THE MAXIMAL $\alpha-$ INDEX OF TREES WITH K PENDENT VERTICES AND ITS COMPUTATION*

OSCAR ROJO †

Abstract. Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. The α -index of G is the spectral radius $\rho_{\alpha}(G)$ of the matrix $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G)$, where $\alpha \in [0, 1]$. Let $T_{n,k}$ be the tree of order n and k pendent vertices obtained from a star $K_{1,k}$ and k pendent paths of almost equal lengths attached to different pendent vertices of $K_{1,k}$. It is shown that if $\alpha \in [0,1)$ and T is a tree of order n with k pendent vertices then

$$\rho_{\alpha}(T) \leq \rho_{\alpha}(T_{n,k}),$$

with equality holding if and only if $T=T_{n,k}$. This result generalizes a theorem of Wu, Xiao and Hong [6] in which the result is proved for the adjacency matrix $(\alpha=0)$. Let $q=\left[\frac{n-1}{k}\right]$ and $n-1=kq+r,\ 0\leq r\leq k-1$. It is also obtained that the spectrum of $A_{\alpha}(T_{n,k})$ is the union of the spectra of two special symmetric tridiagonal matrices of order q and q+1 when r=0 or the union of the spectra of three special symmetric tridiagonal matrices of order q, q+1 and 2q+2 when $r\neq 0$. Thus, the α -index of $T_{n,k}$ can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order q+1 if r=0 or order 2q+2 if $r\neq 0$.

Key words. Convex combination of matrices, Signless Laplacian, Adjacency matrix, Tree, Pendent vertices, Spectral radius.

AMS subject classifications. 05C50, 15A48.

1. Introduction. Let G = (V(G), E(G)) be a simple undirected graph on n vertices with vertex set V(G) and edge set E(G). Let D(G) be the diagonal matrix of order n whose (i,i)-entry is the degree of the i-th vertex of G and let A(G) be the adjacency matrix of G.

As usual, $K_{1,s}$ denotes the star on s+1 vertices, K_n and P_n are the complete graph and the path, both on n vertices, respectively.

In [2], Nikiforov introduces the matrix $A_{\alpha}(G)$,

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G),$$

with $\alpha \in [0,1]$ together with basic results and several open problems. Observe that $A_{\alpha}(G)$ is a symmetric nonnegative matrix for all $\alpha \in [0,1]$ and that $A_0(G) = A(G)$ and $A_{1/2}(G) = \frac{1}{2}(D(G) + A(G)) = \frac{1}{2}Q(G)$. Since $A_1(G) = D(G)$, from now on, we take $\alpha \in [0,1)$.

Let $\rho_{\alpha}(G)$ be the α -index of G, that is, the spectral radius of $A_{\alpha}(G)$. From the Perron - Frobenius Theory for nonnegative matrices, it follows that for a connected graph G, $\rho_{\alpha}(G)$ (Perron root) is a simple eigenvalue of $A_{\alpha}(G)$ having a positive eigenvector (Perron vector).

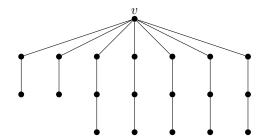
Let n and k given positive integers with $2 \le k \le n-1$. Let $T_{n,k}$ be the tree of order n and k pendent vertices obtained from a star $K_{1,k}$ and k pendent paths of almost equal lengths attached to different

^{*}Received by the editors on February 15, 2019. Accepted for publication on December 17, 2019. Handling Editor: Bryan L. Shader

[†]Department of Mathematics, Universidad Católica del Norte, Antofagasta, Chile (orojo@ucn.cl).

pendent vertices of $K_{1,k}$. More precisely, if $q = \left[\frac{n-1}{k}\right]$ and n-1 = kq+r, $0 \le r \le k-1$, then $T_{n,k}$ is the tree obtained from the star $K_{1,k}$ together with k-r pendent paths P_q and r pendent paths P_{q+1} attached to different pendent vertices of $K_{1,k}$ whenever $r \ne 0$ (see Example 1.1). If r = 0, then $T_{n,k}$ is the tree obtained from the star $K_{1,k}$ and k pendent paths P_q attached to different vertices of $K_{1,k}$ (see Example 1.2). Clearly, $T_{n,k}$ is a tree having exactly k pendents vertices and the number of vertices of $T_{n,k}$ is (k-r)q+r(q+1)+1=kq+r+1=n.

