A), it is still possible to derive a NMF of

A. This therefore shows that it is not necessary to add a low-rank constraint to obtain a NMF. Algorithm 1

can thus be applied to compute exact nonnegative matrix factorizations. Figure 1 therefore substantiates

the good performance of Algorithm 1 for different choices of k for the concrete test instance.

The next experiment will analyse the influence of the order n ×m of the given matrix A on the per-

formance of Algorithm 1. To this end, we consider randomly generated matrices A ∈ Rn×m for different

Figure 1. Success rate of Algorithm 1 for a given matrix of order 5× 8 and different values of k.
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Figure 2. Success rate of Algorithm 1 for matrices of order n×m and k = b0.7 ·min{n,m}c.

values of n and m. The instances are generated as follows: Given the values n,m, we define l := min{n,m}
and with this, we construct matrices X ∈ Rn×l and Y ∈ Rl×m using the Matlab command randn. Then we

construct |X| and |Y | by taking the absolute values of the entries. Finally, we define A := |X| · |Y |.

For each such generated matrix, we set k = b0.7lc and analyse the success rate of 100 randomly generated

initial nonsingular matrices Q0. For every Q0, we allow at most 3000 iterations. The performance of

Algorithm 1 in this setting is illustrated in Figure 2.

Note that Algorithm 1 terminates successfully in every case, such that the success in total is independent

of n and m and it does not make a difference whether m > n or m < n. Especially for small dimensions

like n = 4, m = 5 and n = 5, m = 4, plotted as the solid blue and the dashed red line, it turns out

that the algorithm terminates successfully for around 90% of the initial nonsingular matrices. Furthermore,

if the algorithm terminates successfully for one of the initial nonsingular matrices, a NMF is provided in

less than 100 iterations. Increasing values of m and n do not seem to influence the success rate in less

then 3000 iterations, but it takes more iterations on average to return a NMF. Here especially the green

line, representing n = 8, m = 10, illustrates this behaviour. Altogether, Figure 2 shows that the introduced

method to derive NMF works well for matrices A, which are randomly generated. In the following, we will

further analyze the performance of Algorithm 1 as a method to compute exact NMF in comparison to the

heuristics introduced in [31]. For this experiment, we consider the benchmark instances summarized in [31,

Table 1], containing so-called linear Euclidean distance matrices (LEDM6, LEDM8, LEDM12, LEDM16,

LEDM32), slack matrices of well-known polytopes (6-G, 7-G, 8-G, 9-G, 12-G, 32-G, 20-D, 24-C), unique

disjointness matrices (UDISJ4, UDISJ5, UDISJ6), and randomly generated instances (RND1, RND3). For

more details, the reader is referred to [31]. We say that a method terminates successfully for given matrix

A ∈ Rm×n and k ≤ min{m,n} if it return matrices X ∈ Rm×k and Y ∈ Rk×m which are entrywise greater
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Table 1

Representative computation time in seconds for the individual algorithms to terminate successfully applied to the bench-

mark instances introduced in [31].

Algorithm 1 MS2 SA RBR Hybrid

LEDM6 32.99 8.44 1.45 11.49 12.31

LEDM8 113.11 − − − −
LEDM12 14.65 − 1.22 21.58 13.96

LEDM16 17,28 − − − −
LEDM32 16,51 − − − −

6-G − 1.76 1.38 0.56 −
7-G 98.67 1.82 1.53 15.23 16.48

8-G 132.96 1.82 1.42 15.79 16.80

9-G 248.26 − 1.53 16.18 16.85

12-G 40.59 − 1.71 53.97 17.84

32-G 134.07 − − − 65.24

20-D 148.89 − 1.77 − −
24-C − − 2.09 − −

UDISJ4 0.07 1.91 1.72 − 0.78

UDISJ5 0.07 2.22 2.84 − −
UDISJ6 − − − 0.07 −
RND1 0.89 2.12 2.03 − 1.02

RND3 0.02 2.22 2.02 − 0.94

or equal to −108 and ‖A − XY ‖F ≤ 10−8 holds. Table 1 shows the computation time on a standard

Laptop for each algorithm to terminate successfully on factorizing the benchmark instances taken from [31].

The ”−” entries indicate that the algorithm was not sucessfull. For the methods introduced in [31], the

provided code as well as the recommended default parameters are used for fair comparisons. As can be

seen, Algorithm 1 returns a nonnegative matrix factorization in nearly all of the cases, whereas for the

other heuristics, only the method SA seems to be as reliable as the method presented in this paper. For

some instances corresponding to slack matrices of well-known polytopes, Algorithm 1 takes more time as

compared to the heuristics introduced in [31]. But especially for the unique disjointness matrices and the

random instances, the method presented in this paper seems to be the fastest.

6. Conclusion. In this paper, we introduced a new method to derive NMF for general rectangular

input matrices, based on the alternating projection method, extending the results for the symmetric case as

introduced in [16]. Unfortunately, since one of the subsets we need to project on is not closed, we could not

apply straight forward alternating projections. Instead, we generalized the alternative approach to obtain

an applicable heursitic approach for (exact) NMF. As numerical experiments substantiate, this algorithm

still works well and hence gives a new approach to derive nonnegative matrix factorizations. Furthermore,

as numerical experiments on benchmark instances show, the exact NMF method presented in this paper is

at least as reliable as the heuristics introduced in [31] and even faster for some instances.
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