EXAMPLE 1.1. Let n = 20 and k = 7. Then q = 2 and r = 5. The tree $T_{20,7}$ is displayed below:



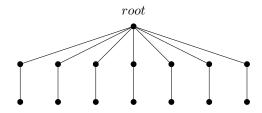
In Section 2, we prove that if $\alpha \in [0,1)$ and T is a tree of order n with k pendent vertices, then

$$\rho_{\alpha}(T) \leq \rho_{\alpha}(T_{n,k}),$$

with equality holding if and only if $T = T_{n,k}$. This result generalizes a theorem of Wu, Xiao and Hong [6] in which the result is proved for the adjacency matrix ($\alpha = 0$).

A rooted graph is a graph in which one vertex has been designated as a special vertex called the root. Given a rooted graph the level of a vertex is one more than its distance to the root vertex. A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree. For instance, if r = 0, then $T_{n,k}$ is a generalized Bethe tree. In Example 1.2, we illustrate this case.

EXAMPLE 1.2. Let n = 15 and k = 7. Then q = 2 and r = 0. The tree $T_{15,7}$ is displayed below:



If $r \neq 0$, then $T_{n,k}$ is a tree defined by the coalescence of two generalized Bethe trees at their roots (see Example 1.1).

Let $\{B_i: 1 \leq i \leq m\}$ be a set of trees such that, for $i = 1, 2, \ldots, m$. Then,

- (1) B_i is a generalized Bethe tree of k_i levels,
- (2) the vertices of B_i at the level j have degree d_{i,k_i-j+1} for $j=1,2,\ldots,k_i$, and
- (3) the edges of B_i joining the vertices at the level j with the vertices at the level (j+1) have weight w_{i,k_i-j} for $j=1,2,\ldots,k_i-1$.

40

Oscar Rojo

Let $v\{B_i: 1 \leq i \leq m\}$ be the tree obtained from the coalescence of the trees B_i at their roots in a common vertex v.

The Laplacian matrix of G is L(G) = D(G) - A(G). In [5], we give a complete characterization of the eigenvalues of the Laplacian matrix and adjacency matrix of $v\{B_i: 1 \le i \le m\}$ including results on their multiplicities. In Section 3, we extend these results to $A_{\alpha}(v\{B_i: 1 \le i \le m\})$. Finally, in Section 4, we apply the results of Section 3 to deduce that the spectrum of $A_{\alpha}(T_{n,k})$ is the union of the spectra of two special symmetric tridiagonal matrices of order q and q+1 when r=0 or the union of the spectra of three special symmetric tridiagonal matrices of order q, q+1 and 2q+2 when $r \ne 0$. Thus, the α -index of $T_{n,k}$ can be computed as the largest eigenvalue of the special symmetric tridiagonal matrix of order q+1 if r=0 or order q+1 if q=0.

2. The maximal α -index of trees with k pendent vertices. In [6], the authors proved the following:

THEOREM 2.1. (Wu, Xiao, and Hong [6]) Among all trees on n vertices and k pendent vertices, the maximal spectral radius of the adjacency matrix is obtained uniquely at $T_{n,k}$.

In this section, we extend Theorem 2.1 to all $\alpha \in [0,1)$. We begin recalling the following lemma that generalizes results known for the adjacency matrix and the signless Laplacian matrix of graphs.

LEMMA 2.2. (Nikiforov and Rojo [4]) Let $\alpha \in [0,1)$ and let G be a graph of order n. Suppose that $u,v \in V(G)$ and $S \subset V(G)$ satisfy $u,v \notin S$ and for every $w \in S$, $\{u,w\} \in E(G)$ and $\{v,w\} \notin E(G)$. Let G be the graph obtained by deleting the edges $\{u,w\}$ and adding the edges $\{v,w\}$ for all G is nonempty and there is a positive eigenvector (x_1,\ldots,x_n) to $\rho_{\alpha}(G)$ such that $x_v \geq x_u$, then

$$\rho_{\alpha}(H) > \rho_{\alpha}(G)$$
.

For any vertex u of a connected graph G, let $G_{p,q}(u)$ be the graph obtained by attaching the paths P_p and P_q to u. This is done by identifying one end vertex of P_p and one end vertex of P_q with u. The following theorem was proposed as a Conjecture 18 in [4].

Theorem 2.3. (Lin, Huang, and Xue [1]) Let $\alpha \in [0,1)$. If G is a connected graph and $p \geq q+2 \geq 3$, then

$$\rho_{\alpha}\left(G_{p,q}\left(u\right)\right) < \rho_{\alpha}\left(G_{p-1,q+1}\left(u\right)\right).$$

Given a graph G and a vertex $u \in V(G)$, let $\Gamma_G(u)$ be the set of neighbors of u.

We are ready to extend Theorem 2.1 to all $\alpha \in [0, 1)$.

Theorem 2.4. Let $\alpha \in [0,1)$ and T be a tree of order n and k pendent vertices. Then

$$\rho_{\alpha}(T) \leq \rho_{\alpha}(T_{n,k}),$$

with equality if and only if $T = T_{n,k}$.

Proof. Let T be a tree on n vertices and k pendent vertices. Let d_v be the degree of $v \in V(T)$. Let t be the number of vertices of T with a degree greater than or equal to 3. The following cases can occur:

Case 1:
$$t=0$$
. In this case, $T=P_n=T_{n,2}$. Then $\rho_{\alpha}(T)=\rho_{\alpha}(T_{n,2})$.

Case 2: t=1. Repeated application of Theorem 2.3 enables to conclude that $\rho_{\alpha}(T) \leq \rho_{\alpha}(T_{n,k})$ with equality if only if $T=T_{n,k}$.

Case 3: t > 1. Let \mathbf{x} be a positive unit eigenvector corresponding to $\rho_{\alpha}(T)$ in which x_v is the component of \mathbf{x} corresponding to $v \in V(T)$. Let $u, v \in V(T)$ such that $d_u \geq 3$ and $d_v \geq 3$. There is no loss of generality in assuming $x_u \geq x_v$. There is a unique path P connecting u and v and let $z \in P$ be unique neighbour of v. Let $v_1, \ldots, v_{d_v-2} \in \Gamma_T(v) \setminus z$. Let T_1 be the tree obtained from T by deleting the edges $\{v, v_1\}, \ldots, \{v, v_{d_v-2}\}$ and adding the edges $\{u, v_1\}, \ldots, \{u, v_{d_v-2}\}$. Clearly T_1 is a tree of order n with k pendent vertices having t-1 vertices with a degree greater than or equal to 3. Since $x_u \geq x_v$, by Lemma 2.2, it follows that $\rho_{\alpha}(T) < \rho_{\alpha}(T_1)$. If t-1=1, we stop and if t-1>1, we continue in this fashion to obtain a sequence of trees $T_1, T_2, \ldots, T_{t-1}$ of order n with k pendent vertices such that $\rho_{\alpha}(T) < \rho_{\alpha}(T_1) < \rho_{\alpha}(T_2) < \cdots < \rho_{\alpha}(T_{t-1})$, in which T_{t-1} has a unique vertex with a degree greater than or equal to 3. Finally, we apply Case 2 to conclude that $\rho_{\alpha}(T) < \rho_{\alpha}(T_{n,k})$.

3. The A_{α} -spectrum of the coalescence of generalized Bethe trees at their roots. Let $\sigma(M)$ be the spectrum of the matrix M. From now on, let $\beta = 1 - \alpha$.

The A_{α} -spectrum of a generalized Bethe tree was studied in [3] and the results are presented in Theorem 3.2 below.

Let B_k be a generalized Bethe tree on k levels. For j = 1, ..., k, let n_{k-j+1} be the number of vertices at level j and let d_{k-j+1} be their degree. In particular, $d_1 = 1$ and $n_k = 1$. Let

(3.1)
$$\Omega = \{j : 1 \le j \le k - 1, n_j > n_{j+1}\}.$$

DEFINITION 3.1. For $j=1,2,\ldots,k-1$, let T_j be the $j\times j$ leading principal submatrix of the $k\times k$ symmetric tridiagonal matrix

$$T = \begin{bmatrix} \alpha & \beta\sqrt{d_2 - 1} & 0 & & 0\\ \beta\sqrt{d_2 - 1} & \alpha d_2 & \ddots & & & \\ & \ddots & \ddots & & \beta\sqrt{d_{k-1} - 1} & \\ & & \beta\sqrt{d_{k-1} - 1} & \alpha d_{k-1} & \beta\sqrt{d_k} \\ 0 & & 0 & \beta\sqrt{d_k} & \alpha d_k \end{bmatrix}.$$

THEOREM 3.2. (Nikiforov and Rojo [3, Theorem 8]) Let B_k be a generalized Bethe tree, and $\alpha \in [0,1)$. If the matrices T_1, \ldots, T_{k-1}, T are defined as in Definition 3.1, then:

(a)
$$\sigma(A_{\alpha}(B_k)) = (\cup_{i \in \Omega} \sigma(T_i)) \cup \sigma(T).$$

- (b) The multiplicity of each eigenvalue of T_j as an eigenvalue of $A_{\alpha}(B_k)$ is $n_j n_{j+1}$ if $j \in \Omega$ and the eigenvalues of T as eigenvalues of $A_{\alpha}(B_k)$ are simple. If some eigenvalues obtained in different matrices are equal, their multiplicities are added together.
 - (c) The largest eigenvalue of T is the largest eigenvalue of $A_{\alpha}(B_k)$.

We now search for A_{α} -spectrum of $v\{B_i : 1 \leq i \leq m\}$. We recall that $\{B_i : 1 \leq i \leq m\}$ is a set of trees such that, for i = 1, 2, ..., m,

Oscar Rojo 42

- (1) B_i is a generalized Bethe tree of k_i levels,
- (2) the vertices of B_i at the level j have degree d_{i,k_i-j+1} for $j=1,2,\ldots,k_i$, and
- (3) the edges of B_i joining the vertices at the level j with the vertices at the level (j+1) have weight w_{i,k_i-j} for $j=1,2,\ldots,k_i-1$.

We recall the results obtained in [5] on the spectrum of $L(v\{B_i: 1 \le i \le m\})$. Assume that the common root v is at the level 1. For $j = 1, ..., k_i$, let n_{i,k_i-j+1} be the number of vertices at the level j of B_i . Let

$$\delta_{i,1} = w_{i,1},$$

$$\delta_{i,j} = (d_{i,j} - 1) w_{i,j-1} + w_{i,j}$$

for $j = 2, ..., k_i - 1$, and

$$\delta = \sum_{i=1}^{m} d_{i,k_i} w_{i,k_i-1}.$$

DEFINITION 3.3. For $i=1,\ldots,m$ and for $j=1,\ldots,k_i-1$, let $T_{i,j}$ be the $j\times j$ leading principal submatrix of the $(k_i-1)\times(k_i-1)$ symmetric tridiagonal matrix

$$T_{i,k_i-1} = \left[\begin{array}{cccc} \delta_{i,1} & w_{i,1} \sqrt{d_{i,2}-1} \\ w_{i,1} \sqrt{d_{i,2}-1} & \delta_{i,2} & \ddots & \\ & \ddots & \ddots & \\ & & w_{i,k_i-2} \sqrt{d_{i,k_i-1}-1} & \delta_{i,k_i-1} \end{array} \right].$$

Definition 3.4. Let $r = \sum_{i=1}^{m} k_i - m + 1$. Let T be the symmetric matrix of order $r \times r$ defined by

$$T = \begin{bmatrix} T_{1,k_1-1} & 0 & \cdots & 0 & w_{1,k_1-1}\mathbf{p}_1 \\ 0 & T_{2,k_2-1} & \ddots & & w_{2,k_2-1}\mathbf{p}_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & & 0 & T_{m,k_m-1} & w_{m,k_m-1}\mathbf{p}_m \\ w_{1,k_1}\mathbf{p}_1^T & w_{2,k_2-1}\mathbf{p}_2^T & \cdots & w_{m,k_m-1}\mathbf{p}_m^T & \delta \end{bmatrix},$$

where $T_{1,k_1-1}, T_{2,k_2-1}, \ldots, T_{m,k_m-1}$ are the symmetric tridiagonal matrices defined in Definition 3.3 and

$$\mathbf{p}_i^T = \begin{bmatrix} 0 & \cdots & 0 & \sqrt{n_{i,k_i-1}} \end{bmatrix}$$

for $i = 1, \ldots, m$.

For $i = 1, \ldots, m$, let

$$\Omega_i = \{j : 1 \le j \le k_i - 1, n_{i,j} > n_{i,j+1} \}.$$

43 The Maximal α -index of Trees with k Pendent Vertices and its Computation

THEOREM 3.5. (Rojo [5, Theorem 2]) (a) $\sigma(L(v\{B_i:1\leq i\leq m\}))=(\bigcup_{i=1}^m \bigcup_{j\in\Omega_i}\sigma(T_{i,j}))\cup\sigma(T)$, where the matrices $T_{i,j}$ and T are as in Definitions 3.3 and 3.4.

(b) The multiplicity of each eigenvalue of the matrix $T_{i,j}$, as an eigenvalue of $L(v\{B_i: 1 \le i \le m\})$, is at least $(n_{i,j}-n_{i,j+1})$ for $j \in \Omega_i$, and the eigenvalues of T as eigenvalues of $L(v\{B_i: 1 \le i \le m\})$ are simple.

Taking into consideration that the diagonal entries $\delta_{i,j}$ and δ defined above become

$$\delta_{i,1} = \alpha$$
,

$$\delta_{i,j} = \alpha d_{i,j},$$

for $j = 1, ..., k_i - 1$, and

$$\delta = \alpha \sum_{i=1}^{m} d_{i,k_i}$$

in case of the matrix $A_{\alpha}(v\{B_i: 1 \leq i \leq m\})$ and using the fact that $A_{\alpha}(G)$ can be viewed as a matrix on a weighted graph G in which all its edges have a weight $\beta = 1 - \alpha$, the technique and the same steps used in [5] to obtain Theorem 3.5 can be applied to find the spectrum of $A_{\alpha}(v\{B_i: 1 \leq i \leq m\})$ getting that:

Theorem 3.6. (a)

$$\sigma\left(A_{\alpha}\left(v\left\{B_{i}:1\leq i\leq m\right\}\right)\right)=\left(\cup_{i=1}^{m}\cup_{i\in\Omega_{i}}\sigma\left(T_{i,j}(\alpha)\right)\right)\cup\sigma\left(T(\alpha)\right),$$

where the matrices $T_{i,j}(\alpha)$ and $T(\alpha)$ are as in Definitions 3.7 and 3.8.

(b) The multiplicity of each eigenvalue of the matrix $T_{i,j}(\alpha)$, as an eigenvalue of A_{α} ($v\{B_i: 1 \leq i \leq m\}$), is at least $(n_{i,j}-n_{i,j+1})$ for $j \in \Omega_i$, and the eigenvalues of $T(\alpha)$ as eigenvalues of A_{α} ($v\{B_i: 1 \leq i \leq m\}$) are simple.

DEFINITION 3.7. For i = 1, 2, ..., m and for $j = 1, 2, 3, ..., k_i - 1$, let $T_{i,j}(\alpha)$ be the $j \times j$ leading principal submatrix of the $(k_i - 1) \times (k_i - 1)$ symmetric tridiagonal matrix

$$T_{i,k_{i}-1}(\alpha) = \begin{bmatrix} \alpha & \beta \sqrt{d_{i,2}-1} \\ \beta \sqrt{d_{i,2}-1} & \alpha d_{i,2} & \ddots & \\ & \ddots & \ddots & \beta \sqrt{d_{i,k_{i}-1}-1} \\ & & \beta \sqrt{d_{i,k_{i}-1}-1} & \alpha d_{i,k_{i}-1} \end{bmatrix}.$$

DEFINITION 3.8. Let $r = \sum_{i=1}^{m} k_i - m + 1$. Let $T(\alpha)$ be the symmetric matrix of order $r \times r$ defined by

$$T(\alpha) = \begin{bmatrix} T_{1,k_1-1}(\alpha) & 0 & \cdots & 0 & \beta \mathbf{p}_1 \\ 0 & T_{2,k_2-1}(\alpha) & \ddots & & \beta \mathbf{p}_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & & 0 & T_{m,k_m-1}(\alpha) & \beta \mathbf{p}_m \\ \beta \mathbf{p}_1^T & \beta \mathbf{p}_2^T & \cdots & \beta \mathbf{p}_m^T & \alpha \sum_{i=1}^m d_{i,k_i} \end{bmatrix},$$

44

where $T_{1,k_1-1}(\alpha), T_{2,k_2-1}(\alpha), \dots, T_{m,k_m-1}(\alpha)$ are the symmetric tridiagonal matrices defined in Definition 3.7 and

$$\mathbf{p}_i^T = \begin{bmatrix} 0 & \cdots & 0 & \sqrt{n_{i,k_i-1}} \end{bmatrix}$$

for i = 1, ..., m.

4. The A_{α} -spectrum of $T_{n,k}$. We recall that n-1=kq+r where $q=\left[\frac{n-1}{q}\right]$ and $0 \leq r \leq k-1$. As we will see later, the matrix

(4.3)
$$T(\alpha) = \begin{bmatrix} \alpha & \beta & 0 & 0 \\ \beta & 2\alpha & \ddots & \\ & \ddots & \ddots & \beta \\ & & \beta & 2\alpha & \beta\sqrt{k} \\ 0 & & 0 & \beta\sqrt{k} & k\alpha \end{bmatrix}$$

of the appropriate order plays a special role in this section.

We recall that if A is an $m \times m$ symmetric tridiagonal matrix with nonzero codiagonal entries then the eigenvalues of any $(m-1) \times (m-1)$ principal submatrix strictly interlace the eigenvalues of A. Hence, the eigenvalues of any symmetric tridiagonal matrix with nonzero codiagonal entries are simple.

There are two cases:

4.1. Case r = 0.

THEOREM 4.1. Let n = kq + 1. If the matrix $T(\alpha)$ in (4.3) is of order q + 1 and $T_q(\alpha)$ is its leading principal submatrix of order q, then

(a)

(4.4)
$$\sigma(A_{\alpha}(T_{n,k})) = \sigma(T_{\alpha}(\alpha)) \cup \sigma(T(\alpha));$$

- (b) the multiplicity of each eigenvalue of $T_q(\alpha)$ as an eigenvalue of $A_{\alpha}(T_{n,k})$ is exactly k-1, and the eigenvalues of $T(\alpha)$ as eigenvalues of $A_{\alpha}(T_{n,k})$ are simple; and
 - (c) the largest eigenvalue of $T(\alpha)$ is the α -index of $T_{n,k}$.

Proof. (a) Assume r = 0. Then n = kq + 1 and $T_{n,k}$ is a generalized Bethe tree of q + 1 levels in which, from the pendent vertices to the root, the vertex degrees and the number of vertices are

$$d_1 = 1$$
, $d_2 = \cdots = d_q = 2$, $d_{q+1} = k$, $n_1 = n_2 = \cdots = n_q = k$, $n_{q+1} = 1$.

Then the set Ω in (3.1) is $\Omega = \{q\}$ and the matrix T in Definition 3.1 becomes the matrix $T(\alpha)$ in (4.3) of order (q+1). We apply Theorem 3.2, part (a), to obtain that the A_{α} -spectrum of $T_{n,q}$ is given by (4.4).

- (b) The eigenvalues of $A_{\alpha}(T_{n,k})$ are the eigenvalues of $T_q(\alpha)$ and $T(\alpha)$; and, the eigenvalues of $T_q(\alpha)$ strictly interlace the eigenvalues of $T(\alpha)$. These facts and part (b) of Theorem 3.2 imply that the multiplicity of each eigenvalue of $T_q(\alpha)$ as eigenvalue of $T_q(\alpha)$ and $T_q(\alpha)$ as eigenvalue of $T_q(\alpha)$ as eigenvalue of $T_q(\alpha)$ an
 - (c) It is an immediate consequence of the facts mentioned in the proof of part (b).

4.2. Case $r \neq 0$. At this point, we introduce the following additional notations: 0 is the all zeros matrix of the appropriate order, I_n is the identity matrix and R_n is the reversal identity matrix, both of order $n \times n$. We recall that R_n is a permutation matrix where the 1 entries reside on the back diagonal and all other entries are zero. If A is a matrix with n rows then R_nA reverses the rows of A and if A is a matrix with n columns then AR_n reverses the columns of A.

THEOREM 4.2. Let n = kq + r + 1 with $0 < r \le k - 1$. If the matrix $T_q(\alpha)$ and $T_{q+1}(\alpha)$ are the leading principal submatrices of order q and q + 1, respectively, of the matrix $T(\alpha)$ as in (4.3), then

(a)
$$\sigma(A_{\alpha}(T_{n,k})) = \sigma(T_q)(\alpha) \cup \sigma(T_{q+1}(\alpha)) \cup \sigma(R(\alpha)),$$

where $R(\alpha)$ is a symmetric tridiagonal matrix of order 2q+2 with diagonal entries

(4.5)
$$\alpha, \overbrace{2\alpha, \dots, 2\alpha}^{q-1}, k\alpha, \overbrace{2\alpha, \dots, 2\alpha}^{q}, \alpha$$

and codiagonal entries

(4.6)
$$\overbrace{\beta,\ldots,\beta}^{q-1},\beta\sqrt{k-r},\beta\sqrt{r},\overbrace{\beta,\ldots,\beta}^{q}.$$

- (b) The multiplicity of each eigenvalue of $T_q(\alpha)$ and $T_{q+1}(\alpha)$ as an eigenvalue of $A_{\alpha}(T_{n,k})$ is k-r-1 and r-1, respectively, and the eigenvalues of $R(\alpha)$ as eigenvalues of $A_{\alpha}(T_{n,k})$ are simple.
 - (c) The largest eigenvalue of $R(\alpha)$ is the α -index of $T_{n,k}$.

Proof. (a) Let now n = kq + r + 1, with $r \neq 0$. In this case, $T_{n,k}$ is the tree obtained by the coalescence of m = 2 generalized Bethe trees B_1 and B_2 at their roots in a common vertex v, $T_{n,k} = v\{B_1, B_2\}$, in which the number of levels of B_1 is q + 1 and the number of levels of B_2 is q + 2. Clearly the degree of v is equal to k. From the pendent vertices to the root, the vertex degrees and the number of vertices are

$$d_{1,1} = 1$$
, $d_{1,2} = \dots = d_{1,q} = 2$, $n_{1,1} = n_{1,2} = \dots = n_{1,q} = k - r$, $n_{1,q+1} = 1$

for the tree B_1 , and

$$d_{2,1} = 1$$
, $d_{2,2} = \dots = d_{2,q+1} = 2$, $n_{2,1} = n_{2,2} = \dots = n_{2,q+1} = r$, $n_{2,q+2} = 1$

for the tree B_2 .

The sets Ω_1 and Ω_2 in (3.2) are $\Omega_1 = \{q\}$ and $\Omega_2 = \{q+1\}$. Then, from Theorem 3.6, part (a), we obtain

$$\sigma(A_{\alpha}(T_{n,k})) = \sigma(T_q(\alpha)) \cup \sigma(T_{q+1}(\alpha)) \cup \sigma(S(\alpha)),$$

where

$$S(\alpha) = \begin{bmatrix} T_q(\alpha) & 0 & \beta \mathbf{p_1} \\ 0 & T_{q+1}(\alpha) & \beta \mathbf{p_2} \\ \beta \mathbf{p_1}^T & \beta \mathbf{p_2}^T & k\alpha \end{bmatrix}$$

Oscar Rojo 4

with
$$\mathbf{p_1}^T = [0, \dots, 0, \sqrt{k-r}]$$
 and $\mathbf{p_2}^T = [0, \dots, 0, \sqrt{r}]$. Let P be the permutation matrix

$$P = \left[\begin{array}{cc} I_q & 0 \\ 0^T & R_{q+2} \end{array} \right].$$

Let $R(\alpha) = PS(\alpha)P$. Since $P^2 = I_{2q+2}$, it follows that $S(\alpha)$ and $R(\alpha)$ are similar matrices. We have

$$PS(\alpha) = \begin{bmatrix} T_q(\alpha) & 0 & \beta \mathbf{p_1} \\ \beta \mathbf{p_1}^T & \beta \mathbf{p_2}^T & k\alpha \\ 0 & R_{q+1} T_{q+1}(\alpha) & \beta R_{q+1} \mathbf{p_2} \end{bmatrix}.$$

Hence,

$$R(\alpha) = PS(\alpha)P = \begin{bmatrix} T_q(\alpha) & \beta \mathbf{p_1} & 0 \\ \beta \mathbf{p_1}^T & k\alpha & \beta \mathbf{p_2}^T R_{q+1} \\ 0 & \beta R_{q+1} \mathbf{p_2} & R_{q+1} T_{q+1}(\alpha) R_{q+1} \end{bmatrix}$$

is a symmetric tridiagonal matrix in which its diagonal entries and codiagonal entries are as in (4.5) and (4.6), respectively.

- (b) Since $\Omega_1 = \{q\}$, $n_{1,q} = k r$, $n_{1,q+1} = 1$ and $\Omega_2 = \{q+1\}$, $n_{1,q+1} = r$, $n_{1,q+2} = 1$, the results follow from Theorem 3.6, part (b).
- (c) It is an immediate consequence of the interlacing property of the eigenvalues of Hermitian matrices. \Box

Acknowledgment. The author is very grateful to an anonymous referee for all his/her comments and corrections.

REFERENCES

- [1] H. Lin, X. Huang, and J. Xue. A note on the A_{α} -spectral radius of graphs. Linear Algebra Appl, 557:430–437, 2018.
- [2] V. Nikiforov. Merging the A- and Q-spectral theories. Appl. Anal. Discrete Math., 11:81-107, 2017.
- [3] V. Nikiforov, G. Pastén, O. Rojo, and R.L. Soto. On the A_{α} -spectra of trees. Linear Algebra Appl., 520:286–305, 2017.
- [4] V. Nikiforov and O. Rojo. On the α -index of graphs with pendent paths. Linear Algebra Appl., 550:87–104, 2018.
- [5] O. Rojo. Spectra of weighted generalized Bethe trees joined at the root. Linear Algebra Appl., 428:2961–2979, 2008.
- [6] B. Wu, E. Xiao, and Y. Hong. The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395:343–349, 2005.